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Abstract 

Active, uncommitted knowledge structures are described as a means of representing risks 
with either a stochastic history or a hypothetical value, or a mixture of the two within a 
single risk. These same knowledge structures are shown to contribute to an increased 
speed of organizational response in a dynamic environment and to the ability of  a 
simulation model to leam from its own operation. 

Introduction 

This paper addresses the following areas: 

• Correlation/dependency: The storing of  correlations and dependencies 
• Integration: Methodology for integrating correlated risk distributions into models 
• Dependency/causal models: The modeling of risk defined by presumed causes 

Lying behind these areas of interest is an increasing interconnectedness and dynamicity of the 
risk environment - conditions which current analytic tools do not well support. Tools now 
implement one of several techniques - the 'natural order' of calculation of  spreadsheets (which 
must be known in advance of any calculation), directed dataflow or specific programming using a 
single point of control. None of  these techniques is appropriate for interdependent risks, where 
the nature of the interaction is dynamic. 

We will attempt to show that an undirected structure with distributed control and comparatively 
complex messaging, and with the abilities to store experiential knowledge within its structure and 
to modify its own structure, addresses the areas mentioned above. The resulting model looks very 
much like current analytic models - it is just that the underlying process that propagates 
information is very different. 

Restriction on Information Transmission leads to a Disconnect 

A model is intended to assist in analysing a complex situation. The representation of enterprise 
risk, involving as it does probability and the connections among different risks, is a complex 
problem, modeled only with difficulty. Unfortunately, much of  the current modeling effort is 



disconnected from the actual problem, and instead turns on artifacts of the analytic modeling 
process, as the following diagram seeks to illustrate. 
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Figure  1 (after [5]) 
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Deciding whether the association between two risks is Gaussian or Gumbelian would seem to be 
far from the actual problem. Large events are rare, so a few more events can quickly invalidate 
any a priori modeling decision. The other aspect with risk events in extremis is that the extreme 
events are likely to involve size or resource thresholds and thus processes that simply do not 
apply in less extreme events - a large, critically situated, earthquake could destroy stockmarkets 
around the world, whereas there is no correlation with a small tremor. That is, large risks are 
much more likely to be interconnected because the large-scale processes they unleash will 
overlap. The current methods of closed form analysis handle interdependence poorly. This may 
be one reason for the popularity of DFA using simulation, as the cyclic nature of simulation 
appears to allow interdependence to be handled with minimal effort. This is somewhat of an 
illusion, particularly when a risk is spiked as part of a simulation. 

We begin by examining whether the statistical methods of current risk modelling methods are 
appropriate or necessary 

When the only object in an analytic model that can be propagated is a number or a group of 
numbers, description of the risk must be turned into, at most, a few numbers that act as 
parameters - a type of distribution, a variance, possibly a skew, a correlation, a copula. This 
restriction, whether for insurance or finance or engineering, is artificial - it declares a clarity of 
parameter and an initial precision that does not exist in the messy world we are attempting to 
model. The actuarial literature has many examples where the author points out that the 
distributions involved are far from Gaussian, and then proceeds to use the method anyway, for 
want of something better. 



Beginning a calculation with a number  asserts that there is a seed that can be known precisely. 
This is valid for a payroll  application, where the rate per hour is known for a particular employee 
and operations on this seed will yield a valid result - it is not valid where a calculation must start 
with multiple risks which are interdependent and known only by their probability distributions, or 
where the end result is non-monotonic  - an example is interest rates, where very low and very 
high values both lead to asset inflation. Some dependencies, such as an earthquake causing fires, 
are directional, al lowing a simple directed approach. Whether in their language or in their mental 
models, humans do not rely on precise numbers to begin their processing, but rather on influences 
and associations, although the end result of  the mental activity can still have astounding precision. 
If we broaden what  we can propagate in our analytic models to allow for the propagation of  
numeric ranges and the storage of  distributions and stochastic associations, then many of  the 
limitations of  current analytic modeling techniques using singular values disappear. 

Numbers  in analytic models are typically represented by values in memory that can be loaded 
into a register at the behest of  a procedure, and there manipulated. Let us instead use a network 
object to represent a number -- something with existence, attributes and the ability to be linked. 
As a very brief  introduction to knowledge networks, we offer the equation shown in Figure 2. 

Figure 2 - A  + B = C  

The structure is made up o f  variables, operators (PLUS etc.) and links. As shown, the variable A 
has a singular value and C has a range, and these two values have been combined at the PLUS 
operator to produce a value which is propagated to B - the direction of  information flow was 
dynamical ly determined [2]. The SPINE operator, in the top center o f  the diagram, functions as 
an AND, connecting and controlling all the statements in the model, al lowing the model to 
become a controllable submodel in a larger model if desired. A True logical state from the SPINE 
has enabled the EQUALS operator to propagate the value from C. As states and values of  the 
variables come and go, the direction of  information transmission in the structure may change, 
reflecting the current state (direction o f  propagation is part o f  that state). The undirected nature of  
the structure means that it is initially uncommitted as to purpose - useful when dealing with 
situations such as interdependent risk, where the influence can come from any direction. 
Operators only perform calculations when the logical states on their connections change, so that 
the network micro-schedules its activity, and no external control algorithm is required - a 
desirable feature as complexi ty grows. To elaborate a little more, we may have the statement 

1 F A + B = C T H E N [ ) + E  F 



The numeric elements embedded in the logical statement look like the a-b-c structure we have 
already encountered. In the interests of  generality, it would seem reasonable to use identical 
structure in both places in the statement. If we implement the logical part  o f  the statement as 
sentential logic, we have the arrangement shown in Figure 3. 
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F i g u r e  3 -  IF  A + B  = C T H E N  D + E = F 

The IF...THEN... is implemented as a logical implication, and the logical operator also responds 
to changes in logical states on its connections. The example shows structures as components in a 
larger structure, and we have retained all the possible inferences - modus tollens, for example. 
This allows the system to reason about the cause when an effect is not as expected. 

Without going into details, there are structural analogs o f  the usual programming machinery - 
FOR and Wtt ILE loops (see [3]), fetch and store operations, sigma and other analytic operators 
used in actuarial models, string, list and object handling all involving identifiable states in 
structure. 

The foregoing may give the impression o f  merely a graphical representation of  textual statements, 
but that would be a false impression. As relations become dense and complex, graphical 
representations except at a high level of  abstraction are much harder to comprehend than textual 
representations the many-variabled relationship between earthquake magnitude and damage 
shown in [1 ], for example. Instead, the text o f  an analytic statement is converted into a structure, 
a structure which stores its current state inside itself and propagates states and values through its 
connections, and which interacts with the structure produced by other statements. What 
distinguishes this structure from a graph is its ability to alter its connections to form what  
appears to be a new graph while the structure (the totality of  states and connections) remains 
inwmant.  This may seem an unusual occurrence, so 

X = SUM(List) 

will serve as a common example. Some calculation is involved in determining the list, and we 
don ' t  yet "know if we are working out the value of  X or some member  of  the list, based on X and 
other values we find, and we need to recover our original state if  the value for the list is lost. The 
underlying paradigm is o f  an active, undirected, extensible and self-modifying structure, rather 



than statements generating a sequence o f  instructions or a graph that is "unders tood" and operated 
on by an external algorithm. The knowledge network structure can appear very similar to the 
dataflow paradigm, where inputs flow to an operator, which then produces an output, which flows 
to another operator as an input, and so on until calculation is complete. The dataflow paradigm, 
however,  assumes that the flow path o f  the information can be predetermined, directions remain 
fixed and the declared topology is invariant. 

More Complex Messages 

To use numeric ranges effectively, we actually need to go one step back in how our models work. 
If  we have a number  that is calculated in a model, exactly when can we access that number. 
Obviously,  when the calculation is finished - but the calculation may be wait ing on another 
calculation, and so on. And we may be using the statement as a statement rather than procedurally 
- that is, i f  we have 

A = B + C  

we may be working  out C based on values for A and B. At this point, someone may object that 
"But  I only want  to work out A, not anything else". If  we wish to work  out interdependent risks, 
and the interdependence needs to be dynamical ly determined, then we should allow the model to 
determine the situation, not  hope that we can program it in advance. I f  we associate a state with 
the number,  the state tells us whether the number is valid. If we are to use a state, it can ' t  be a 
Boolean state - we may not yet have found the number  but are still looking for it, or  perhaps we 
failed to find it, or we may have encountered an error in the process. We already have True and 
False when handling logical variables, so let us use False as the state to indicate that we have a 
numeric range rather than a single value. The numeric range is also an object (itself comprised of  
objects), so it can be 

An integer range 1 .. 10 
A real range 2.35<->7.9 

The range does not have to be contiguous, so -3..5, 7..21, 43.. 1000000 is acceptable. These range 
objects are dynamical ly constructed and propagated,  so the limits o f  the range do not have to be 
known beforehand. The Modus Tollens inference we mentioned has value in a statement like IF 
A < B THEN C > D, where influences flow in any direction rather than a test causes an action. 

By al lowing numeric ranges on variables to interact and cut each other in the manner  of  
Constraint Reasoning - that is, information can flow back and forth on a connection - a 
continually reducing solution space is obtained. This reducing space, driven by many interacting 
influences, permits the solution o f  interdependent risk in closed form analysis. 

Distributions and Means of Correlation 

But ranges aren ' t  enough - for problems involving uncertainty, we need to represent probability 
over a range - a distribution. A discrete distribution is clunky i f  we can only use numbers to 
represent the different bins - the increment between the bins needs to be a preset constant. Now 
that ranges are available to be used for the bin limits, the ranges can be adaptive, with the bins 
wide where hits (occurrences) are few, narrow for precision where hits are many,  and nonexistent 
where there are no hits (that is, the range for each bin is contiguous, but the ranges need not be 
contiguous). Figure 4 shows a simple example o f  a distribution (the value on the Y axis is number 



o f  occurrences within the range at its foot, making it an occurrence distribution rather than a 
probability distribution, but it is easily converted, based on the current range): 

Figure 4 - Probabi l i ty  Distribution 

With the real distribution represented with reasonable fidelity in the model,  reliance on Gaussian 
and other analytically manageable distributions can be eased. The machinery in the network to 
support the distribution o f  the variable Intensi ty  looks like 

Figure 4 - D I S T R I B  Opera t o r  

Depending on a control state, the DISTRIB operator either " learns" from values arriving at its 
variable (storing occurrences in different ranges),  or makes available a distribution from the 
values stored within it the operator responds to logical states being communicated to it and its 
connections allow information to flow in any direction. The range of  the distribution can be 
controlled by constraints acting on its variable - i f X  has a range o f  1 ..50 and a distribution on 
that range, then introducing a constraint such as X < 20 will cut the range and truncate the 
distribution (it will temporari ly put occurrences outside the constrained range at zero). 

Where there is complex interrelated information, separate distributions alone do not represent the 
information adequately. A RELATION operator is used to connect the variables and control the 
distributions. Figure 5 is a simple example of  a two dimensional relation (a maximum of t en  
dimensions is permissible). 



F i g u r e  5 - B u i l d i n g  T y p e  vs E a r t h q u a k e  D a m a g e  - see  [1] 

The detailed map that the Relation provides between occurrences in distributions in different 
dimensions allows the detection of correlations that are smeared away by less detailed 
representations. The machinery to support the RELATION operator looks like 

F i g u r e  6 - R e l a t i o n  O p e r a t o r  

A change of distribution at one variable causes a change in distribution at other related variables. 
In the extreme case, if  one variable is set to a singular value, then the other distributions a r e  

created by combining the values in the other dimensions corresponding to that value, as Figure 7 
shows. 
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Figure 7 - Singular Value for Relation 

Here, setting XI to 4 has produced a distribution for Y1 based on the available data - real data can 
be rather sparse, so the contents of the distributions and relations may have been tidied up 
beforehand. The point is that real data has been used for the transformation between dimensions, 
rather than analytic approximations. The RELATION is undirected, so asserting a singular value 
or decreased range for Y1 would create a new distribution for X1. More commonly, the range of 
one variable would reduce due to some constraint. This would change the distributions of the 
other variables, which may cause a constraint in another dimension (or group of dimensions) to 
become active, further reducing distributions related to it. In this way, interdependent risks are 
handled naturally in closed form analysis, in a manner not dissimilar to the solving of 
simultaneous equations, except here they are a mixture of simultaneous stochastic and analytic 
relations. 
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Figure 8 - Stochastic Analog 

The structure shown in Figure 8 provides a stochastic analog o f  the structure shown in Figure 2 
for the analytic statement A + B = C. A change in range on any of  the variables will affect the 
distributions o f  the other variables. The Control connection on the relation mirrors the logical 
connection on the EQUALS operator, allowing the operator to be turned on and off. 

Other  operators in the network, triggered by changes o f  state, can extract any desired statistical 
measures from the dynamic states of  the distribution and relation operators. RANDOM operators, 
when operating on variables with distributions, will pluck out a value based on the current 
distribution for that variable and set the variable to that value. Immediately, any variables linked 
through relation operators will have their distributions reduced, and RANDOM operators acting 
on them will find a value in their new distributions. 

Using relation operators directly between seemingly interdependent risks may not be the most 
appropriate way  to connect them if  we have some idea of  causality. An example is residential fire 
claims and motor  vehicle claims. If  there is asset deflation, we can expect both tyges to rise due to 
fraudulent claims. However,  if  there is a period o f  abnormally low precipitation, we can expect 
fire claims to rise because o f  wildfires and motor vehicle claims to fall because o f  dry roads. The 
example also undermines the static view of  risk that is usually taken on the liability side 
drought may require several years to set the scene for wildfires. If we can find causes for change, 
and these causes flow to several risks, our results will be much more precise if  we manipulate 
causal variables than i f  we smear several causes by linking directly between risks. We have 
already mentioned that distributions and relations have a Learn state, where data is fed into them. 
There can be an arbitrary amount o f  analytic structure between the input data and the 
distributions/relations, al lowing causal structure to be hypothesized and validated during the 
Learn phase. The ability to freely mix analytic and stochastic structure allows for steadily 
increasing precision, the analytic structure slowly encroaching on the stochastic structure as more 
is understood. Equally, analytic structure can extend the reach of  stochastic structure where there 
is no history. An example o f  a complex risk, described by a combination of  analytic and 
stochastic structure and requiring continual update o f  the structure, is given in [I]. 
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We have shown how stochastic information may be embedded in a model to represent interrelated 
risks, but the conference call specifically describes the problem of combining stochastic and 
hypothetical risks. This may occur in several ways: 

1. Extension or overlaying of historical risk with hypothetical risk 
2. Hypothetical risk only 

and the coupling of these two cases in any combination. 

Take the example shown, where stochastic information is used inside the rectangle A, a mixture 
of stochastic and hypothetical is used inside rectangles B and C, and only hypothetical risk is 
used inside rectangle D, where any historical data may be nonexistent or out of date (in other 
words, one large disaster has rendered prior experience irrelevant). 
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Figure 9 - Hypothetical and Historical Risk 

The easiest way to handle this is to augment the historical risk or create new risk distributions by 
using analytic structure to generate new data points in the model, the distribution and relation 
operators continuing in the Learn state until sufficient detail has been generated for the 
hypothetical component of risk. If the hypothetical risk needs to respond to current conditions in 
the model, then a different, dynamically switching, approach needs to be used. As an illustration, 
Figure 10 shows stochastic and analytic probability elements being combined dynamically. 

11 
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Figure 10 - Dynamically Combining Risk 

Activation at any of the components X1 etc. leads to activation of the distribution operator 
connected to the variable X, and vice versa. This diagram illustrates the undirected nature of the 
structure, influences flowing at a low level wherever they will. With a little more modeling effort, 
the crossover points between the stochastic and calculated components of the risk can also be 
dynamically determined. 

A Dynamic Environment needs Knowledge 

Actuarial analysis has for a long time relied on the relative stability of the data being analyzed. 
Models could be built with little concern for maintainability - there certainly would be no major 
change in their structure over their life. Recent events have demonstrated how rapidly new risks 
may appear, and even if their primary effects can be avoided by rewriting policies, their 
secondary effects cannot. It is now desirable to have models which can be quickly adapted to 
changing circumstances (it always was, we needed a shock to remind us). If we look at the 
programmatic approach to building models, we see the cognitive scaffolding (the modeler) being 
used to build the model, and then being removed from it before the model is put into operation. 
The modeler needs to have anticipated any change in topology in the model and provided 
instructions to handle these. New risks, or the realization of some interconnectedness among 
existing risks, will often invalidate the topology the modeler has constructed, resulting in slow 
adaptation to change (or resistance to change because of the large intellectual investment in the 
existing model, and the sensitivity of programmatic models to topological change). 

An alternative approach is to use the undirected knowledge network structures we have described. 
Each element in the structure determines direction of flow dynamically, so changes in topology 
can be made without requiring overall dataflow to be recast in the modeler's head. The 
interconnecting logic is basically sentential (extended to handle errors and unknowables), 
allowing the model to reason about what is happening (and reducing the distance between our 
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understanding of the model's operation and our thinking about what needs to be done). That is, 
not so much of the cognitive support structure is removed when the model is placed in operation. 
The undirectedness of the structure results in the property of extensibility - structures can be 
combined easily because the phasing of the operation is implicit in the elements of the component 
structures. 

As we have shown, embedding activity in the structure makes it simple to combine analytic and 
stochastic knowledge, and allow them to interoperate without the crudity of curve-fitting. In 
reasonably complex applications such as DFA, the analysis times for knowledge structures are 
comparable with programmatic methods - flow direction in the network is determined 
dynamically, but will not change unless there is a change to the input of the analysis that 
determined it. 

Learning from Simulation 

doing 100,000 simulations ... but I don't think it actually helps you answer some o f  the 
fundamental questions. [4] 

Simulation, correctly done, should help you answer some of the fundamental questions. If we 
take the example of a pilot on a flight simulator, it is not desired to have a report which shows 
that the pilot crashes 10% of the time - instead, it is desired that the pilot change his/her behavior 
in real situations as a result of simulated exposure to difficult conditions. Similarly in insurance, 
simulation is not about giving graphs to management, it is about learning from the experience. It 
is also not about trying to precisely quantify some losses in ten years time, it is working 
out what management response might be compared to what it should be as certain 
patterns begin to appear in the market. 

If people resolutely refuse to look at what the DFA simulations are telling them (and with good 
reason - many of the simulations may be nonsensical due to the crudity of the embedded 
strategy), then perhaps it is appropriate to introduce some machine learning into the simulation. 
Machine learning may sound esoteric, but it is easily done by using the same distribution/relation 
operators as hold the stochastic information for the simulations in the first place, and allowing the 
results of simulation runs to modify their contents, and their contents to be used to control the 
simulation runs, so the system "learns" what is required to increase profits and avoid ruin. The 
obvious difficulty with this approach is that management sees from the simulations that ruin is 
unlikely, without understanding what the simulation model is doing to avoid it. 

A reaction to meaningless simulation has resulted in increased interest in closed form analysis 
such as RAROC. The conceptual difficulty with a one period analysis like RAROC is that the 
insurance company followed a particular trajectory to reach the start of the period, and that 
trajectory is embedded in the mental models of management, thus controlling their strategic 
viewpoint - it is a simulation over a number of periods, with only the last period evaluated 
explicitly, the prior periods being implicit in the strategy. A company that had reached the same 
point by following a different trajectory would probably make very different decisions for the 
same future period. The strategy that is initially embedded in the simulation should represent 
current thinking (conditioned by its trajectory), and the simulation can then show how that 
strategy would operate as the simulation moves from now into the future (and the strategy 
changes in response to a changing situation). The actual dates into the future are irre]evant, except 
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to act as a brake on how quickly adverse conditions can materialize (and how quickly the mental 
models of  management will change in response to the effects of  those adverse conditions). 

Conclusion 

Knowledge structures can remove many of the obstacles to representation of complex risks. Their 
undirected nature and active consistency maintenance allows for rapid, controlled, changes to a 
complex model in the face of  changing circumstances. Their intrinsic property of  self- 
modification introduces a dynamic structure, an ability to represent complex strategy and a self- 
learning ability to DFA for the first time. 
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