A GENERIC CLAIMS RESERVING MODEL
AFUNDAMENTAL RISK ANALYSIS

By Graciela Vera

In their diversity, insurance risks often require very different types of claims reserving models to describe them
and to estimate the necessary reserves. The tractability of the chain ladder has contributed to its popularity. A
brief analysis is given of its statistical basis and its implied limitations, of which the most important is its
propensity to underestimate the reserves. This paper proposes a new paradigm for actuarial risk analysis where
the reserving estimate is just one of the many results it delivers. The generic claims reserving model is
consistent with the claims development process, and from it a rich family of claims reserving models can be
constructed. Without loss of generality, the variance is simply defined to be a function of the mean response. No

particular consideration is given to estimation procedures, as those will depend on the selected model structure,

1. INTRODUCTION

A typical claims array of a book of business is cross-referenced by underwriting year and delay period, and is
additionally described by payment year delined as underwriting year plus delay period minus one, As an

example of annualised claims daia consider the following array:

Year of Delay Period
Origin i 2 5-1 5 s+1 r
1
2 A
B;
5-1 By
5

Fig.1  Example of a claims development array, A represents
known claims, and B, and B, projected claims.

The array is divided into three regions: A for the cells with known claims. A typically consists of the upper lel
triangular region of the array. The last diagonal of A is «. It corresponds to the last payment year for which
claims data are known. The triangular array right below A is denoted by By and the cells with unknown claims

for delay periods beyond s by B, .

Variations in the shape of the data array represented by A are usual, and are well within the scope of the models
discussed in this paper. They are normally the result of data exclusions from the latest delay periods, from the
latest origin years or from the earliest payment periods. Truncation of the data in the underwriting year direction

15 a consequence of cessation of business or of changes in the underwritten risk.

The models that concern this paper have the capacity to predict future claims beyond delay period s. This is a
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distinctive advantage over models such as the chain ladder (Zehnwirth (1989)), or other models derived from it.

A very large variety of models has been developed to predict future claims for the lower triangle of the claims
array B;. The chain ladder, being one of them, has been quoted and referenced frequently. Kremer (1982)
proves the connection between the chain ladder and a two-way analysis of variance and the results are discussed
and applied as the basis of further work by other authors, However, the use of the analysis of variance to provide
a statistical justification to the chain ladder gives a hint of the limitations of this method and related models. The
most important is that it excludes the tail factor beyond delay period s. This is acknowledged by Zehnwirth
{1989), to which close reference is made in order to set the framework for the method this paper proposes. For
consistency with the rest of the paper and without altering the conclusions that can be derived from it, the

exposition of Zehnwirth (1989) made with reference to accident year, is summarised below with reference to

underwriting year,

1.1 THE CHAIN LADDER METHOD

Denote the incremental paid claims in development year j and underwriting year w by y, ;- Then the

cumulative claim amounts and devclopment factors for underwriting year w at development year j can be

defined by ¢, ; = Z Vs and D ( e ,)-l ¢,.; - Zehnwirth (1989} summarises the chain ladder assumptions
h=|

as follows:

ASSUMPTION I: Each underwriting year has the same development lactor, with an estimate defined as

. 5—f+l =i+l
DJ.=(Z e ,J Z e V= . Then, projections of ¢, for w=2,.s and j=s-w+2,..,5are

wzt w=1

H D . For consistency let ¢, —c”

A=gantd

1097 n Sl

ASSUMPTION 2: Each underwriting year has a parameter representing its level. For underwriting year w this

is ¢

wr-w

.1 - The final underwriting year is represented by ¢, , . Zehnwirth (1989) argues that when c;, represents

a single observation and all underwriting years are completely homogenous, it should be estimated by - Zc", .

w=]

To establish the statistical basis of the chain ladder, let

(Befge) -

mjel sepel s=itt Y
B =*( PINEDY C:ru—nj( 2. E;,J 2<j<s

w=E =]

(Cl.s “cl.(.r—l))(cl.s )-' j =¥
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1= j+1 5 . y=j+l
From assumption 1 »_ &, = D, 1> e, then
A=l

and

Given the

w=i

=J+l s 5=} 5= j+1 s [ 5=i+l
expression for p;, Zf) i, = ( Z = D G ,,] = Z( > y;j] and the following can be
J=l

J=1 w={ w=l w=l §=1 w=l

concluded;

I

3 s-jl 55— i+l
Based on the marginal estimates, the equality [Z > Bl =2 2 v, J suggests the stochastic
J=b ow=l J=1 w=l

model proposed by Kremer (1982): y. where o, and ,BJ', are the parameters for

w, f nJ

underwriting year s and development year j, and ¢,; the random error term. This model can be re-

stated as a  two-way amalysis of variance y,,=Iny,, =u+a, +/f +e,, such (hat

e, ~ (o, a’l),ia'", = Z B, =0 ( Zehnwirth (1989)).
i=

w=l

L

X 5 3
From assumptions 1 and 2, &, =¢,, = Z Vi - Hence, (E‘,: Py =1 j] implies ( P =1J.
=| 3 I=l

ket ™

- j+1 5~ j+l
Since Z c” . _(ZE\p ﬂ; J( Z exp(,u+aw)J, the equivalent relationships emerging from

w=t w=l

points 1 and 2 are: p; =exp (ﬁ’})[i exp( /4, )) and D, El+exp(@)(iexp(ﬂk )}~ . The former
&= far

pives a clear interpretation to fJJ as the percentage of the total claim amount to be paid in
development year j. The definition of f);, is restricted {o the first & development years for which data

exists. Hence, for j>s5, p;=0.

Conclusions 1 and 2 show that the chain ladder underslates the reserves for runoff triangies that at development

yedr § are

not fully developed. Tt is usual for practitioners who use the chain ladder to value their reserves to

apply industry benchmarks in order to estimate future losses for the periods within the region B, on the array.

Particularly when they are generated from portfolios similar in claims experience and composition to those to
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which they are applied, benchmarks can certainly be a very useful source of reference to achieve safe reserves.
Industry benchmarks could contain frends not yet apparent in the company’s data. Nevertheless, in the context
of conclusion 3, where the chain ladder is interpreted as the product of two marpinal functions: the total claim
amount and the percentage cash flow, the use of benchmarks shows that the chain ladder’s implied assumptions

are frequently adopted in error, and stresses the need for a more coherent reserving approach.

5 =i+l ¥ S-f+l
To construct the generic model the relationship (Z Y b= D v j) should not be dismissed
J=1 w=1 J=l w=l

altogether, though more careful formulations of the marginal estimates fDJ and &, are required to ensure that

f)} is defined for all the possible periods of exposure, and ¢, is replaced by an estimate independent of s.

This paper is organised as follows. In section 2.1 the empirical data are defined. In sections 2.2 to 2.4 the
coniponents of the generic model are developed and the properties of the underlying function to the percentage
cash flow are addressed. The mean square errors are derived in section 3 preceded by a reviewed version of the
incremental claims reserving model. Behind the form of the generic model derived in section 2 is the
assumption that the data of interest represents a single class of actuarial risk. This is relaxed in section 4, and a

generic reserving model for clnims data containing more than one class of nctuarial risks is constructed.

2, A GENERIC MODEL
21 THE CUMULATIVE CLAIMS PROCESS

Let C, be the ultimate loss incurred in underwriting year w during its entire settlement period.

For simplicity of notation, it will be assumed that claims are reported at regular periods, although in practice this

needs not be a limitation of the models discussed, Let 1, =0, and consider the claims process for underwriting

year w, reported at times ¢,4,,...t,, such that O<f <t, <..<t,, and ¢, is the time when the ultimate

settlement is made. The number of partial or total claim payments by time ¢ is defined by

0 =1,
N =4 N(t)) t,<tst, O<i, <,
N, 1, <t

where N is the total or ultimate number of claims from underwriting year w, Let the iy incremental claim
settlement for underwriting year 1w paid during time period (tH,tj] be denoted by

(X;,M)= {r’ E[l,..., N;,(t_f.)—N;,(fj_l)],jE [, e]} Then the ultimate claim amount for underwriting year w is

364



¢ [N:U;)‘N;UH]]

givenby C, = Z Z X;',.J . Hence the aggregate claim amount for underwriting year w and delay
=1 i=1

period ;j and the corresponding percentage cash flow denoted respectively by ¥ (w, /) and P (w,j) can be

defined as

[Mte)-Hotn]

i
Y'(“’s.j) = ; ; Alw.i,k IStj <ft,

o t; 24, (2.1)

. Yen NCT 0<t, <t
Pw,f)= (w, /)G, <fp<i
1 121,

Equation {2.1) shows that it is justifiable to represent the cumulative percentage cash {low by a continuous

function, and this could be an integral. Its properties are defined below.

2.2 THE PERCENTAGE CASH FLOW

For theoretical purposes, the claims process is assumed to be continuous. We define a continuous function

P(w, /) for the percentage cash flow and a function C, for the uliimate claim amount. Hence, for a random

variable Y(w, f}

E(Y(w,f))=C, P(w, j) (2.2)

To define the percentage cash flow function the properties of a probability density function with domanin

DcBr.

DEF. I1f the underlying function of integral II(w,¢) is denoted by #{sw,¢), such that r € D then

[l’l(w,r +80)=TI(w, 1) ) _ [ OfI(w, 2)
ar R

w{w,t) = lim ] , and the properties of z(w,¢) are as follows:
-

=+

i, r(wt)z0 V¢
i, {w,f) = J‘;z’(w, )= =Pr[z <1}
=0
fii. I;r(w, 2)dz=
2=0

DEF. For a given probahility density function =(a, ¢}, let

. Plw, 1) =TI(w,1;)

4,

. Syt = J a{w, 2)dz =1- P(w,t})

:=l'!
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4
. plw, j)= I:r(w,z)rfz

=y
where p(w, j) denotes the percentage cash flow during the time interval (rj_l,rj] recorded at the end of

development period j and S(w,t;) the percentage of ultimate losses to be paid after £ =1, .

Individual incurred claims could be negative as a consequence of the recording process of paid and outstanding
claims, Incurred claims data, as the total of paid and outstanding claims, is subject to fluctuations in both data
sets. Their fluctuations and adjustments often result in negative incremental incurred claims eniries, However, a
reserving model with a systematic component defined as (2.2} could deal with negative incremental

adjustments, since those are normally corrections of earlier entries,

When the evaluation of integral II(w,f)cannot be obtained in terms of known functions, p(w,f)and
P(w, j)need to be approximated. Numerical integration techniques can be used for this purpose. Newton-Cotes,
Euler, Runge-Kutta and Simpson’s Rule are computationally intensive. For simpler methods consider the

Xy =X

and 2 represents the area under a curve f(.), 2 can be approximated from below

following. If &=

K-l L
by U, (x,x,)= Zf(x, + jd)d and from above by 2, (v, x,) = Zf(.\', + jO)0, such that 2, <A <A, . The

J=t J=1

{rapezoidal rule approximation between the interval (x,,x,)can be defined by

2

=1

Clearly as K — o, 2,2, and 21, tend to 21, but®, does so with greater accuracy than either 2, or 2,,.

If the area under curve a(w,f) is segmented at discrete consecutive periods, such that & =1, the above suggest

three alternative approximations for p(w, j) and P(w, j):

i-1
Pw, )y = D (k)
k=0

(2.3)
plw, j) = x(w, j-1)
/

Plw, )= ),k

(v, f) kz:l::r(u 3 (2.4)
plw, j) = z(w, j)

z(w, f) j=1

P(w, jy=1 - 20w, )
Z;r(11:,k)+T’~’ j>1 (2.5)
k=1 ol

alw, f =1 +x(0w, J)
7

p(w, j}=
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Against the more accurate estimate of P(w, jyand p(w, ) that method (2.5) could possibly produce, is the

neater construction of the cumulative and incremental claims reserving models that could be achieved by
considering either of methods (2.3) and (2.4). The consequences of underestimating the percentage cash flow
are more serious in underwriting years with claims known for only a few delay periods, as their proportion of
the overall reserves is greater than the proportion represented by underwriting years with similar exposure and

claims at a more advanced stage in their development. When method (2.4} is adopted,

Stw, fi= uj';r(w, 2z = i rw k) Yiz0 (2.6)

i k=jH

In cases where P(w,j)and p(w, j}need to be approximated, as the losses develop, the characteristics of the
underwritten risk should be extracted from TI(w, j}. Those that could be made immediately available are briefly

described in the next section.

S(w, f} is the basis of the definition of the /BNR function given in section 2.3. 1t is possible to construct claims

reserving models that fit the data well while J a(w, z)dz > 1. However, when #(w,f}is not a probability
2=0

density function, the definitions of S(w, j} and /BNR become meaningless,

2.3 CHARACTERISTICS OF THE ACTUARIAL RISK

The aggrepation of claims data for the purpose of reserving assumes that the data in each claims array broadly
follows a similar development. This assumption can and should be assessed by extracting and comparing the

information contained in II(w,t).

From the expression of the cumulative percentage cash [low the hazard rate and ils integral can be obtained:

I e) =

1=TI(w, ) oz

[GH(W, Z)J
= )., =“{a(log(l ~TI(w, :-:)))} 27
H{w, 1) = ~In(1=TT{w,1)) (2.8)

Kurtosis and skewness, as measures of shape, will also be available when the values of the reserving model

parameters permit estimating the necessary moments.

Estimates of S(w,t) and of future claims for the regions B; and B, of the array in Fig. 1, are essential for the

various analytical tasks of a claims portfolio, such as evaluation of the solvency status, assessment of
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underwriting volumes versus /BNR projections by class, assessment of reinsurance cover, calculation of future

premiums, etc. There are significant advantages when function z{w,) is a probability density function. In this

case the claims reserving model makes available all the descriptive statistics of the density function as
characteristics of the percentage cash flow function. At payment year s JBNR estimates for underwriting year w

and for an entire claims array of i underwriting years are respectively:

1BNR

{uy—urel)

=C S s—w+1)

IBNR, =3 C,8(w,5 —w+1)

w=1

From section 2.2

r

II(w,n = I a{w, n)d= (2.9)

Consider the following, When z(w,f)is a density function, z(w,/})=Prlz=+¢]. If P(w,)=e, then
t=T1"(a) =TI (P(w,#)} such that IT" is the inverse function of IT with respect o ¢. Hence it is possible to
calculate the corresponding time period ¢ for a given cumulative percentage cash flow value & and inverse

function 117" (). I1 is used rather than / to allow for cases where P needs to be approximated.

In the same way, since

IBNR
S(w, 1} = c

w

(wif)

(i)

IBNR,
t=1T" (I — (wd) J =I1" (P(w,1))

LY

the value of time period ¢ for a given value of future losses (IBNR ) can be determined as follows;

The behaviour of the right tail of the probability disiribution function is particularly relevant and important to
the calculation of reserves and to subsequent analysis of the claims portfolio, Therefore, the selected distribution

[unction should be a suitable description of the actuarial risk’s percentage cash flow,

In portfolios on run-off, where all aspecis of asset management are drastically simplified as the flow of
premiums reduces, the importance of having readily available /BNR projections is more apparent, since those
are essential to unable a company to formulate and vpdate a coherent commutation strategy .

24 ESTIMATION TECHNIQUES AND THE GENERIC MODEL

Decisions on estimation techniques are determined by the overall structure of the model. If the percentage cash

flow function can be linearized, generalized linear models could be considered (McCullagh and Nelder (1989)).

For more complex claims reserving models, simulation techniques would be more useful.
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Equation (2.2) gives the first part of the cumulative claims reserving model. For the mean response of the
incremental models P(w,f) should be replaced by p(w,r). The selection of the variance function should
depend on the data. With cumulative claims reserving models, particular attention is required to the possible
presence of serial correlation. Where necessary, the models should be amended to allow for serial correlation.
The literature available to lhelp the practitioner explore and select the most suitable variance function is

extensive.

The mean square errors for incremenial claims reserving models for a single actuarial risk class are derived in

section 3. To ensure that these can be immediately applied to different types of functions for z(w,1), it is
necessary to make the definition of p(w, ) and C, slightly more explicit. The final expression for the

incremental claims reserving model is given in equation (3.1).

3. GENERAL INCREMENTAL CLAIMS RESERVING MODEL
AND PREDICTED MEAN SQUARE ERRORS

Along the lines of Renshaw (1994), in this section the mean prediction errors {or the incremental generic model

are derived. In a claims array such as the one illustrated in Fig. 1, projected claims fall in the region defined by

set B=DB,. . Renshaw (1994} asswmes mutual independence between individual predictions in 8, and

i=t
independence between past and future claims. The main implication of these assumptions is that the results from
Renshaw (1994) derived for GLM models, where the mean response is the product of marginal paramelers, can
be easily extended for more complex models. To illustrate this, the mean square errors are derived in sections

3.1to3.4

For our purposes we classify probability distributions functions into those with or without a normalising

function, An all-encompassing definition could be achieved by the following: z{(w,t) =g ()G(w, 4,.¢) where
el = I Glw, A..80dte . g, () is a normalising function, independent of ¢ and possibly dependent on £, , where
0

F. is a parameter vector 4, = ( B B, ) and ¢ is the number of parameters in #{w,1)} . When the distribution

does not have a normalising function g ()=1 and A{wi)=C(w F,.¢8). Hence, il
ey
JU.B.0)= J-G(w,ﬂ".,r)dt, to simplify the estimation procedures it is convenient fo write

1= f=1

plw, jy=f(j,B,)e.() and C, =exp(X,)g;'(.), where X, and S, are the model parameters.

Hence, if y(w,j) denotes the random variable representing the incremental claims data, then
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E(y(w. )= u(w.J)

. ¥ . (3.1
V : L] Z—V [
ar (y(w j)) p (;1(1;. J))
m,, are prior weights, The mean can be alternatively expressed as
w{w, Y= (i k. B)=exp(R,) 10, 4.) (3.2)

Let z(w, j) be the unknown future incremental claims in development year j. The estimates of individual

predictions, fitture losses for underwriting year w alone and for a book of business of u underwriting vears with

know claims up to payment year s are respectively:

E(z(w,j))=exp(k,) ] G(w, 8,1t

w @

wn i
E( > z(m j)]=exp(?in,) >, [GOnp.ndi=exp(R,) [ GOwf.0dt = IBNR .\

J=r-w+l j =+

w=] f=g—i+ld w=l sl

E(Z 3 z(w, j)inexp(K"_) T GOw, 4,rde = 1BNR,

When the definition of #(w,t} includes a normalising function, this should be excluded from the estimation
procedures. In general, a simpler model tends to converge more rapidly, and the calculations of the mean square

error equations associated with it are also more transparent. By defining /4, = (ﬁ,,i sees By ) the percentage cash

flow function is allowed to change with underwriting year .

In the sections that follow the prediction errors are estimated up to delay period ¢ .

31 INDIVIDUAL PREDICTIONS AND ERRORS

For future incremenial claims in development year j

E(z(w, /)= (i h0s )

’ (3.3)
Var(z(w,j)) =V (;U(j!z‘wilﬂu'))

For simplicity of nolation denote g, = u#(j,%,.,/4,),and let &1, = y(j,iw,ﬁ",) be the predictor of z(w, j),

such that A and ﬁh_ are the parameter estimales. Then the first order Taylor series approximation of 7, is

Q= i, (1+(x —x“_)+ ;(ﬁ -4, )%(ln(f(j,ﬁ“,)))] (3.4)
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For {w, ;)€ B the mean square error associated with the predictor is given by E (( {w, i)~ E( (w, j))) )

However

1

(z(w,j)-—fi’(::(w,j)))2 = (:.—'(w,j)—ﬁ“j )1 = ((z(w,j)—,uwj)—(ﬁ"j =ty ))_ (3.5)

The expeciations of the two square terms on the right hand side of (3.5) are

E(( (w ) ‘u“f) )-—Vm( (w,;))
5((4 - m,) )= MUE[{( Sl -A) 5 (in(f(f,zz.-)))ﬂ @.6)

Since 1, is generated by past claims, owing to the assumptions of independence between past and future claims

E((—‘"(“’J) =ty )y ~ g )) =0

Hence

E((z(w, j)-;,“j)l)z;fm( (v, ))+pwE{((iw—K",)+;(ﬁ“i -4.,) ﬁ..i( (f(j,,B“,)))JzJ (3.7)

32 PREDICTED ROW TOTALS AND THEIR MEAN SQUARE ERRORS

L] e
Let 3, c 8, such that 3, = [ U B,“”J and 3 U( U B].[“,J]J[ U le(“,'nJ,u»l, represent in the
J=5vl Jes+lew IRy

matrix in Fig. 1 the periods in underwriting year w for which claims are yet unknown. For all, £'is the

maximum projection period. For {w, )& 3, the unknown total claim amount, the mean response and the

corresponding mean square errors nssociated with it can be defined as £, = Z z(w, j), and
(w,f)ed,

E(Z",)= Z ( W’J) Z lulu (3.8)

E((Z.._—E—(Z",)):)=E([ 3 (z(w,j)«-,&wj)JzJ (3.9)

{w, f1ed,,

The right hand side of (3.9) gives rise to two types of terms:

371



i. When i j:

(=(w, z')—,[/m-)(z (w,j)—iin.j) (w,i}~ 1, ( W, j) ,u"j) - pm.)(jz“,j —,u"j)

(g =)= =J)-ﬂ.u-)—(ffuf =ty (2 (1) - 1)

(3.10)

From the assumptions of independence between z(w, i} and = (w, j) and between past and future

claims

E((z(w,f)—pm)( (w,j)- ;1,,1))=cnv(z(w,f),z(w,j))20
E((,[!"_f —-,u“,t.)(z(w,j)—‘u“j )) = E((ﬁ,.j -,u“j)(z(w,f)—p"‘[)) =0

Finally, from equation (3.4)

E((lilu-! _Mrr)(i’n oo '”u" )) d #u;"/""fVm.(kw)

ME([(RR VS =) (6.0 08 )))JD
st (210 -2, ) ok 2 2l -2} -2 )

n‘

il. When i=j:
-23 E((-’-‘(“’;j)—ﬁw’)z): ‘ZS Vm'(l‘(w,j))
{w. f)ed, (w )& 1 (3.11)
o 3 (o) Sl -2 2ot

Hence, the only expectations contributing to the mean square error (3.9) are (3.11) and

2 Z E((‘[I"f “.uu-i)(li‘[u.‘f —Hy ))

(w, f)ed,,
Ij

33 PREDICTED PAYMENT YEAR TOTALS AND THEIR MEAN SQUARE ERRORS

r—x#l 1
For a book of business of u underwriting years, let g, IU( U B,.[,,..,_,..H,]( U B:,(..-,,-mujr p.cB

w=n wEr=5
represents in the matrix in Fig. 1 the time periods in payment year r, and let the unknown total claim amount

for payment year 7 be definedas Z,,, = 3 z{w, /). Then

Oe e,
E(zm)zl ; E(:(w,j)):( ; Hy (3.12)
w, f)e e, wiflep,
E((Z —E(z,,“)):) = E[[( Z, (z(w,j)—j/“f)J:} (3.13)
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1. From (3.7) when w = w, = w the square terms of (3.13) are

5,3, (Oui)=a ) )~ 3 vor{z(o)s

{w.)ep, [SCWALIEH

. (3.14)
2 st ((r el (ot
twflen; w
il For 1w, % w, the combined terms in the right hand side summation of {3.13) can be written as follows:
() e}~ = o - eV =i W)

= (g =t 2 (0007 = )= (B = 110, 2 (al) = 1)

From the assumption of independence between z{w,,i) and z{w,, /} and between past and future

claims

E((=(008) = )= (020 1) = 1)) = c0v (2 (1), 233, /) =0
E (g =t J(2 00 ) = 1)) = B{ (= 1) (= (08} = 1)) = 0

Finally, from equation (3.4)

E(( g = 21 W sy = 131 )) = bty Cov{(E B, )

((()2( B0l 510 - )26
s [ S0, g0 Dl -, (s )

Hence, the only expectations contributing to the mean square error (3.13) are (3.14) and

2% E((fg = s~ 1)

(wi e,
Ief

34 PREDICTED OVERALL TOTAL AND ITS MEAN SQUARE ERROR

Far (w, j) € B the unknown total claim amount can be defined as Z = Z z(w, j) and

fw.jled
E(Z)= 3 E(z(wmi))= D, #y (3.16)
(w,j)eld (w, jyedl
E((zué(z))2)=£[( 3 (z(w,j)~jf“j))lj (3.17)
{w, f)eft
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Equation (3.17) is equal to

> E(( z(w, j) ,[1".1.)1)—#2 > E((:(w[,i)—,ilu.],-)(z(wz,j)—j/"_:j)) (3.18)

(w el e
{us fied
[ L]

(“'u b ),(wl, j) in (3.18) represent all the distinct combinations of paired elements in set 8 The lef-hand term

of (3.18) can be obtained from (3.7) and the right hand term from the results of (3.10) and (3.153).

4, CLAIMS RESERVING MODELS IN THE PRESENCE OF RISK DISTORTIONS

The generic models defined in sections 2 and 3 assume that a claims portiolio can be segmented into distinctive
data sets, such that within each set there is a single underlying claims process, This assumption cannot be
readily extended to a reinsurance claims portfolio, which generally contains contracts underwriting more than
one type of actuarial risk, or reflect distortions resulting from porifolio transfers or excess of loss policies with
different limits, Although the generic model would not be appropriate in such cases, it can still be used to
construct more complex claims reserving models, As an example of the simplest possible case, consider a
reinsurance book of business underwriling two distinct and independent actuarial risk groups. I the
development of the losses emerging from each can be assumed to vary across underwriting years, with

equivalent notatian to (2.2), the systematic component of the reserving madel would be given by

E(Y(w, /))=C, B, j)+Cy P (v, j) {4.1)

where B(w, /) and £ (w, ) are the percenlage cash flow functions for each actuarial risk group, and ¢, and

. their ultimate claim amount functions. Equation (4.1) can be re-expressed as

w

Iy

C C,
E(Y(m ) =(C,. +C,, )[(E,“J“E“")"H(W, )] +'("5m""”5m)"ﬂ(w1_f)J (4.2)
[w 1w 2w

The ultimate claim amount, the percentage cash flow and the hazard rate functions for the contract for

underwriting year w and development period j are:

c, =3¢, (4.3)

w
k=1

PGw, jy=3 v, B(w, /) (4.4)

=l
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oR. (v, z)

2 Bz ) 1
W, )= Y Ay | e SO A (s 4.5
(W, f) ér\ X (I—H(W,j)) ; 0w, ) 4.5

where v, and A, are weights defined as

G, (1-B0w, j)) _ IBNR,,,

; G (1= B(m 1)) ; IBNR,,

A=

Hence, consistently with (2.2

E{Y(w, j})= C,P(w, )

The weights for the percentage cash flow and the hazard rate functions are intuitively obvious, The model can
be easily generalized for a contract with n types of actuarial risks by replacing 2 by n in the above equations.
When the percentape cash flow functions of individual actuarial risks all satisfy the criteria given in section 2.2,

in peneral so will P(w, f).

The estimation method selected to model reinsurance reserves for claims emerging from different types of
actuarial risks will depend on the formulation of the claims reserving model. Equation (4.1) already excludes

generalized linear modeling techniques.

5. CONCLUSION

Sections 2.2 and 2.3 show that the generic model brings to light and suggests innumerable types of claims

reserving models: incremental and cumulative, hierarchical and non-hierarchical. When (i, j) is a probability

density function S(w, j) and

=C,S(wms—w+1) =exp(e,) J G, &

Fewtl

IBNR

{w,5—nr41)

zhdz

IBNR, =" C S(v,s—w+1)=) exp(a,) J G(w, %,z )iz
w=l w=i s—wl
can be defined and the reserving models provides a sound statistical basis for the calculation of reserves and for
subsequent portfolio analyses. Once the parameters of the reserving models have been estimated, when z{iv, j)

is a standard probability density function, values of S(w, j) and P(w, ) would be readily available from most

statistical packages. Hence, a limited amount of programming would be required to obtain the projected losses
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needed for portfolio modeling,

Although the upper limit in the /BNR integrals is o, the scope of the calculations of the mean square errors

method in section 3 has to be defined. It is suggested that this should be limited to a delay period (¢ say), where

the incremental percentage cash flow is negligible. However, the significance of any /BNR shortfall in

underwriting year w should be assessed by calculating

IBNR,, ., = exp(a, ) J-G(w, k.. 2)z
?

The application of the results in section 3 is resiricted to incremental claims reserving models, for which they
are clearly intended, and for variance/covariance structures that can be easily extracied from the model,
Bayesian Markov chain Monte Carlo methods, through the complete predictive distributions they can provide
for the /BNR estimates, offer an alternative approach to estimate the mean square errors, capable of overcoming

limitations imposed by the model’s variance structure, and unrestricted in the scope of the model’s predictions.
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