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Abstract 

Risk Classification represents one of the most important and controversial topics of actuarial science. It is 

covered broadly throughout the Casualty Actuarial Society's exam syllabus. The importance and 

persistence of this topic is also reflected in the long array of papers that permeate the casualty actuarial 

literature. Most of the recent work on Risk Classification has focused on automobile insurance coverage, 

which is principally responsible for bringing the issue into the public debate. However, Risk Classification 

impacts on all types of insurance coverage and has ramifications beyond the world of insurance. 

Risk Classification starts necessarily as a subjective process. The characteristics along which risks are 

delineated are intuitive at best. Traditional treatments of Risk Classification in the actuarial literature, in 

our view, do not provide the tools to move beyond intuition. In this paper, we will review the common 

definitions of Risk Classification by quickly glancing through two reference materials on the subject: the 

American Academy of Actuaries Risk Classification Statement of Principles [2] and Robert Finger's 

chapter on Risk Classification in the Foundations of Casualty Actuarial Science textbook [6]. Then, by 

building on the existing definitions, we will look to establish a more rigorous and consistent treatment of 

the subject. At the core of our treatment will be a non-traditional definition of the notion of class. We will 

borrow terminology from Set Theory ~ to help us in this endeavor. We will not only define more rigorously 

such concepts as homogeneity and separation but we will also integrate them into the very definition of 

Risk Classification. A method of Risk Classification will emerge as a natural byproduct of our definitions. 

This method, which may he described as what Venter [10, p. 345] terms a "credibility only" method, will 

provide an alternative to using arithmetic functions in Risk Classification schemes. To illustrate our newly 

I Familiarity with elementary Set Theory, although not required, is helpful in order to understand the 
material presented herein. For an introduction to Set Theory, see Gilberl and Gilbert [7]. 
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defined precepts of Risk Classification, we will construct a specific model using simulated observations. 

We will introduce a set of statistics that will allow us to make inferences about our model. Also, we will 

propose measures for assessing the relative efficiency of competing schemes and suggest procedures for 

validating a classification scheme. Finally, we hope that this paper will provide ideas to actuaries looking 

to build a Risk Classification scheme from scrap. 

Introduction 

Let us introduce an example where rates are being sought to provide professional liability coverage to 

actuaries. A classification scheme is proposed, which groups actuaries based on two criteria or 

classification variables: "area of practice" and "years of experience." "Area of practice" is subdivided into 

two (mutually exclusive) bands or risk characteristics: Life, Non-Life while "years of experience" is 

subdivided into two (mutually exclusive) bands: 10 or fewer, 11 or more. Four cells or sets of actuaries 

will emerge out of this arrangement: Life actuaries with 10 or fewer years of experience, Life actuaries 

with 11 or more years of experience, Non-Life actuaries with 10 or fewer years of experience, Non-Life 

actuaries with 11 or more years of experience. 

Why are we pooling actuanes into various cells in the first place? Couldn't we charge a single rate to all 

actuaries based on their combined experience7 Taking this approach, we would run the risk of charging the 

same rates to groups that have fundamentally different loss propensities 2. This would create subsidies 

across groups that carry both economic and social consequences. Conversely, are we to presume that 

actuaries across these cells have different loss propensities by virtue of our having separated them in this 

manner? Should we proceed to calculate rates for each cell based on its respective experience? Wouldn't 

we then run the risk of charging different rates to groups that essentially have the same loss propensity? 

This too might create subsidies with dire economic and social consequences. What if we had instead 

devised a classification scheme that grouped actuaries according to whether they were left-handed or right- 

z Loss propensity may refer to either the probability distribution of the claim process for a cell or to the 
parameters and functions of parameters of the probability distributions within a cell. 
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handed and according to whether they sported bifocals or contact lenses (assuming all actuaries wear one or 

the other eye-device but not both)? Besides from lacking intuitive appeal, what separates the latter scheme 

from the former.'? Perhaps, we need to take a step back and ask ourselves what exactly is Risk 

Classification or its purpose. Let's look to the literature for guidance. 

Current  Definitions 

The American Academy of Actuaries, Risk Classification Statement of Principles defines Risk 

Classification as "[the process of] grouping risks with similar risk characteristics for the purpose of setting 

prices. [2, p . l ]"  "Risk Classification", the Statement adds, "is intended simply to group individual risks 

having reasonably similar expectations of  loss. [2, p.I]" 

Robert Finger defines Risk Classification as the "formulation of different premiums for the same coverage 

based on group characteristics. [6, p.231]" 

Discussion 

Both the above definitions are intuitively appealing. However. in our opinion, they leave open certain key 

questions. For instance, the Statement's definition does not directly address the question of whether the 

risks across cells need to have different loss propensities. Finger, while implying in his definition that Risk 

Classification should recognize differences amongst cells, does not elaborate on how those differences 

might be recognized. The mere grouping of risks with similar characteristics, as suggested by the 

American Academy of Actuaries, seems like a rather incomplete goal of Risk Classification. We agree 

with Finger that Risk Classification must entail the emergence of differences amongst cells of risks. 

Otherwise, there would not be a need to classify in the first place. However, in our opinion, there should 

not be a presumption that any chosen risk characteristics, however intuitive, will result in cells that have 

different loss propensities. Before charging different rates to risks across different cells, it seems that one 

would need to be reasonably certain that the cells have diffeTent loss propensities. We believe that Risk 
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Classification should avoid two mistakes: charging the same rates to pools of  risks that have fundamentally 

dissimilar loss propensities or charging different rates to pools of  risks that have fundamentally similar loss 

propensities. The goal of  risk classification should be to arrive at rates that closely represent the loss 

propensity of  every risk while avoiding these the t~so types of  mistakes. 

Let's return to the classification scheme for actuaries introduced earlier. We should keep in mind that it 

may be appropriate to devise a different classifcation scheme ~ for each aspect of  the claim process  For 

instance, the rating variables along ",~hlch frequency is analyzed need not coincide ~slth those used for 

severity. For simplicity, let's assume we are looking at only one aspect o f  the claim process and that 

aspect alone determines the differences [if any) in the cost of  coverage bet~seen cells. Let 's  assume a 

probability model ts initially derived for each cell based on the respectlse observations m each cell. Let 's  

finally make the assumption that the models all ha~e tbe same functional form and only their parameter 

values may differ. Let 's revlev, the lbllo~sing four scenarios: 

Scenario 1 : In the first scenario, the parameters underlying the models for life and non-life actuaries ~ ith 

10 or fev,'er ),'ears o f  experience, respectively, can't be differentiated. We will say of  these cells that they 

are compatible "~. t inder this scenario, life and non-bfe actuaries with 11 or more years of  experience. 

respectively, are also compatible. Finally, under this scenario both life and non-life actuaries v, ith 10 or 

fev.er years of  experience, respecli,.ely, are compatible ,xilh their more experienced counterparts. This 

scenario is illustrated in the chart sho~n in figure I below. Has Risk Classification been successful under 

this scenario'? Can the process even be called Risk Classification'? Do any of  the cells defined above 

constitute ck1~.~e.~? More importan~ly, should the obser,,ations o f  all or any o f  the cells be joined for the 

purpose of  estimating the parameters of  the models? 

I f  the processes are independent as is often assumed, it makes sense to classify them separately. 

' This narrow definition of  compatibility assumes symmetry.  That is. g iven t~so cells C i and ( ' ~ .  if  

Cj  compatible ~r~tl~ C~ , finis definition implies thai C~ compatible with C i and vice ~ ersa This ~ zl l  n o t  

be the case in our general defitlitton pro~ ided later in this paper. Also. a cell ts compatible ~ tth itsell" b'. 
definition. 
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Figure t: Compatibility ~ Chart for Scenario 1 

Are Cells Compatible? ] 

t Non Life 11+ Life 11 ÷ 

1 

Scenario 2: In the second scenario, it is found that the parameters underlying the models for life actuaries 

with l0 or fewer years of experience and those with 11 or more years of experience can be differentiated. 

We will say of these two cells that they are incompatible. Under the second scenario, it is found that life 

and non-life actuaries, respectively, who fall in the same experience group are compatible. It is also found 

that non-life actuaries with 10 or fewer years of experience are compatible with their more experienced 

counterparts. The compatibility chart is shown in figure 2 below. To what degree has Risk Classification 

been successful under this scenario? Do any or some of the cells defined above constitute classes? Should 

any of the cells bc joined for the purpose of estimating the parameters of these models? If so, which? 

5 Life actuaries are not compared with non-life actuaries falling in opposite experience groups, as these 
groups do not share any common characteristics. These comparisons would be irrelevant in the context of 
the given classification scheme. These pairs of cells will be defined later as non-adjacem and a~e 
incompatible by det-mition. 
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Figure 2: Compatibility Chart for Scenario 2 

A r e  C e l l s  C o m p a t i b l e 7  i 

Non Life 10 14 ~ . - - - - ~ ,  Life 10- 

Non L i f e  11" ~ - - - (  Y e s  , ~  L i f e  11-  
. . . . . . . .  ! - - - ~  . . . . . . . . . .  J 

Scenario 3: In the third scenario, it is found that life actuaries x',ith 10 or fev, er years of  experience and 

those with 11 or more years of  experience are incompatible Also, under this scenario, it is found that life 

and non-Life actuaries who fall in the lO or fev, er years of  experience group are compatible .,,,bile life and 

non-life actuaries :,,ho fall in the I I or more years of  experience group are incompatible. Finally. tt is 

found that rJon-life actuaries v, ith 10 or fev,,er years of  experience are compatible with their more 

experienced counterparts. The compatibility chart is shown in figure 3 below. To ,,',hat degree has Risk 

Classification been successful under this scenario7 Do any or some of  the cells defined above constitute 

ela+~.+e.+? Should any of  the cells be joined for the purpose of  the parameters of  these models7 If  so, which? 
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Figure 3: Compatibility Chart for Scenario 3 

Are Cells Compatible? 1 

Non Life 1 0 - ] ~ ~  Life 10- 1 

[ N o n  Life 1 l + ~ L ~ f e  I I -+-~  

Scenario 4: Finally, in the fourth scenario, all pairs of cells are found incompatible. The compatibility chart 

is shown in figure 4 below. Is this the only scenario under which Risk Classification has been successful? 

Is this the only scenario in which the cells defined by the classification scheme constitute classes? Should 

any of the cells be joined for the purpose of estimating the parameters ofthese models? lfso, which? 
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Figure 4: Compatibility Chart for Scenario 4 

Are Cells Compatible? 

Non Life I 0  ~ • Life I0- 

! 
I N o n  L i f e l l ~  "~ . . . . .  : N o  '~ . . . .  ~ -  L i f e  I1"  

We have raised several questions in reviev, ing the preceding scenarios. Let 's see ho~ ~, these questions 

could be answered from the perspecti~ e of  the AAA's  Statement of  Principles and Robert Finger's chapter 

on the subject. Based on our understanding of  the Statement of  Principles. the pooling of  actuaries 

suggested in our example would fit the AAA's definition of  Risk Classification even before any of  the 

scenarios are considered. Remember that the American Academy of Actuaries' Statement of  Principles 

simply defines Risk Classification as "'a grouping of  Risk with similar risk characteristics." The Statement 

of  Principles is silent on the issue of  ~hether, and '.vhich cells should be joined for the purpose of  

estimating costs The Statement of  Principles does list credibility among three statistical considerations in 

designing a Classification scheme. Under this consideration, the Academy suggests that "it is desirable that 

each of  tl'Je classes in a risk classification scheme be large tvJottgll to allo'~', credible statistical predictions 

about that class Accurate  predictions for small, narrowly defined classes often can be made b', 

appropriate statistical analysis of  the experience for broader grouping of  correh~tive chJsses. 12. p I0 ] ' " /h i s  

implies that the parameters of  a cell :'.ith a small number of  observations ma_v be estimated b~, iotnmg It 
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with other ceils, while the parameters of a cell with a large number of observations may be based on that 

cell alone. 

Would our grouping satisfy Robert Finger's definition of Risk Classification under the first scenario? 

Under that scenario, the grouping would be unable to formulate statistically different premiums based on 

the characteristics of each cell of  actuaries. What about the second scenario where only one pair of cells 

shows differences in the parameters of their models, or the third scenario? Would our grouping fit Finger's 

definition under these scenarios7 Finger is also silent on the issue of whether, when, and which cells 

should be joined for the purpose of estimating the models' parameters. Similarly to the American 

Academy of Actuaries Statement of Principles, Finger mentions credibility as one of four actuarial criteria 

for selecting rating variables. This criterion requires that "a rating group ... be large enough to measure 

costs with sufficient accuracy. [6, p.237]" 

The notion of credibility, as presented in Finger [6] and the American Academy of Actuaries [2] and for 

that matler in most actuarial papers on Risk Classification and Ratemaking, is used in what Phithrick [8, p. 

214] calls "[its] familiar sense (as opposed to its technical meaning) [as] almost a synonym for confidence." 

"[This] terminology", Venter [11, p. 382] tells us "is misleading if it implies that the credibility weight is an 

inherent property of the data. " Our definition of credibility, unlike that of Finger and of the Academy, will 

be analogous to the technical meaning of credibility as presented in Philbrick [8, p. 214] that is credibility 

is " the appropriate weight to be given to a statistic of the experience in question relative to other 

experience." 

We view the grouping of the actuaries into the four cells as no more than the posing of a pair of 

hypotheses, which roughly state: 

1) Actuaries within the same cell share the same loss propensity. 

2) Actuaries across different cells have different loss propensities. 
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We will refer to the first and second hypotheses as the homogeneity" and .~e~aration '~ hypotheses, 

respectively. Merely setting the hypotheses does not make them true. Merely selecting classification 

variables and risk characteristics that seem intuitive and reasonable does not mean that the resulting cells 

will satisfy the hypotheses. For, intuition and reasonableness remain only subjecti',e concepts 

H o m o g e n ~  It may be difficult to prove directly that all risks within a cell have the same loss propenslty. 

However,  this hypothesis may be proven false if  one or more risk characteristics are found such that risks 

within a cell can be subdivided to define ne ~J.' sub-cells and the risks across the ne~ly defined sub-ceUs 

have different loss propensities. Theoretically. there are an infinite number of  risk characteristics that could 

be used to separate risks within a cell  In reality, most potential risk characteristics are either unknox~n or 

simply unfeasible lo use. Hence, one is limited to a haladful o f  characteristics from '* hich to choose  When 

a classification scheme is proposed, one may test homogeneity by introducing additional characteristics 

(known and feasible) to see v, hether the risks across the nev, ly defined sub-cells ha',e different loss 

propensities. For instance, we may introduce pension as an additional area of  practice by v, hich to pool 

non-life actuaries. [f  11o such characteristics emerge, we may assume the homogeneity hypothesis to hold. 

Alternatively, v,e may simply assume that a gi,.en classification scheme provides the smallest and finest 

pooling of  risks and no further subdivision of  the cells is possible. Therefore. the homogeneity hypothesis 

would hold by de fauh  

.Separation: This hypothesis can be tested by successively comparing the compatibility of  different pairs o f  

cells. We assume thal a test or a statistic can be devised to ansv,'er the question of  compatibility between 

pairs of  cells, For instance, given a ran~'e of  ',alues of  a chosen statistic, ~.ve may  conclude thal r.vo given 

cells are incompatible and. therefore, their parameters need to be estimated independently of  each other. 

Conversely, for values of  the chosen statistic that fall outside the range, we would conclude that tv, o gixen 

cells are compatible. Then. the law of  large numbers dictates that the observations across both cells 

* This concept is somewhat different than the one introduced by Michael Wa/ters ~ho. in his I081 
Dorweiler prize-winning paper Risk Classification Standards, defines separation as "a measure of  v, hether 
classes are sufficiently different m their expected losses to warrant the setting of  different premitnu rates 
[12, p, I11." 
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provide a better estimate of the parameters underlying the statistical models of these cells rather than just 

the observations in each individual cell. If all pairs of cells were incompatible, we would then accept the 

separation hypothesis. Then the parameters underlying each cell in the classification scheme would be 

estimated by relying solely on the observations from that cell. If the separation hypothesis were rejected, 

then one of several alternatives could be accepted. These alternative hypotheses range from finding that all 

pairs of cells are compatible (no need to classify at all) to finding various combinations of cells that are 

compatible. For example, given a cell C and a set Ccor~patibl e representing the union of all cells that are 

compatible with C excluding Citself, the estimates of the parameters of Cwould  be derived from 

observations taken from C together with those taken from Cco,,va~i,l ~ . 

Credibility: When the separation hypothesis fails, the new estimates of C based on observations taken from 

C together with those taken from Cco,,,m,lbl ~ can also be viewed as the credibility weighted average of the 

estimates based on observations from C alone with estimates based on observations taken from Ccompatibte. 

The new estimates ENe . of the parameters of C might then be expressed as follows: 

E u e  . =Z×Ecompat ib teCe  m + ( 1 - Z ) x E o l  a (1) 

where Eco,,,~l, bt e teas are the estimates based on Cco,.mtibte, E o t  a are the estimates based on C ,  and Z is 

the credibility weight assigned to the observations from Cco .~ ib~  e . The value of Z may be calculated 

from the values of E o ~ , E c ~ , , u . c e l t , ,  andEu ,  ~ . Seldom will we be interested in the value 

o f Z  i f E u e  w is already known. Ultimately, if we know the value o f Z ,  Eo~ a , and Ecomt,.tibt ~ c>m, we want 

to be able to calculate E N .  " via credibility formula (1) above rather than through an additional estimation 

based on the collective data from C and Cco,~,,tit, t . .  We can derive Z from the statistical assumptions 

made about the cells. For instance, if we assume the observations from C are from a normally distributed 

population with mean/. /and varianceO "2 , the population mean is estimated by the sample mean E o t  a . If 
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the separation hypothesis fails, we conclude that the observation from Cco.w~ti~e are also from a normally 

distributed population with mean ~ and variance o'2 with the population mean estimated by the sample 

mean Ecomp,,,i,l ~ c¢tl~, and the estimate ENe ~ of the mean of the population C is given by formula (1) above. 

The credibility weight Z atlached to the mean of the observations from Cco,~r~ibl e is given in Venter [11, 

p 381] as: 

Z =n-'/(. l + m - ' ) = t 2 / ( s 2  + t  2) (2), 

wherem and r/ represent the number of observations in Cco,.pa,,bl ¢ a n d C ,  respectively, whiles2 and 

t 2 are the variances of the means of the observations in Cco~p,,,,t,~ and C ,  respectively. 

Joining the cells 

The manner in which cells should be joined for each of the scenarios introduced earlier is shown in figures 

5 through 8 below. Under the fourth scenario, the separation hypothesis is true. In that scenario, the 

parameters underlying the probability model for life actuaries with 10 or fewer years of experience would 

be estimated based solely on the experience of that cell. The same would apply to the remaining three 

cells. This is illustrated in figure 5 below: 
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Figure 5: How to Join Cells in Scenario 4 

I 
'1 Jo in  Cel l s?  1 

Scenarios one through three represent various altemati~,e hypotheses to the separation hypothesis. In the 

second scenario, the estimates of the parameters of the models of all four cells would involve other cells as 

shown in figure 6 below: 

Figure 6; tlow to Join Cells in Scenario 2 

j Jo in  Cells  "~ 

Non Life 10- - - 6  Yes " -  Life 10- 
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In the third scenario, the cells would be joined as shown in figure 7: 

Figure 7: How to Join Cells in Scenario 3 

Join Cells? _ _ ]  

Under the first scenario, all pairs of  cells are compatible except for those that are incompatible by 

definition. To borrow terminology from regression analysis, we may say that the risk characteristics are 

insignificant and the classification scheme needs to be reconstructed. An alternative classification scheme 

is provided by dropping one of  the rating variables. For instance, by dropping the years of  experience 

variable, we would compare Life versus Non-Life actuaries as shown in figure 8. Alternatively, by 

dropping the area of  practice variable, actuaries with 10 or fewer years o f  experience would be compared to 

those with 1 lor more. l f these pairs of  new cells are found to be compatible again, then all rating variables 

are dropped and the original four cells are merged into one to make one set of  parameter estimates. If  the 

two new cells are incompatible, then parameters are estimated from each new cell separately. 
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Figure 8 

r [ Join CeLls? i 

~ N o n L i f e  ~ - - - ~  Life 

Defining Risk Classification 

Although the definition of various terms that were introduced earlier should be obvious from the context in 

which they were introduced, let's now attempt to formally define several of these terms. 

Risk: "Individual or entity covered by financial security systems [1, p. 2]." 

Risk Characteristic: Attribute that identifies a risk or group of risks. 

Classification Variable: Categorization or set of risk characterislics consisting of two or more such 

characteristics. Within a classification variable, risk characteristics define mutually exclusive sets of risks. 

In other words, a risk can't be identified by more than one characteristic within a classification variable. 
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Classification Dimension: Number of classification variables used. 

Classification Cell: Set of risks sharing all the same risk characteristics. 

A~acent Cells: Two cells C t and C~ are adjacent if they have exactly D-1 common characteristics where 

D represents the dimension of the classification scheme. 

Non-adjacent Cells: Two cells Cj  and C k are non-adjacent if they have fewer than D-I common 

characteristics where D represents the dimension of the Classification scheme. 

Cell Universe ~: Set of all cells defined by the classification variables and risk characteristics. 

Classification sam E All observations generated by the risk universe for the process under examination 

(i.e. frequency, severity). Assume the classification sample is made up of N observations, each observation 

x i may be seen as a realization of a random variable X i where i = 1,2,..., N.  

Models: Probability Distributions Fx~ (x)underlying the random variables in a classification sample. 

The models underlying the random variables in a classification cell share the same functional form and the 

same parameters. The parameters of an a priori model for a cell C j  are based on observations from that 

cell only. The parameters of an ~ s t e r i o r i  model for a cell Cj  are based on the observations from the 

class {C) } (see below for a definition of class). 

Compatibility: C k is compatible with C i if there is a "reasonable probability" that the observations in 

cell C,  could have come from the a priori model (or from a model with the same parameters as) for cell 

C i . Technically, the a priori models underlying each cell may have different functional forms. For 
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instance, the models underlying cells C~ andC~ may be Poisson and Negative Binomial, respectively. For 

the purpose of assessing compatibility of cell C~ to celIC,.,  one asks whether the observations from 

cell Ct  could have come from a Poisson distribution with parameters as in Ci .  It is up to the modeler to 

devise an appropriate tesl or a set of statistics that can be used to answer the question of compatibility and 

to define reasomlblep_robbabili~. By definition, a cell is compatible with itself. 

lncompatibdlllS': C~ is incompatible with Cj  if C~ is not compatible with C .  By definition, we will 

require Ihal non-adjacent cells be incompatible x~.ilh one another. 

Relation R from ~ to ~: Non-empty set of ordered pairs ( C ¢ , C ~ )  such that C't is compatible with C~. 

If ( C i , C  A ) E R ,  we wr i t eC~RCj ,  l f ( C i , C ~ ) ~  R , we write C ,  R C  i l f t~oce l l s  C and C~are 

non-adjacent, then by definition C, R C  ~ and C r RC~ 

A very important type of relation in set theory is an equivalence relation, which is defined as one 

having the follo',~ ing three properties: 

1 ) Reflexi,,ity: This p~'operty holds that any cell in the cell uni;erse is compatible ','~ith itself. We 

write: 

C~RC I v, hen j = k or ( C i , C / )  E R V j .  

2) Symmetry: Given any two ce l l sC jandC~,  if C / i s  compatible wdh C~ then C k is 

compatible with C i and vice versa. We '*'rite: C ~ RC / ¢:~ (" R('~ 

3) Transitivity: Given any three ce l l sCi ,  C k , and C 1 in the cell universe, if C i is compatible 

with C~, and C~ compatible witbCi ,  it follows that C~ is compatible with C / . We write: 

C~RCi a n d C i R C  k ~ C tRC i 
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By definition, the first property always holds for the relation R from f / t o  tq. However, R need be 

neither symmetric nor transitive. In order words, R need not be an equivalence relation. In 

Appendix D, we provide an example of  an asymmetric relation. 

Class {C i } : Set of all cells that are compatible with C j .  All cells C~ E k") s.t. (Ci,C k ) E R. Each 

cell within a classification scheme defines its own class. 

Credibility: Weights assigned to the a priori parameter estimates of  the cells in a class {C) } in order to 

come up with the a posteriori parameter estimates for the cell C j .  

Classification Scheme: Process of defining the risks to be covered in a classification scheme, the 

classification variables and the risk characteristics, the statistical models of the cells, and the roles of 

compatibility. 

Emdairical Distribution of the Classification Sample: The empirical distribution of the classification is given 

by F;v (x)  = N._~_~ where N~ represents the number of X i ' s  such x~ < x .  
N 

| N 
Fitted Distribution of the Classification S a ~  This distribution is given by F r ( x  ) = NEFx'I=J ( x ) ,  

where Fx, (x) represents the a posteriori probability distribution underlying the random variable X i . If the 

1 " 
Fv, (x ) ' s  are identical for all the random variables in a cell, then we can write Fy (x)  = ~ -  E N:Fj (x), 

*, ]~l 

where F/(x)represents the a posteriori probability distribution underlying the random variables in ¢ell 

C ) .  N'/ the number of observations in c¢[1 C i ,  and n the number of  cells in the ceil universe. 
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Illustration 

Let's use the classification example presented in our introduction to illustrate our definitions: 

Risk: Each ac'~uary represents a risk 

Risk Characteristic: Life, Non-Life. 10 or fewer years of  experience, I I or more years of  experience. 

Classificalion Variable: Area of  practice (life or non-life), Years of  experience (IO or fewer, I l or more). 

Classification Dimension: 2. 

Classification Cell: For example, life actuaries with 10 or fewer years of experience represent a 

classification cell 

Adlacent Cells: Two ceils are adjacent if  they have at least one common characteristic. For instance, Life 

actuaries with 10 or fewer years of  experience and Non-life actuaries with 10 or fewer are adjacent cells. 

Non-adjacent Cells: Two cells that have no common characleristics~ Life actuaries with 10 or fewer years 

of  experience and Non-life actuaries with I l or more years of experience are non-adjacent ceils. 

Cell Universe f~: Life actuaries with 10 or fewer years of  experience, Life actuaries with 11 or more years 

of  experience, Non-Life actuaries with I0 or fewer years of  experience, Non-Life actuaries with 1 lot  more 

years of  experience. 

( A / ) ~ e  ~ 
Model: fix) 

x! 
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Compatibility: C, RC  i if P rob(2 j  = 2, ) > .9. 

Let's assume information is collected as per table 1 below: 

Table I 

Exposure # of 
Actuaries Units Claims 
Life 10" 5,000 20 
Life I I" 10,000 48 

Non-Life 10" 15,000 88 
Non-Life I1" 25,000 161 

We assume the number of claims in each cell is modeled by a Poisson distribution. The density function of 

the Poisson distribution is given by: f ( x )  = - -  
(Ad)~e -~a 

x! 
where d is the number of exposure units and 2 

^ 

is the average number of claims per exposure unit. The maximum likelihood estimates ~ of the /]. 's for 

each cell of actuary is obtained by dividing the number of claims by the number of exposure units and are 

shown in table 2 below: 

Table 2: MLE Estimates 

Exposure # of MLE 
Actuaries Units Claims Estimate 
Life 10" 5,000 20 .0040 
Life I I" 10,000 48 .0048 

Non-Life 10 15,000 88 .0059 
Non-Life 11" 25,000 161 .0064 

Recall the two hypotheses introduced in the discussion above. 

1) Actuaries within the same cell share the same loss propensity. 

2) Actuaries across different cells have different loss propensities. 

We will assume that the first hypothesis is true. The second hypothesis can be tested using the following 

statistic to compare in succession the ~ 's for pairs of cellsCjand C,  : R0 - - -  

d, 

where 

~ and ~ represent the MLE for cells Cj  and C , ,  respectively, and dj and d k represent the 
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exposure units in cells Cj  and C~, respectively. If ~j and Jk are equal (we will refer to the equality of 

the3. 's as a sub-hypothesis) in which case we will say that cells Cj and C k are compatible, 

thenR o -*  N(0,1). In other words, R 0 has the standard normal distribution if cells A and B are 

compatible. This fact is proven in detail in Appendix A. R0 may be thought of as a measure of the 

distance between the /[ 's of the two models. For values of Ro falling within a given range we will accept 

the sub-hypothesis that ~j and ~t are equal, while we will reject that sub-hypothesis for values of 

)~o falling outside that range. For instance at a 90% confidence level, the range of real numbers for which 

we will accept the hypothesis is (-1.645,1.645). We need only calculate )~o fOr adjacent cells. By 

definition, non-adjacent cells are not compatible. We must reject all the sub-hypotheses in order to accept 

the main hypothesis. The following two figures 9, 10, and llshow, respectively, the values of Rofor the 

relevant pairs of cells, whether a sub-hypothesis has been accepted or rejected, and whether cells are 

compatible: 

Figure 9: Ro values 

I ko I 

~ on Life 1 0  ~ Life I0- 
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Figure 10: Test Results 

Accept/Reject Hypothesis that Pairs of CeUs 
are Compatible 

I Non Life 10- ~ Life I0" 

Non Life 11÷ ~ @ ~  Life II ÷ 

Figure ! 1: Compatibility Charl 

Are Cells Compatible? ] 

Non Life 10 " . ~  Life 10" 

Non Life 1 I" " ~ ~ ~  Life 11 * 
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Relation R from f~ to ~:  {(Life_10-,Life_10"), (Non-Life_t0 ,Non-Life_)0), (Life_l 1 + ,Life_l I+), (Non- 

Life_! I + ,Non-Life_l I +) (Life_t0" ,Life I I+), (Life_l I*,Life 10-), (Non-Life_t0 ,Non-Life_l 1+), (Non- 

Life_ I I*,Non-Life 10") } 

Classes: 

{Life_t0"} ={Life_t0", Life l 1 +} 

{Life_l 1 +} ={Life_t0", Life_l I+} 

{Non-Life_10"} ={Non-Life_t0", Non-Life_l I ÷} 

{Non-Life_l 1"} = {Non-Lifet0", Non-Life_l 1 +} 

CredibilityT: 

{Life_t 0"} ={ 1/3 Life_l 0, 2/3 Life l I +} 

{Life_l 1 +} ={I/3 Life t0-, 2/3 Life_It +} 

{Non-Life_10-} ={3/8 Non-Life 10-, 5/8 Non-Life 1 I*} 

{Non-Life_l 1 + } ={3/8 Non-Life_10", 5/8 Non-Life_l l + } 

Based on figure 11 above, the compatible cells will be joined as shown in figure 12 below in order to 

produce new estimates of the2 's. Another way of viewing this is that the new estimates for each cell will 

be a credibility weighted average of the original estimates of other compatible cells where the weights are 

given by the relative exposure units of each cell. 

7 For the Poison model the credibility weights for each cell in a class equal the number of exposures in a 
cell divided by total number of exposures in a class. The derivation is shown in Appendix C. 
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Figure 12: How to Join Cells 

I Join Cells? 

I Non Life 10- ~ Life 10- 

Non Life 11" ~ @ ~  Life ! I+ 

The re-estimated ,2. 's are as per table 3 below: 

Table 3: Revised MLE Estimates 

Exposure # of 
Actuaries Units Claims 
Life 10" 5,000 20 
Life l 1" I 0,000 48 

Non-Life 10 15,000 88 
Non-Life 1 I" 25,000 161 

Initial MLE Revised MLE 
Estimate Estimate 

.0040 .0045 

.0048 .0045 

.0059 .0062 

.0064 .0062 

The separation hypothesis has been rejected. The alternative hypothesis that is being accepted here is that 

both life and non-life actuaries, respectively, have the same loss propensity (expected number of loss per 

unit of exposure) regardless of their years of experience and that life and non-life actuaries have distinct 

loss propensities. Hence, the experience of all life actuaries across all years of experience will be combined 

to arrive at a single estimate of the average claim per exposure unit and the same will be done for non-life 

actuaries. If, for example, the severity of  claims for all actuaries were constant, all life acluanes and all 

non-life actuaries, respectively, would be charged the same rates. If the separation hypothesis had been 

accepted, each cell of  actuaries would be charged a different rate. In particular, more experienced actuaries 
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would be charged a higher rate than less experienced ones. The number of claims were simulated from two 

Poisson distt-ibutions for which the actual ~. 's are shown in table 4 below. If the main hypothesis had been 

erroneously accepted, it would lead to subsidies from more experienced actuaries to less experienced ones. 

Exposure # of 
Actuaries Units Claims 
Life 10" 5,000 20 
Life 11" 10,000 48 

Non-Life 10" 15,000 88 
Non-Life 11" 25,000 161 

Classification Efficiency 

Table 4 

Initial MLE Revised MLE 
Estimate Estimate Actual 

.0040 .0045 .0050 

.0048 .0045 .0050 

.0059 .0062 .0060 

.0064 .0062 .0060 

Given a classification scheme, we would like to be able to measure its performance. Classification 

efficiency is an oft-used notion of performance, which Robert Finger defines as "a measure of a 

classification system's accuracy [6, p.250]." "A perfect classification system," Finger adds, "would 

produce the same variability as the insured population. [6, p.250]" Then Finger settles on the squared ratio 

of the classification system's coefficient of variation (CV) to that of the underlying population as a measure 

of efficiency. Finger, after observing that, ". . . the variability [of the insured population] is unknowable," 

goes on to calculate the efficiency factor for an automobile classification example based on an assumed 

coefficient of variation of 1.00 for the insured population. This CV of 1.00 is also assumed by Robert 

Bailey who in his 1960 paper, Any Room Left for Skimming the Cream_, uses a similar measure of 

classification efficiency to Robert Finger's. 

The procedure we have outlined makes assumptions about not only the variability but also the actual 

probability distribution of the underlying population by providing a fitted distributionFy (x ) to  the 

sample's empirical distribution F~ (x ) .  We could compare the empirical CV of the insured population to 

that of the fitted distribution. Like Finger and Bailey, we could use some ratio of the CV's as a measure of 

efficiency. However, the comparison of CV's provides only a limited picture of a classification scheme's 
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accuracy. We know or have assumed too much about the insured population to rely only on CV ratios to 

assess the accuracy of the classification scheme. Traditional measures of goodness-of-fit may be more 

appropriate to evaluate the fit of the assumed distribution vis-i-vis the empirical sample distribution. Two 

measures immediately come to mind: the Chi Square and the Kolmogorov-Smimov statistics. 

Efficiency, however, should not be thought of as an absolute measure. We would slightly alter Fmger's 

definition of efficiency to read: "efficiency is a measure of a classification system's relative accuracy." 

What we are in fact measuring is the accuracy of one scheme relative to another. The task becomes one of 

selecting the classification scheme that best represents the underlying population amongst competing 

schemes. Each efficiency measure may give a different ranking of the goodness of fit of classification 

schemes The modeler may take into account other considerations when making a judgment as to which 

classification scheme to use. 

Validation 

Measures of efficiency help us choose the best amongst competing models. However, even the best model 

might give a poor representation of the data. Validation helps us decide whether the chosen model will be 

relevant or valid in some future period for which a forecast is sought. I f a  model fails to validate, we need 

to rethink the classification scheme and stun the process over. 

A procedure that could be used to validate a classification scheme consists of randomly selecting out of 

each cell a percentage of the observations, say 90%, and re-estimate the parameters of the cells through the 

same process used for the fu/I data set. One then checks to see whether the parameters for each cell fall 

within an acceptable confidence band of the parameters estimated using the full data set. One may also 

compare the fitted distribution derived from a 90% sample of the data with that derived from the full data 

set to see whether the two are "close". This process can he repeated several hundreds or thousands of times 

using a new random sample each time. A large percentage of the models based on the 90% random 

samples being consistent with that based on the full data set would tend to validate the original model. One 
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of the problems with this procedure is that the compatibility of  cells will likely depend on the number of 

observations in the cells. A reduced sample size may affect the compatibility relationships and the 

composition of the classes. Other validation procedures such as "train and test" and those based on 

"bootstrap" may be adapted to our classification problem. 

When trying to validate a model through the procedure mentioned above, one may need to develop 

confidence intervals for the original estimates of the parameters of the models so that one could gauge 

whether the estimates based on the re-sampled data are within an acceptable range of the original estimates. 

For instance, the standard error of 2 in our example is given by ~ and a k% confidence interval for 2 

is defined by the interval ,2. _ z~+k)/2 , where z0+~)/2 is the (I + k)/2 th quantile of the standard 

normal distribution. The derivation of this interval is shown in Appendix B. The standard error and the 

90% confidence interval for).  are shown in table 5 below. A classification scheme that is successfully 

validated would ensure Predictive Stability, which is one of three actuarial criteria listed by the American 

Academy of Actuaries in designing a classification scheme. 

Table 5: Confidence Interval for .~ 

Initial Revised Std 90% 
Exposure # of MLE MLE Er ror  Confidence 

Actuaries Units Clms Estimate Estimate of ~. Interval Actual 
Life I0" 5,000 20 .0040 .0045 .00055 (.0036,0054) .0050 
Life_l I" I0,000 48 .0048 .0045 .00055 (.0036,0054) .0050 

Non-Life_f0 15,000 88 .0059 .0062 .00039 (.0056,0068) .0060 
Non-Life I I" 25,000 161 .0064 .0062 .00039 (.0056,0068) .0060 

Practical Considerations 

Earlier in the paper, we stated that separate classification schemes should be used for different aspects of 

the claim process. The claim process may be decomposed into a frequency and severity component and 

these components can be further decomposed into more sub-components. We believe that whenever 
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possible such decomposition may provide a better understanding of the entire claim process. Finally, given 

how hard it is to find, manipulate, and make inferences about models representing single components of the 

claim process, the task gets only more daunting when these components are compounded. 

Often in insurance problems, there is a need to adjust data for trend and development. Adjustments made 

to a body of data may cause that data to violate the assumptions of a model. For instance, a Poisson 

random variable multiplied by a constant is no longer Poisson. If adjustments are made to the data, the 

model needs to be adjusted accordingly. There may be ways to define the models to see whether any 

adjustments are appropriate in the first place and the magnitude of  such adjustments. 

Areas of development 

The procedures we have outlined rely on finding good models to represent the probability of  random events 

in a classification cell. There is an extensive library of such models in the literature. In addition, the ability 

to test the compatibility o f  cells in a classification scheme is an equally important feature of  the procedures 

presented above. In the illustration, we presented a statistic that allowed us to test the equality of the 

expected claim per exposure of  two Poisson distributions. A number of  statistics are available to test 

hypotheses of  the Normal and, by extension, the Lognonnal distributions, Various tests and statistics need 

to be developed in order to make inferences about other distributions, such as the Gamma, Pareto, or the 

Negative Binomial, that are often used in insurance problems. Distribution of test statistics may also be 

obtained through simulation rather than heavy-handed calculus. 

However, it may not be always feasible to come up with models to represent the probability of  events in a 

cell. Perhaps, there is an even greater role to be played by non-parametric distribution functions and non- 

parametric approaches to hypothesis testing such as those based on "bootstrap" and "permutation." See 

Efron and Tibshirani [5] for a discussion of these topics. 
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Conclusion 

The American Academy of Actuaries [2, p. 2] states that the three primary pull~oses of Risk Classification 

should be to: 

1) pro*~ct the insurance program's financial soundness; 

2) be fair; and 

3) permit economic incentives to operate and thus encourage widespread availability of coverage. 

Our def'mition of Risk Classification is derived out of the very concept of fairness. It is a concept that 

requires that the same rates not be charged to pools of risks that have fundamentally dissimilar loss 

propensities or that different rates be charged to pools of risks that have fundamentally similar loss 

propensities. We believe that the first and third purposes are direct byproducts of the second. The 

Academy also lists three statistical considemfions: homogeneity, credibility and predictive stability. Our 

definition of credibility differs from that of the Academy. Credibility, as we have defined it, can't be a 

goal into itself. In lieu of credibility, we would substitute separation as one of the statistical considerations 

of a classification scheme. If we take this liberty, the purposes and considerations inherent in our definition 

of risk classification are consistent with those of the American Academy of Actuaries. Our definition 

provides a definite methodology by which these goals and considerations are met. In addition, nothing m 

the way we have defined risk classification should preclude us from taking into account other 

considerations listed by the American Academy of Actuaries including the operational and acceptability 

considerations. 
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APPENDIX A 

Let A and B represem two cells, each with frequency distribution defined by a Poisson model with 

parameters A~ and A n representing the expected number of  occurrences per unit of  exposure 

d~ where d i ~ N and 1 <_ d ~ < d . ~  for  all i' s . Assume that m and n observations represented by 

random variables X i are made for cells A and B, respectively. Their Poisson models arc set as follows: 

Random Number o f  Exposures 
Mean Variance 

Variable Occurrence s Units 

X !  x I d I A A d  I A A d  I 

X 2 x2 d2 AAd2 AAd2 

• : : ". . 

X .  x .  d .  And - AAd . 

X . + .  x=÷ I d.~+. A B d . ÷  I 2 a d . ÷  , 

X.,.z x~,.z d.÷2 Asd.÷z 2sd.+z 

: : : . : 

X .+~ x.** d . . .  A n d . .  - 2 s d  .÷ ~ 

The maximum likelihood estimator 2 A of .2. A is obtained by maximizing the likelihood function 

2~ '  I - I d : ' e  "' 
L i - I  

i= l  i= l  i=l  i - I  

d In(L) 1 " " 
- - - A x - ~  d, 

dan An i.i ' 
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i= l  

dgA £ dl 

ta÷n 

Similarly, }t n = '°'*' 
m ÷ n  

i = ~ 4 1  

m 

~x,  
2A andS8  are realizations of  random variables /;l A = i~, 

m 

Y J, 

E(AA) : 2 A Var(AA)= / ~  
~'~d, 

ALSO,  i~ l  

E(/~n) = 2 n Var(A~)= 2"n 
y a, 

i : m ÷ l  

~ _ X  
and A n ..... = ,,,;£ 

, . i , t  

Let ~ = E( /~ ,~ ) - E( /~  n ) = 2g - A n . Let's define 

R6 _ / ~ . ~ - / ~ n - c ~ ,  and / ~  - / ~ A - / ~ n - l i  

-F m*n 3- m ~ .  

a Za, a, X,l, 
: 1  1 i = m * l  s M * I  

Fo~ ,~ : o .  we hav~ R,, - £ ~ - h .  a . a  k,,  - 

+ nw~. 

d ~[d, 
i ¢ n ~ l  

h A  - £ , ,  

d, ~ d ,  

Equation I 

+ 

- D ,  R, 
We may write R,~ = /~tA)~ /~ n ' 

+ 
D~ 
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Definition 114, p. 216] 

A sequence of random variables, X t ,  )C: ,..., converges in distribution to a random variable X if 

Lint Fx. (x) = F x (x) , 
at all points x where F x (x) is continuous. 

L 

We write X ,  ~ X 

Definition 2 [4, p. 213] 

A sequence of random variables, Xi, X2,... , converges in probability to a random variable X if, 

for every C > 0,  

P 

We write X~ ~ X 

L 

We will show that R,s,,~6, Ro, Ro - ' 9  Z ,  where Z has the standard normal distribution N(0,1) .  

Then R0 can be used to test the null hypothesis 

Ho: ~A = "~B versus the alternative 

Ht: 2A ¢: ~'B 

We accept H0 at the p confidence level if IRol<Z(,÷p)/2, 

and we reject Ho if [J~o[ > zt,+p)/z. 
If the null hypothesis is accepted, we conclude that the claim frequency per unit of exposure underlying 

cells A and B are equal and we estimate one .2. for both cells based on the joint experience of the two. If the 
null hypothesis is rejected, we say that say that cells A and B have different expected claim frequencies, 

which are estimated with parameters 2~ and '~s - 

L 

We first show that R,~ --_~ Z .  

, ~  - , ~  - 6  
= 

~X~ 
i z l  

m 

i=l 

m + a  

F,x, 
i - m ÷ l  

m ÷n  

Zd, 
i~m+l 
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R~ 

i-m÷l i -I  i ' l  ilm+l i ~ l  i - m + ]  i - ]  i - m ÷ l  
m m+a 

Zd, Za, 
i=l i ~ m ÷ |  

m m ÷ n  [ m ÷ n  m 

,., , . . . ,  d',. .Z.5 

m * n  m m+n x m m+n m m ÷ a  

Zd, Z X , - ~ d ,  Z , -Zd ,  Z~,~ + Zd, Zd,~ 
i=m÷l i)l  i~l i-m*l i~ l  i=m÷l  i=l i=m÷l  

R 6  ~" m m+a m+n m 

i di 2 "~'A + , i a 
i I I'=m+] i-I 

Let D A = d i and D a = d i 
i=l i=m÷l 

m m ÷ n  m m * l  

Z ~.x, - Z o,x, - Z o,~,~, + Z ~,d,,~, 
i=l i=m+l i=l i=m+l w o o , = . . , =  ° 

nZdiA~ + diA. 
- i - m + l  

We define: 

D B X  , i = 1 , 2 , - - - , m  DBx ~ i = 1 , 2 , . . . , m  
U~ = a n d  u, = 

- D A X  ~ i = m + l , m + 2 , . . . m + n  - D A x  ~ i = m + l , m + 2 , . . . m + n  

We then have: 

D s d i A  A i = 1 , 2 , . . . , m  
/~i = E ( U  i )  = - D j ~ 2  B i=m+l,m+2,...,m+n 
~2 i = Var(Ui  ) = Ds2 diX A i = 1 , 2 , . - . , m  

D~2d~As i = m + l , m +  2 , . . . , m + n  

m ÷ n  m ÷ n  

Zu,-Z. ,  
We again rewrite R~ - i=l i=i 

m ÷ n  2 

The Central Limit Theorem - Lindeberg [9, p. 282] provides that the distribution o f  R~ converges to the 

standard normal distribution if the following condition is met: 
[ m÷a 

Q=m[jm~, _-T""-Z Z(14il-['ll)2Pit----0) 
~m+m i-I fu~t-~,]>a. . .  
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m + w  

2 Z where s,,,+,, = o '2 /and  Pit = Pr ob(U, = lilt ) .  
i=1 

I Pr ob (  D e X  = u ,i ) f o r  i = 1,2 ..... m 

p,~ = Pr  ob(U~ = u,~ ) = [ Pr  oh(  - D ~ X = u,i ) f o r  i = m + 1. m + 2 ..... m + n 

= I P r o b ( X ~  = u .  I D  n ) f o r i  = 1.2 ..... m 

Pu [ P r o b ( X  i = - u i l l D  A f o r i = m + l , m + 2  ..... m + n  

Pil = Pr  o b ( X ~  = x u ) w h e r e  I xit = u ' l / D e  f o r i  = 1.2 ..... m 
( x .  = - u , i / D 4  f o r  i = m + 1. m + 2 ..... m + n 

(2fl i)~" e-X ,a, f o r  i = 1.2 ..... tit 
Xil ! 

P,t = ,, e_X. a 
( ; t e d ' ) '  ' f o r i = m + l . m +  2 ..... m + n  

x u ! 

m ÷ n  

Q : L . , ,  I Z Z ' , , - p  ...... :o  

I Pr oh(  D e X  ` = u,t + 12 ) f o r  i = 1.2 ..... m 

p . . , ,  = Pr o h ( U  i = u,t + ~ ,  ) = [ Pr o h ( - D ,  ~, = u .  + It, ) f o r  i = m + I. m + 2 ..... m + n 

Pit.~, = Pr ° h ( X i  = x,t + Z, ) w h e r e l  Z~ = 12 , /De  = E ( X ,  ) f o r i  = 1.2 ..... tii 
[ Z ,  - . u , / D ,  = E ( ~ ( , ) f o r i = m + l  m + 2  ..... m + n  

[ ( 2 ~ / ) , , + . r ,  e-~ ,a___ (2d/ ,)~. ,  x,fl ( 2 . , d , ) '  e ~,.i f o r i  = 1.2 ..... m 
(.~'~ +%~)! (.v, + % , ) !  x . !  

P,t+,., = (2e  d, ) '" + *'e-~"'t' _ (2n  d, ) z  x,t! (2~ d, ) ' " e -  ~"'~' f o r  i = m + I, m + 2 ..... m + n 

( x .  + Z , ) !  (x,t + 2",)! x,~! 

1( 2 ,di ).r, ( 2 f l , ) ' "  e -~ ,,i f o r i  = 1.2 ..... m 
Xii ! 

P +~ < [  ( 2 # / ' ) ' r ' ( 2 e d ' ) '  e ~,,,t, f o r i = m + l . m + 2  ..... m + n  
x u ! 

• ~ : . ( 2 , d , )  ( 2 f l , ) ' " e  ~' '  . . . . . .  2 ( 2 ~ d , ) ,  e_~,s 

. . . . . . . .  s;,+,, t ' = '  " '  . . . . . . . .  " x, , !  i=.,+, ,,~.> . . . . . . .  D: ,  ' .v,! I 
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Q< Lim ~ ('~"d': Z x:, (2Adi)" e -a~a' + ~ (2sdl)*'  ~ xi ] (2sdi)"' e -'~'a' 
x .  ! D~ . . . .  x .  ! 

Q< Lira 1 ,~--,(.AAdy' ( .ZAdy"e -'~''t' ( 2 n d y '  
- . ° ~  Z x,, (x , - l ) !  z)~ !~"'~7. 

~ (z~a')*' ~ (x,, +1) ( ' t~a ' )  ...... e-*'" 
~= Dn z i~,,1>...~+ ~ xu ! 

O <- Lira 1 o. 
m+n 

. . . . .  s2=+" + E (andi)X' Z (xi, +l)(2.d,)~,,+. e a.., 
,...+, DJ I~,,l>~+l x.!  

[~-, (2Adl) x' x"  (2adi)  ": t  e-a~' (2Ad~) ~':~ e-z'~' 
I L - - - - N -  " L x,, ~ y .  

• /i~l a r~,l>'~...+l gift gill 
• 1 ~ ' D R O -< L,m ~--~  o, 

"+"-*® s / "+' t3. d ~x, a.d, =+" l+  "g" ~ n is ~ (2Bdi) ~'÷le (2Bd,) ~'+le-'t'a' 

m Z gl*l 2~d 2 d xr+l  2~d, IS" ('2"~a')z S" (2~d' ) ' ""e '"" '4-  S" ( '2Ad')~:  e ""' 
IZ.~ D 2 z... tx - IX~ ~ ~ t 

• i I '°' ' l,,~>~., '" ' ~,,~>~7+, ~" 

O<-L~m®sz"÷--"~l+~(3"s--~2)z' Z (~'~'I~.~ a°a'+ E (3"'d')~ e-x'' 
i=..I DA i~.l>~÷l ( " - ) "  I"l>"-"+Io~ u' 

m Z, xa+2  - 3.~d, t u + l  ,tAd , 
IS  ~(2Ad')z'  ~ '  (2Ad/)~""e-""  ~- S" ( 2 A d ' ) " ' e  ~°' 

Q < Lira : ~ o. o. 
m + t l ~  ~ m+n Z, xa+2  - 2 a d  , xa+ l  -,,led, s.+. i+  ~-~ (2 .d , )  ~ ,  (2 .d , )  e + ~ (and,)  e 

( 2sd y .  e-~'. d, 

(x,  - !)! 
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O_ <- Lira -~--, 

Q <_ Lira 1__~_, 
m + a ~ o o  z 

1 
Q < Lim _..z__. 

m + n .-+no 2 
S m + n  

1 
Q <_ Lim --T--, 

,...~.-,-, E +(~.a,) E 
,-, - s  t,,I,~g~, , ,  xf l  t~ol ,~.  ., x .!  

+~-'~ (Asd , )  x' , ~  ~ ,2 (Asd , )  ~" e-a'~' ( A n d , ) "  e-a'n' 

,.,.+, DA xa ! x a ! p,~l> ~'*" +2 I,,~1> '~''" +l 
DA D a 

~'~ ( 2~d ' ) r '  (,~ d C (2AdY"  e-a"a' (2Ad' ) ' "  e - ~ '  

i-i ~ s  ,,... xu! i~,1>~,.o. +1 xu! 
I~,,1> o-T +2 o0 

+ ~ - - - ' - ~  - ~ ( 2 s d ' )  ~ ( 2 s d y ,  e ,t,a, +(2sd,) ~ (2sdY,,e-,~,,~. 
' . . . .  " I . . I .~=V+, ~"!  ~ , , l . ~ :+ ,  x,,! 

~-~ (3.,d~)~' t 2  d ~ (2~dl) ' "  e -a"a' ( 2 , d  i )" e -a'a' 

i-, ~ s  i.,.i..~.+ 2 x u r tx~,l>~.,, x a ! 

(Asd~) ta ,t ~z (Asdl) " e-a'a' ( A s d Y  ' e-a°~' 
+ ~ ~,-s-,, E +(asa,) Z 

' o~ l'~'tl> o~ -+~ 

[, 1 [' °"" ]]I 
~-,(2,~d,.) x'+2 is,,+, (AAd')~'"' Prob xu[> +I z...., - ~  Prob xu[> . + 2  -~ 2 
,.~ Ds Ds Ds Ds 

+ ( ) ' s d ' ) ' : ~  Prob x,,l> + 2  ~ = P ,  oO Ix.i> +~ 
,...~ D~ D A D~ D~ 

Using Cbebysbev's inequality, we obtain: 

' m ~ + 2  5- , (~d , )  E(x,)  ( ~ d , )  x~+' E(xD 
~ . . , ~  - -  + - -  
~.~ D s gs +. O~ ~ . . ,  

Ds Ds 

"*" _ _  (Asd,) z'" E(xu) + ~ (asa,)"'~ E(~,,), , 
,..+~ D~ t ~ + .  D A E s . , .  

D~ D~ 

¢;.(.LaA ~: E(x,) (.La.)"" e(x,) 
i-I Ds m.+. D] ~ . . .  

Ds Ds 

. . . . .  s ' " "  (,lsd,) ~'+' E(x , )  - [+ Z (~s4)"~ E(,.), 

t D A D~ 

Q ~  Lim 1_~ ,  

111 



Q < Lira 

Q < Lira 1__:__. 

!~.(2ad~) x'÷2 E(x.~) (2ad~) x'+l E(xu) ] 
~ .  _ _ _ _  , u -  q.  . . . .  / 
i.~ Oa ~s +. O a ~ .÷ .  [ 

(aaa,)"" E(:,,,) (aaa,)':' E(x,,)[ 
i -  

~.(2ad,)X,.. ,,+3 (2ad..)x,+z ~ (Aaa,)x,+, (2aa,)x,.2~ 
+ + -- 

Ds~ .+ .  Ds~S.+. ~-..1~ D a ~ . . .  Dam.+. tj 

m+~  

Recall that s.2÷. = ~ Da'd/l a + ~ Da2d,28 
i * l  i - m + l  

2 ~DB2di.~aattd$ "+£Da2d,28 s.,+. >- ~+~ >- 
Hence. i=l i-m+l 

S~+. >- mnZ3.a ands~+. >_ m2n2s 

since I < d i < d.~ for all i = 1,2,..., rn + n, 

and Ds >mandD s >_n 

I xF (~'adA ~'" + Q<_ Lim l_l~7(2ad,)  x''' (2ad , )""  . . . . . .  , (2ad,),,.2 
. . .  i., am.+. Da~,+. s . . .  i..,+, Dam,,+. Dacs.+. 

m I, +3 I~+2 1 m + n  I,+3 Q< Lim |---L-S "('taa'~) +('~aa'~) .-=---S'~('tad"~) 
. . . .  mn22a ~.j n ,4mn22a n~: m~-T-~A + mZnAa ,.~+,m¢4m2nAa + 

Define M such thai 
M > (2ad.~ ~ )z,*~ + (2adm~)z:2 and alsoM > (2ad,,.~)x,.3 + (2sd.~ x )z:2 

M M 
We then have, Q < Lira -~ - -  = 0 

. . . . .  n 4 , ~  m,~dnyta 

L 

Therefore, the LindebeTg condition is me~;, and R,~ ---) Z.  
L 

We now show that R~ --).Z. 

/ ~'a + 2a 

From equation 1, we have k~ l lAa  + AB 

vN N 
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The following theorems and statements can be found in or easily verified from Rohatgi [9]. 

Theorem I [9. p.253] 

L k' 
If X ,  ~ X and Y~ -----~a, a constant, then 

L 
Y , , X , , - . ~ a X  if c * : 0  

Theorem 2 [9, p. 245] 

P P 
Let X ,  ....-~ X and g be a continuous function defined on ~.1~. then g ( X ,  ) - . ->  g ( X ) a s  n ---> o o  

Corollary 1 [9, p. 245] 

p P 
X ~ c .  '..,'here c is a constant ::z> g ( X  )-....~g(c). g being a continuous function. 

Statement I 

P (I P 
X -----> a ~ - - - - - - ~  I, wherea is a constant. 

We first show thal /~j  + , ~  t, ~ f  "~n 

We,vi, sho,vtha, K= ....... Li,,, P~ObPLi D,L+/t"D. -C~- , ~  a, +x. iD. > .]=o. 

L I D ,  ' " 

Using the Chebyshev inequality, we have 

K < Lira E ( D . X ,  + D , A .  - D n . , ! .  , - D~A.)2 _ Lira Par(DnA" + O"?ln) = Lira D." D j  + D," 
. . . . . .  g ' -D  "-Dn'- . . . . .  ~'-D. ZDn "- . . . . .  c'-D "-Dn'- 

a 

Dn'A ~ + D i3An D n A ~ D ~ A~ 2~ A n 
K <_ Lira , ~ ~ - Lint  ~- L im  , 3 ~ =  L i m  _ ~ + Linl  ~ = 0  

c - D ,  D n  ~ . . . . .  g Z D 4 3 D  ~ . . . . .  g - D  i D n ~ . . . . .  D ,  ~ . . . .  D B  

By application of statement I, we find that 
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1), I),,, 

A, + A~ 

~ I A , +  A , 
] / ) ,  /). 

and i'~ ~a||~ b~, application of theorem I. 

] I), I). 

['he proof i.'; t.'Olllplt.'l¢. 

N(0,1) 
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APPENDIX B 

Confidence Inlerval for ~. 

Let ,~ be the MLE of  2 for Poisson distributed random variables X , .  i = 1,2, . . . , t t .  ~ ith means .,~t i and 

variances , ' ]d  where d,  is the number of  exposure units associated '.~ith X .  Let x .  i = 1,2 ..... pt be the 

realization of  the random variables X .  
N 

Zx, Zx, 
Then, .~ = ,=l is the realization of  a random variable A.. v.here /~ - ,=l 

Z 't, Z", 

+ = '~ - ~ is the realization of  the random variable G - /~ - ~ 

Using the definition introduced in appendix A, x~e will sho~ G 

distribution, and a k %  COlffidence interval for 2 ~s,~ _+ 2~1 ~ ~ 2 

(l + k ) / 2  th quantile of  the standard nomml distribution. 

t 1, Z ",','here Z has the standard nomaal 

Let's nov,' prove that G 1 l, Z 

We first prove G t. 1,Z 

Zx, 
i=l __~ 

We rewrite G - ,=1 ,=t _ _  _ ,=1 

] 'he Central Limit Theorem- Linderberg [9, p.282] states that the distribution of  G converges to the 
standard normal distribution provided that the following condition is met: 
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1 N 
L=Lim---=-'~" ~'(Xa -/z~)2 p~t = O. 

N i=l ]xit-U,l>a . 
n 

,,,h,,~,u, = E(X, ), s~ =- ~.. Var(X~ ), and P~I = Pr ob(X~ = x u ). 
i=l 

| A: 
• 2 L = L tm--F '~  "~"xtpu+ 

N i=t [x.l>a~ 

(2d~) ...... e -W' (2d , )P 'xu! (Rdy"e  -~' <(2dl)U, (2d,)X"e -~' 
Pu..,,, = (xll +/.t;)! = (x u +g,)! x,~! xu! " 

1 N 1 N 2(M~),,,e-~a, 
L<Lim--'~" ~" x:t(Ad.) ~' ()tdi)"ae-~' =Lim--5-~.(Ad,) u' E xil 

#- '®s'  ~ ~ ' x,! # - ' ~ s ,  %7 rx,,i>=, x,,! N = xu > v 

N xa+l -.~d, 

Lim ~ u x,, (2dy"e-:a '  L im+~. (Ad~)# '  ~ (x~,+l) (Ad') e 
L-<.~7--(~')"- (x,,-1)~ ,,-.- s,, ~ 

1 ~/ [ (.?wl,)"'+'e -~' (Adi)x"+'e -~' ] 
L <Lim~-~'.( ';uti  )~' ~ xa + Z 

,=' LI,,,I,~:, x~l! /,,,1>~+, x.! 

xt*l -old 1 1 # . , [  ,r'- (2d , ) '  e ' ( 2 d i ) ' : ' e  -~a' 

L<-Lim~-~( '2"d,  )~[  ~ . !  N (/ldl)~"'2e-'U' + E (2d')X"+'e-~a'] 
u~® SN ,%7 L[~,,I>~-"~÷2 Xifl I~,,l>~÷l XU! 

1 U [ (2d,.)"e -aa' ( 2 d i ) " e  -~' ] 
L <-Lim-v-~'.()td )U' Z ÷('~li) Z 

~ " - -  ' ( a d  s ~  ,..  L ' I , ,1>o:~ x,,r I , , r  . . . . . .  . x . ,  

1 
L <- L i m ~ -  E (2d),,÷2 Pr ob~xu[ > ~ + 2]+ (Az/,) ~'÷* Pr ob~xal > m# + 1] 

N~,~a S N  /=1 

Using Chebyshev's inequality, we obtain: 

1 ~ . E x  :m ~ ' ~ ' ~ ' "  ~ (~t)  E(xlt ) 1 u (2dl)U, ÷a (2di)U,+~ 
L < L~®--FZL~.~-,/ ' - - 7 -  +(2di) u'" =Lim-- i -~.  + 

su i.t m u . z  ~, +1 u-'*~su ~ ~ +2  m~, + l  

_ .  ~ ~ (ad,)",*' +(ad,)"' 
L < Lira--i-2. ~ - - -  

N-~oo $N i~| ~ N  

Since 1 < d, < d ~  for all i = 1,2,..., N .  
N 

= Z fad ~u,+s + fad "I u'+' s u~ di2 _> N2 and. i. .__~. < M 
i=1 

i ~ M I M 
Therefore. L <- Lira - - ~ , ~  = L i m - - ~  = 0 

~-'® NA i.~ z 4 N 2  u-.~ 2 exlN2 

Hence. the Linderberg condition is satisfied and G t. ) Z.  

We now show that G ~ ) Z.  
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We fn'st show +~ e ) 3.. 

We will show thatK = £ i m P r o b l ~ - + ~ l  > ~ 1 = 0  

Using Chebyshev's inequality, 

K < Lira E ( ~  = ,~)2 . .  Var(~)  3, )~ : 0 L t m  - -  = L i m  - " 7 - -  < L i m  
N-~ E 2 ~I~ E 2 ~V~ E2 ~ ~ d  i N -~  E2N " 

i=J 
By application of statement I of Appendix A, we find 

A 
--: --) I 

By application of corollary I, 

Finally, by application of theorem | 

= J~G --) N(O,I). 8 

Our proof" is complete. 
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A P P E N D I X  C 

Assume there are n cells in a class, and the MLE estimate,t  s o f  cell C i , for j = 1 ,2 , . . .n ,  is given by 

Z . l t "  i 

= f=l 
.5.j N ~  ,,,,'here N s is the number o f  observations in cell C r . The MLE estimate for the class is given 

111 
% 

.lf i n 

by ,,~ = ,[I *here  N is the total number ofobservations across all cells such that Z N  i = N .  

I=l 

We rewrite ~ as: 

% i .%, %,  

Ex,+ £x,+.. ÷ Yx, 
/~  i=1 J=%~+l t = J%,, i*1 

% %, N. 

Y~.,+ Y'..,+..+ Z., 
i= i  / = ~%'1 + J J= ,% ,, i * i  

~"1 S ,%', k ,  

Ex, E< Zx,£< 
'% '%1 ~, 5 ,  

yd, Zd, yd, yd, 
i l l  /=l  1=1 i :  S'l ÷ I 

NI ,S, N,, 

E", E", E", 
5. = d, 7,,' + , i , . T - + . . . + & ' ° % ' "  " .... ,' ..... 

Zd, ya Zd, 
i=]  i=1 i=1 

%1 ,%,, yx  y .  
,'~ %,, 

E., Z., 
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APPENDIX D 

Assume two cells C~ and C, with the following tcn observations: 

Ci C1 

10.154 8.508 
11.510 8.100 
5.453 11. 707 
13.239 8.772 
10.065 14.156 
(2.307) 6.953 
17.625 7.612 
13.242 10.633 
14.319 7.463 
7.619 5.546 

The observations in Cj are assumed to come from a Normal distribution with cumulative 

probability function F~, while those in C 2 are assumed to come from a Lognonnal 

distribution with cumulative probability function ~ .  

Compatibility is defined as follows: 

Given two cells C and C , ,  (.~ is compatible to C, if: F (x,,) > 0 .fi~r all k : 1,2,... n,  

where x ,  is an observation from C,. n the number o f  observations in (.',, and F the 

cumulative probability function for cell C .  

Since Fl(X2~ ) > 0 forallk = 1,2,...10, we say that (_'~ is compatible to('~. However, 

F 2 (-2.307) = 0,  therefore we say that (.?~ is not compatible to ('2- 
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