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Abstract: 

In its usual (one-dimensional)form, a loss model is ju.st a distribution of  nonnegative real 
numbers [O, Qo). This note establishes neeessary and sufficient conditions for a 
differentiable function to equal the life expectancy of  some loss model. Examples are 
provided to illustrate the shape of  the life expectancy function of  several common loss 
models. The characterization is used to define a general class o f  loss models flexible 
enough to cover the Pareto, Lognormal, Weibull, and Gamma densities. Finally, the 
approach is extended to model multi-dimensional survivorship. 
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!. Introduction 

In general, life expectancy can be expressed as a simple descriptive statistic. The usual 
functional forms used to describe loss distributions, namely cumulative density functions 
[CDFs], probability density functions [PDFs], and hazard rate functions generally 
demand some processing to visualize and often require fitting parameters to an assumed 
form for calculation purposes. 

On the other hand, the formal nature of CDFs and PDFs and hazard rates are apparent. A 
differentiable function F(t) on [0,oo) is a CDF of a loss model exactly when: 

dF > 
F(O)=O, ~ t  - 0 '  and l i m F ( t ) = l .  

An integrable function, fit), on [0,oo) is a PDF of a loss model exactly when: 

f ( t )>  0, and Jf( t )dt  =1. 
0 

Similarly, an integrable function, h(t), on [0, oo)is a hazard rate function of a loss model 
exactly when: 

h(t) >0, and "ih(t)dt = ~. 
0 

The main result is that a differentiable function p(t) > 0 on [0,oo) is a life expectancy 
function [LEF] of a loss model exactly when: 

!, dP > -1, and d t = ~ .  
dt p(t) 

When working with insurance data, "claim life expectancy" can often be regarded as a 
reserve and conversely a reserve as a life expectancy (c.f. [4]). In practice, reserves may 
be related with claim survival data to the extent that closed, i.e. "dead", cases are 
characterized by having no reserves. 

It is evident from the discussion below how a life expectancy function completely 
determines the loss model. Because life expectancy is often easier to determine than the 
CDF, PDF or hazard function, being able to recognize such functions may come in 
handy. Examples show that the graph of the life expectancy function is simpler than those 
of the CDF or PDF functional forms used to define some popular loss models. Also, 
bivariate loss models pose many technical difficulties; however, these observations on 
life expectancy are readily extended to higher dimensions (c.f. [5]). 
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!I. Notation and Background 

Let f ( t )  denote an integrable function on the nonnegative real numbers [0,oo) satisfying: 
oo 

~f( t)dt  = 1 
o 

Regard f ( t )  as a probability density o f  failure times and define the function: 

t Q¢ 

S(t) = 1-  I f ( s ) d s  = ~f (s )ds  
0 t 

As is customary, we refer to S(t) as the survival function, f ( t )  as the probability density 
function [PDF], F(t)=l-S(t) as the cumulative density function[CDF], and t as "time." 
We also let T denote the random variable for the distribution o f  survival times and 
11 = E(T) the mean duration or life expectancy, which we assume throughout to be finite 
and nonzero. Survival analysis refers to the following function: 

h(t) = f ( O  
S(t) 

as the hazard rate function or sometimes as the force of  mortality. The hazard rate 
function measures the instantaneous rate o f  failure at time t and can be expressed as a 
limit o f  conditional probabilities: 

P r { t  < T  < t  + A t l T  >-t} 
h(t) = lim 

A t ~ O  A t  

There are many well-known relationships and interpretations o f  hazard rate functions 
(refer to Allison[ 1 ] for a particularly succinct discussion). 

It is convenient to recall that i f  we set 
t 

g(t) = Sh(s)ds, then S(t) = e -g('> . 
o 

Let's fix t and restrict our attention to values o f  time w > t. The conditional probability o f  

survival to w, given survival to t, is S, (w) = S(w).  In this context (see [2]), the 
s(t)  

expectation of  life at time t, given survival to time t, is just: 

I ( w -  t ) f (w)dw 

p ( t ) =  t = SSt(w)dw = S(W) dw 
o~ 

i f ( w ) d  w t t S(t) 
t 
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Observe that under our assumptions,/9(0) = /1  > 0 and the function p( t )  is well defined 

for all t>0. We also observe that for any a<b with S(a) > 0, we have the relation: 

p(a)S(a) = SS(t)dt = iS(t)dt  + SS(t)dt 
a a b 

<_ IS(a)dt S(t)dt = S(a)(b - a ) +  p(b)S(b) 
a b 

::* (read "implies") a + p(a) <- b + p(b)S(b) <_ b + p(b) ,  
S(a) 

with strict inequality exactly when S(b) < S(a). 

Not surprisingly, there are formal relationships between hazard, h(t), and life 

expectancy, p(t), as in: 

P r o p o s i t i o n  1 : 

l + dp : h(t)p(t) 
dt 

Proof'. This is straightfo~'ard from the above definitions--see [2]. 

Proposi t ion 2: For any differentiable fiowtion, q~(l), on [0 ,~) ,  the following are 
equivalent: 
i) a,bs[O,m),a-<b ~ a+~o(a)_<b+q~(b) 

ii) d ip  >__ -1  on [0,~) 
dt 

Proof'. Consider the function ~( t )  = ~p(t) + t ,  then ~ is non-decreasing on [0,oo) if and 

only d~g d~o - +1>_0 on [0 ,~ ) ;  the result follows. 
dt dt 

So we now let ~(t)  > 0 be a differentiable function on [0,oo)such that d~ ~-1 on 
dt 

[0 ,~ ) .  From Proposition 1, it is natural to consider the loss model defined via its hazard 
function, as above, by: 

]+d~_~ 
h( t )  = hq,(t) = dt > 0 on [0,oo) 

¢(t) 

Keeping the above notation, we have: 
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1 d In ¢p(t) 
h( t )  = + 

qo(t) dt 

I 

- -  ::~ g ( t ) =  f h ( w ) d w . :  t[ d w +  I n (  q)(t> ~ 

o ggo(w) ~,~,(o)) 

-i #w 
::~ S ( t )  = e -gO) = go(O)e ,¢,(w) 

go(t) 

I •( W) 

p( t )  = [°~-AY2dv [ e 

go(t) dv 
: s(o : go(v) 

Regard t as fixed and use the change of  variable: 

u(v) = "[ 
dw  dv  

::> du = -  
:go(w) go(v) 

At the limits of  integration we have 

v = t co r re sponds  to u = 0 and  v = oo co r responds  to u = 
dw 

, go(w)" 

It follows that: 

p ( t )  = go(t) ~e-"du = go(t) 1 - e - ! ~  <_ go(t) 
0 

Which means that the life expectancy function, or, can be characterized as the smallest 
solution to the differential equation (Proposition l) that relates hazard with life 
expectancy. 

Since clearly 

i dw =oo 
go(w) 

ao 

~ (read " i f  and  only  if")  I dw 
, go(w) 

= oo for  all t ~ [0,oo), 

it follows that: 
oo 

p( t )  = go(t) ¢:> I dw  = o~ 
o ~o(w) 

and we have established the main result of  this paper, which is stated as the following 
Proposition: 
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Proposition 3: A differentiable funetion p( t )  > 0 on [0 ,~)  is a life expectancy o f  a loss 
model exactly when: 

_ ) ,  dp >__l, and d t=oo 
dt p(t)  

In this paper we will refer to a function p(t)  as an LEF exactly when it is a life 

expectancy o f  a loss model. The remainder of  this paper consists primarily of  applying 
the Proposition 3 characterization of  LEFs. Conceptually, the "local" derivative 
constraint relates to a limitation that at any time no more "deaths" can occur than the 
number then "living" while the "global" integral constraint requires the model to account 
for all lives. 

Example: Suppose ¢p(t) = t 2 + 1. Then d e  = 2t >_ - I  when t ~ [0,oo) and we can define 
dt 

l + d ~  ° 

h ( t ) = h , ( t ) = d____J_t = +..____L t 
1 

~p(t)  t 2 + 1 

The reader can readily verify that in this case we have: 

g ( t )  = ln(t 2 + 1) + tan-t  (t) 

1 
s ( t )  = 

(t 2 + l)e ~a" '(,~ 

/ l /  .... 1 p ( t ) = ( t 2 + l )  l - e  - =¢p(t) l - e  ~ 

We see that ¢p(t) = t 2 + 1 is not the life expectancy of  any loss model. 

I lL  Examples of Life Expectancy Functions 

In this section we show what the life expectancy looks like for several o f  the most 
commonly used loss models. 

Example III.1. Pareto density with parameters a > 1, b > 0. In this example, define 

f ( a , b ; t )  = a b ° ( b + t )  -"-~ . 

Then (see, e.g. [6], pp. 222-223) 

(b~_ t  / ~ a and p ( t ) =  b + t  S(t)  = ,h( t )  = b + t  a - l "  
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The Pareto density is characterized by a linear LEF. Note that for the Pareto loss model: 
d p  1 

- and l im p ( t )  = oo . 
d t  a - I t .--~ oo 

Example III.2. Lognormal density with parameters /.4a > 0. In this example, define 

to- 
(see, e.g. [6], pp. 229-230). It can be shown that for a Lognormal loss model: 

lira h ( t )  0; l im p ( t )  oo; l im d p  ~ - - - - ' ~  o o  , 

t - - +  oo t - - +  oo t - ~  oo d t  

The coefficient o f  variation, CV, is defined as the ratio o f  the standard deviation to the 
mean; it is a convenient and dimensionless measure o f  variation. We leave to the reader 
the verification that the parameters for a Lognormal density with mean M and coefficient 
of  variation C can be determined from: 

O , . z  
a = x/In(C" + 1) ,u = ln(M) - - -  

2 
The following chart shows the LEF's for a Lognormal loss model, expressed as above as 
a function (p(t) o f " t ime"  t and with a constant mean, cp(0) =5,000,  and for CV = ½, I, 

and 2, respectively. 

Expectation of Life Function for the Lognormal Distribution 

25 ,000  =. ,~., ~:,,., .. ~..: ~. , , . . . . . . . .  ,; . . . . . .  ; . . . , ,  f . ~ . ~ . ~ , ,  

",: ".Y ' . ~  . . ~ ; ' , 7 " - ~ ; , ; ' ; ' , ' . . ' ¢  ' ~  . ~ , ' ~  .t-' ~ ' " '  ,.~ | -. ~. f . . . .  r, .,. - .~  . ~ , ,  ,~.. ~ , ~ f ~  " ~ ~ ' ,  , ' .  :;.: 

/ 15,000 - " ~ "  . . . . .  ~ " ~ "  - " " :  . . . . .  "~ " " ' " " ' '  " . . . . .  " . . . . .  

10,000 /~..v,'..-~ ~ ~ " , ~  

5 ,000  ' " ~ . . . .  " , . ,  " ' , '  " . ' , ' , , "  " ~ . :  : ' :  "~ ,i+,,. '"" ..'-.-'~ 

0 5 ,000  10 ,000  15 ,000  20 ,000  25 ,000  

t 
30 ,000  
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Example  III.3. Weibull density with parameters a, b > 0.  In this example,  define 

f(a,b,'O abt b - l  : a t b  

Then (see, e.g. [6] pp. 231-232) 

S(t) = e -~:,' h(t) = abtb-l ; and  ~ = - -  

F(;I 
I 

bab 
For a Weibull density we have: 

l im p ( t ) =  _ _ 1  _ b = 1 

,-,"~ l im h(t) 
' - ~  b > I 

The following chart shows the LEF's  for a Weibull loss model with mean of  5,000 and 
coefficients o f  variation = ½, 1, and 2, respectively• Note that a Weibull loss model with 
CV = 1 is an exponential density (case b=l) ,  characterized by a constant LEF. 

Expectation of Life Function for the Weibul l  Distribution 

25,000 

20,000- 

15,000- 

10,000- 

5,000 [ 

0 " 

0 

{ 
. • . , ,  . 

CV=1/2]: "; :, , ,.. 
CV=l / ' " .~ ' 

~ C V = 2  | : '  , ' - 

5,000 10,000 15,000 20,000 25,000 
t 

},:. 

30,000 
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Example  III.4. Gamma density with parameters a,b > 0. In this example, define 

a b lb-le-at 
f ( a , b ; O  - 

r(b) 
Then (see, e.g. [6] pp. 226-227) 

b 
S( t )=l-F(b;at ) ;  and p = -  

a 
It can be shown (see, e.g. [7] pp. 86-87) that for a Gamma loss model: 

1 
lira h ( t ) =  a and lim p ( t )  = - -  

t ---~ oo t --~ oo a 

We leave to the reader the verification that the parameters for a Gamma density with 
mean M and coefficient o f  variation C can be determined from: 

1 1 
a=c---- ~ and b =  C--- T 

The following chart shows the expectation of  life for a Gamma loss model with mean of  
5,000 and coefficients o f  variation = V=, 1, and 2, respectively. Note that a Gamma loss 
model with CV = 1 is again an exponential density (case b=l).  

Expectation of Life Function for the Gamma Distribution 

2 5 , 0 0 0  . ~ . . . . . . . . . . . . .  

I 2 0 , 0 0 0  -."~1 ^ I' , ~  : : , ~ ,~ : :  " , ~  *'~, ~,."~ " ";; ? ' -  '.-:- ~ '  " .  ,I 

1 5 , 0 0 0  . . . . .  .. '~'~ ' . . . "  . . . . .  : . . . .  -. s . , " ~ ' : , "  .;~ . . . .  ~.-~ 

5 , 0 0 0  . . . . . . . . . . . . . . . . . . .  , '" , - 

0 5 , 0 0 0  1 0 , 0 0 0  1 5 , 0 0 0  2 0 , 0 0 0  2 5 , 0 0 0  3 0 , 0 0 0  

t 

This section concludes with two general examples. 
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Example 111.5. Piecewise linear functions 

In each of the above loss models the graph of the expectation of life function is rather 
flat, exhibiting at most one relative maximum or minimum. This suggests that such 
curves can be successfully approximated by fairly simple functions, e.g. by piecewise 
linear functions with rather few pieces. Consider any positive, continuous, piecewise 
linear function on [0,oo) with finitely many pieces. Then the rightmost slope must be 

nonnegative, so the integral over [0, co)diverges. It is intuitively clear (and easy to prove) 
each of  the "comers" of  such a function can be approximated to any desired tolerance by 
a smooth curve that matches the slopes of the corner's two sides while keeping its 
derivative within the range of those two slopes. It follows from our findings that a 
positive, continuous piecewise linear function on [0,oo) represents the expectation of life 
of a loss model exactly when all its (finitely many) slopes are > -1. This is a very simple 
criterion to accommodate when fitting empirical data to a piecewise linear representation. 

Example III.6. Rational functions 

Another natural choice of"simple" functions, these differentiable, is the set of rational 
functions. We consider first the case of a ratio of two first degree polynomials: 

b t + c  
~(t )  = q~(b,c,d;t) = - -  t ~ [0,oo) 

t + d  
We claim that the following are necessary and sufficient conditions for ¢p(t) to be LEF of 
a loss model on [0,oo) with positive mean: 

(RF1) c > O , d > O , b ~ -  - d , O  . 

We will abuse notation somewhat and use RFI to denote both these conditions and the 
class of functions they determine. To verify the claim, observe first that: 

_ l < d ( p  ( t + d ) b - ( b t + c )  = ¢ :>( t+d)  2 > c - d b  
dt  (t + d )  2 

which holds for all t > 0 exactly when d 2 > c -  db. 

Assume first that ~p(t) satisfies conditions RF I, then clearly~o(t) is differentiable and 
positive on [0,oo)and we have just verified that its derivative is > -1. We also have: 

b=O:=> 1 t + d  ® dt l i t 2  ]® 
= - -  ~ ! ~ t )  = +dr =oo 

¢p(t) c c [_ 2 -]o 

1 t + d  1 ~t dt 
b > O ~  l i m - -  !im O ~  =oo / 

,--,~ ~o(t) bt + c b ~go(t) 

and so conditions RFl suffice to make ~(t)an LEF. 
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Convesely, if tp(t) is an LEF, then being well defined on[0,oo) forces d>0 and clearly: 

C 
0 < #  = ¢ o ( 0 ) = - ~ c > 0  

d 

lim~a(t) = b ~ b > 0 
f --~ao 

and the observation on dcp implies that conditions RFI hold. 
dt 

Ratios of linear terms are a rather restricted class of functions, not even including linear 
functions. So we consider next the case of a second-degree polynomial divided by a 
linear term: 

at ~ + b t + c  
~o(t) = ~o(a ,b ,c ,d; t )  = t ~ [0,oo) 

t + d  
Two simple lemmas are useful here: 

Lemma: For a>O, b>O the quadratic at 2 + bt + c has a posit ive root i f  and only i f  

b <_ - 2 ~ a c .  

Proof" Assume first thatb _< - 2 ~ a c ,  then b 2 - 4ac > 0, and from the quadratic formula, 

r =  - > 0  
2a 2a 

is a positive root. Conversely, if there is a positive root, the quadratic formula implies 
that 

- b + ~ - 4 a c  > O = l b l = 4 b T  > f b T - 4 a c  > b = b < 0 ,  

and it follows that 

b 2 - 4ac > 0 ~ b 2 > 4ac ~ Ibl >-_ 2 ~ a c  ~ b = -[b I < -2~[acr-- 

and the lemma is established. 

Lemma: dq~ = a  + b d - a d  2 - c  d2~° = - 2  
dt (t + d )  2 dt 2 

Proof" This is just a straightforward calculation: 

bd - a d '  - c 

(t + d)  3 

d~_~ = (t + d)(2at  + b ) - ( a t  2 +bt  +c)  

dt (t + d)  2 

at 2 + 2adt +ad  2 - a d  2 + b d - c  

t 2 + 2 d t + d  2 

bd - ad 2 _ c 
= a ~  

(t÷d) 
and the lemma is clear. 
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We claim that the following are necessary and sufficient conditions for ~p(t) to be the 

LEF of  a loss model on [0,oo) with positive mean: 

We have already verified this for a = 0 ,  so we assume a ~ 0. 

Assume first that q~(t)satisfies conditions (RF2),  then clearlyq~(t)is differentiable and the 

above observations assure thatrp(t) is positive on [0 ,~)  with derivative _> - I .  Also, 

We observe that the first integral diverges: 

2at + b dt = [In(at 2 + St + c)]~ = oo, 
Jo a t  2 + b l  + c " 

while the fight hand integral is finite: 

o,2 + ~,  + c  >_ ot~ - 2 4 : r ,  + c - -  ( 4 ~ , - ~ ) '  = ~(,)' 

a 1 d t =  
t 2 +b t  + c  

1 , 1 ~ d u  
< ! a / + - =  J.-5- = at 2 + bt + c ~[ a t u 

~o(t) 

~+~ 

So 1 dt + 7 l . d  t 
at 2 + b t + c  ~+~at  2 + b l + c  

--g~-- 

-'~-a 

1 d t +  < 
at2 +bt  +c  

and (RF2)  is sufficient to make~o(t) an LEF. 

Conversely, if  ~o(t) is an LEF, then being well defined on[O,~)  again forces d>0 and 
clearly: 

C 
O<~t  =¢o(0) = - - ~ c > O  

d 

at 2 + bt  + c 2a t  + b 
0 < limbO(t) = lira = lira ~ a > 0 

,-,® ,-,*~ t + d ,--~ 1 
and the lemmas imply that conditions (RF2)  hold. 
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These constraints can be imposed when fitting data. Since this class of functions includes 
any linear expectancy function, it covers the Pareto and exponential cases. The following 
graphs show how the RF2 class of functions approximates the Lognormal Example I11.2: 

2 5 , 0 0 0  

2 0 , 0 0 0  

15 ,000 

10 ,000 

5 ,000 

0 

Fitted Expectation of Life 
of the Lognormal D i s t r i b u t i o n  

CV=1 /2  Actual  . . . . . . .  . ~. _ . . ; ~  :,~ ..,, .,~.~.~,-"~;~;~-~-:~ 

CV=1 /2  Fitted . . . .  - ,i . '~: !)i._ ,~ : ! ~ . , ~ ? _ . ~  

C V = l A c t u a l  "" " "" " ' ~ :  ' "~" 
O ' t . ' . ~ i ' '  , 4 re I ~ "  "~ t 

• C V = I  Fit ted ~." . • 

.2 

• • - . . ,  , . . , . & ' ,  . . 

5,000 10,000 15 ,000 20 ,000  25 ,000  30 ,000  

Parameters 
CV=½ 4 ,175  
CV=l 
CV=2 

R F 2  Fi t to  Lognormal 
a b c 
0.1079 332 18,814,530 
0.2337 31739 4,388,204 
0.4245 22,265.8 85,152,045 

938  
18013.2  

Observe that while the tail behavior seems closely fit, the RF2 approximation is not 
particularly good for CV=2 near t=0. This is because the RF2 class of functions is not 
adept at fitting a slope at or near -1 over an interval. The Lognormal density shows few 
failures near t=0, corresponding to the thin right-hand tail of the corresponding normal 
density. There are various approaches to dealing with this (the next section illustrates 
restricting or renormalizing the loss interval); we conclude this section with a refinement 
of the formula. Consider broadening RF2 by eliminating the derivative constraint: 

(RF2) a>O,c>O,d>O,b>-2~ac. 
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Let 

{~ ad2-bd+c d ad2-bd+c>O 
at = ¢ t (a ,b ,c ,d)  = a + 1 

- d  ad  ~ - b d  +c<_ 0 

From an earlier lemma, has the same sign as the constant ad 2 _ bd + c, which 

implies that a is the largest value oft ,  if any, for which d !  = -1. We can now define: 
dt 

f(p(at) + (at -t) t ~ at 
~ ( a , b , c , d ; t )  

[ ~( t )  t > a 

Then ~(t) is  a differentiable function and our observations show ~(t) is  an LEF. As no 
surprise, we note that: 

(RF2) & (~ = ~p) ¢~ (RF2) & (a < 0) 

¢:} (RF2)& ( ~  ad2 a+l-bd+c < d )  

¢~ (RF2) & (ad 2 - b d  + c g a d '  + d' ) 

,,F2) & (~-a <b)~ (,F2) 

We conclude this section with charts illustrating how well the class of functions R F 2  is 
able to approximate Examples Ill.2, I11.3, and III.4. We arrived at these estimates by first 
fitting the form ~o(t)without the derivative constraint on parameter b (using the SAS 
PROC NLIN procedure) and then usingTp(t)as the fitted LEF. 
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25,000 

20,000 

15,000 

10,000 

5,000 

Fitted Expectation of Life 
of the Lognormal Distribution 

CV=1/2  Actual  . :.. . . . .  .. 

C V = l A c t u a l  ' , .~. '  ' ' " ° ~ , i ( . . ~ _  r 

C V = 2 A c t u a l  ~ . . ?" '. - ~ / * ~ . ' . ' . :  ~. : -, ' 

• CV=2 F i t t ~ ' "  ' , ," i 

• . . ~ ' ~ ~ -  . . . . . .  ~ , ~ , ~ ' ~  

o~ . ~  : ,,~ ;,~ . ~ . ,  . . . . .  ~ . - , ,  , . ,  . _ - , . . -  ~ . ~ - . . ~ - ,  . . . . . . . . .  

0 5,000 10,000 15,000 20,000 25,000 30,000 

t 

RF2 Fit to Lognormal 

Parameters  a b c 

CV=V2 0.0867 919 9,728,662 
CV=I 
CV=2 

0.2313 3,685.7 
0 .4245 22,265.8 

1 ,968,510 
85 ,152 ,045  

d 
1,845.1 

387.5 
18,013.2 
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25,000 

20,000 

15,000 

10,000 

5,000 

- -  CV=1/2 Actual ~,,.l~i~t:'~i 
• CV=1/2 Fitted I,~",.~'~ 

CV=I Actual ~ '"!::~ 
• r ! ~ q , ' %  

• CV=I F~tted P?4H4' 

CV-2 Actual 1!":':';5 
• CV=2F~tted ~": ~'~, 

0 5,000 

Fitted Expectation of Life 
of the Welbull Distribution 

~,.: ~ ' r  , ~ - . , ~ '  • '  ~';~6~.' ,~. ~ ' ~ "  . ~ L ~ . ~ '  " ' "  , ~ ' "  

10,000 20,000 15,000 

t 

~ ::T'~ ~ ,¢~ ' 

25,000 30,000 

RF2 Fit to Weibull 
Parameters a b 
CV=V2 
CV=I 
CV=2 

0.0289 
0 

0.2339 

-1,081.5 
5,000 

13,948.5 

27,621,056 
5,000 

22,940,996 

5,479 

4,040.4 
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Fitted Expectation of Life 
of the Gamma Distribution 

!5 ,000 C V = l / 2 A c t u a l  , ',°, ' , /  ' ; :  - ~  , ~ , = . '~:. :* 

• C V = 1 / 2  F t ted i "  " : : : - "  ; ".? " ' : :  ~< : :'~:'" : ' "  

!0 ,000 -I C V - 1  Ac tua  .- . ~ . . . .  . , ~ . , .  ~ , . . .  ~: ....... , '  , 

• C V = l F t t e d  " = ~  " '~  , : '  ~ , , ' . . . ' . ~ .  . . . .  ' 

- - C V = 2  Ac tua l  '~i;i'i). ":'!;-)i-. :'~'; ' : " :  : 

5 ,000  • C V = g F i t t e d  ' "  ' : . . . .  " ~: " ° ' : ' :  " 

. , , L , ' r ,~  ' ~ : " ~  ' ' "  * . ' ~ , ;  ; ' ~A ' :  :,' ' ~ "  ' ~  "~ ,~ ,~ :  - " '~ " :  " .  . , , . - ' : ~ '  

5,000  ~ ` ~ " ~ : ~ ' ` ; ~ ` " ~ ; ; ; ~ ` ~ ' ~ ` ~ ` ~ . ` ` ~ ' ~ P È ~ ` ~ . ~ * ~ ` ~ ` ~ : ~ ' ~ ` ~ " ` ` ` ~ ` `  . ' ~ ' ~ - . " ~ : ' =  

0 5 ,000  10 ,000  15 ,000  2 0 , 0 0 0  2 5 , 0 0 0  30 ,000  

RF2 Fit to Gamma 
Parameters a c 

CV=V2 0 998 .9  1 1 , 9 4 3 , 6 6 3  

C V = I  0 5 ,000  5 ,000  

CV=2 0 .098  13 ,558 .6  9 , 6 0 0 , 8 5 2  

2 ,306 .2  

1 
1,636 .5  

IV. Limited Loss Models 

In the previous discussion we have referred to loss models as essentially equivalent to 
continuous probability densities on [0,oo). The astute reader will have noticed a rather 

clumsy slight o f  hand as regards loss models of  finite support, i.e., for which there is an 
upper loss limit L such that f ( t )  = 0 for t>L. We have implicitly assumed that life 

expectancy p(t)  > 0 on [0,oo), which in effect means that there is no maximum loss. 

Consider, then, any probability density on [0,oo)with survival function, S(t), and 

expectation of  life function p ( t ) .  We have: 

d.._SS = - f (t ) < 0 ~ S nonincreasing ::=> S~({0}) = [L,oo) 
dt  
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for some L. Note that we may have L = oo (and [oo,ov) = ¢ is empty). We find, 
therefore, from the definition o f  the expectation of  life function that: 

% ¢t,,~ 
P (O  = J -Z~2dv ~ {tl p(t) = O} = S" ({0}) = [L,oo) 

, s ( t )  

and the reader can easily verify that this observation, together with our previous 
arguments, enables us to refine our main result somewhat: 

Proposition 3: A differentiable function p(t) on [0, oo) is a life expectancy of  a loss 
model exactly when: 

L 1 
{tlp(t)=O}=[L,~o), dP >_ l ,  and [ art=oo. 

dt - ~o p(t) 

When L < oo is finite, the (continuous) loss models we have considered still demand that 
the probability of  meeting or exceeding L is 0. It is more convenient when dealing with 
limited losses to consider an alternative formulation. By a limited loss model, we mean a 
probability density on [0,1 ] that is a combination of  a continuous density on [0,1) and a 
point mass at { 1 } that may have a positive probability. This corresponds to the case 
when all losses may not exceed a particular maximum value. It is convenient  to use that 
maximum value as the unit for expressing loss amounts. In effect, this amounts to a 

change o f  variable x = t and the point mass at { I } corresponds to the probability that a 
L 

loss hits the per occurrence loss limit. For convenience, we further require that S(t) > 0 on 
[0,1) (see [3] for a more complete discussion, where these models are related to "hazard 
functions with finite support"). 

In this case, some of  the arithmetic is simplified, as we have fewer improper integrals to 
worry about. 

A differentiable function, F(t), on [0,1) is a CDF of  a limited loss model exactly when: 

d F  
F ( 0 ) = 0 ,  --  > 0 ,  and l i m F ( t ) - < l  

dt  - ,--,~ 

An integrable functionf(t) on [0,1] is a PDF of  a limited loss model exactly when: 

I 

f(t)>_O, and Sf(t)dt =1 f ( l )  
0 

Similarly, any nonnegative integrable function h(t) on [0,1) is a hazard rate function of  a 
limited loss model. Observe that Propositions 1 and 2 apply in this context, when 
restricted to the open interval (0,1), and we have: 
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Proposition 3A: A differentiable function p(t) on [0,I) is a life expectancy o f  a limited 
loss model exactly when," 

i 1 
p ( t ) > 0 , - - ~ t P > - l ,  and ~p(t)dt=oo 

Proof. Let ~p(t) > 0 be a differentiahle function on [0,1) such that ---~>-1 on [0,I) and 
dt 

consider the limited loss model determined via its hazard function, as above, by: 
1÷ d(p 

h(t) = h~ (t) = dt > 0 on [0,1) 
¢,(t) 

Keeping the above notation, we have, just as before: 

h(t )= 1 + d ln(p:=~g( t )= Sh(w)dw= +In 
~o(t) dt o g q~(w) [ qo(O) ) 

S( t)  = e -~') = ¢o(O)e °~'<~) 
~o(t) 

= p ( t ) =  '~'$(-~v = ["e-!{~ 
a,S(t) ~°(t), a ~o(v) dv 

Similar to before, using the change of variable 

u(v) = "[ 
dw dv 

: ~,(w) ~ du = --~(v) 

v = t  corresponds t o u = 0  and v = l  corresponds to ,~ cp(w) 

i d w  

- I -  - 
~ P ( O - ~ o ( O  e "du-~o( t )  l e "' 

0 

Which means that here too the LEF is the smallest solution to the differential equation 
(Proposition 1) that relates hazard with life expectancy and it follows that: 

dw 

o Ca(w) 
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and we have established the sufficiency of the conditions to be a LEF. For the necessity, 
it only remains to observe that S(t) > 0 on [0,1) implies that p(t) > 0 on [0,1), completing 

the proof. 

Note that evidently: 
l imp(t) = 0 
t---hi 

for the LEF of any limited loss model, even though we did not need to make that an 
explicit requirement in the statement of Proposition 3A. 

V. Application to Multi-Dimensional Loss Models 

One significant advantage of expectation of life is that it is rather simple to generate 
empirical data in multi-dimensional contexts. Given a database o f individual claim 
information, it would be reasonable to expect to be able to identify closed cases and to be 
able to identify claims whose paid costs exceed a fixed amount x and whose ALAE 
exceeds a fixed amount y. Taking the average benefits =MeanCost(x,y) and average 
ALAE costs =MeanALAE(x,y) over that set of claims leads to another pair of positive 
numbers (U,V) = (U(x,y),V(x,y)) = (MeanCost(x,y)-x,MeanALAE(x,y)-y). Because we 
are considering closed cases, (U,V) can be regarded as a life expectancy or "reserve" 
vector. The association of(x,y) with (U,V) is a vector field which is termed an "expected 
survival" vector field in [5]. The correlation between claim costs, ALAE, and claim 
closure is all captured in that vector field. 

Similarly, we could let x represent indemnity benefits and y medical benefits on 
Workers' Compensation claims. A good model of the survival vector field might help in 
the determination of case reserves or in modeling loss development. 

It follows that an understanding of what type of functions can reasonably model life 
expectancy can be helpful in producing multi-dimensional survival models. It can be 
shown that these models are more flexible than traditional multi-variate loss models (see 
[5]). The use ofpiecewise linear functions to approximate life expectancy is 
straightforward, just noting, as above, the condition that the partial derivatives (where 
they exist) exceed or equal -1 and that the function be nonnegative sufficiently far from 
the origin. 

To illustrate, we conclude this paper by presenting a model for using rational functions, 
as above, to approximate life expectancy in two dimensions. Begin with the observation 
that, formally: 

a,,x~ + fl, xy+a,2y 2 +b,,x+b,2y+c,, =a, ,x 2 +(b,, + fl,.y)x +(a,2y 2 +b,2y+c,~ ) 
x + y+d, ,  x +(y+d~,)  

= ~p(a,,,b, + fl,y,(d,, + y)q~(a,2,b,2,c,,,d,,;y),d,, + y;x) 
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Consider, therefore, the following two-dimensional vector field on the positive quadrant 
in the xy-plane: 

V(x.  y)  = ~(at.,b.. + fl.y, (d,, + y)~9(a,2, b,2,cH, d . ;  y), d H + y; x) 
V(x ,y )  = ¢o(a2,,b,, + ,O,x,(d,, + x~,(a~,,b2,,c, , ,a~,;x),a,,  +x;y) x , y  e [o, oo) 

and then the vector field defined by: 

f I-~ OU _ I +  OV" 

x , y  e [0,oo) 

We claim that the following conditions suffice to assure that)? is a hazard vector field as 
defined in [5] (or what amounts to the same, that (U.V) is an expected survival vector 
field as defined there): 

a/i ~0 ,b / i  > - 2 ~ . l , c j l  > 0, d/i >0,  

j = l , 2  

From the above, and the obvious symmetry in x and y, all is clear except to verify that 
these conditions assure that: 

b N +,O~y~.-2~a~(a~2y 2 +b~2y+c.) f o r a l l y > 0  

To see this, first note that 

a~2y ~ +b~2y+cH > a~2y2 + 2 a~.~2cny+c~ =(.¢~2 + ~ y  

And it follows that: 

b,, + fl, y + 2~/a,,(a,2y 2 + b,2y + c,) ) 

: b,, + p , y+  z a-,/'C,,{ 

and the result follows. In practice, however, the recommendation is to fit data without 
constraints and then make any ad hoc adjustments needed to assure the use e r a  valid 
LEF. 
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