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Gradients of Risk Measures: Theory and Application to
Catastrophe Risk Management and Reinsurance Pricing

By John A. Major, ASA'

As part of pricing, many reinsurers would like to know the incremental impact that adding a new contract
or canceling an existing contract might have on the capital needed to support the entire portfolio of
business. Typically, catastrophe models take hours or days to run, ruling out a straightforward approach. A
method of assessing incremental impact which did not require repeatedly simulating losses to the entire
portfolio would therefore be quite useful. Efficient procedures for calculating the first derivatives of
widely-used risk measures (such as Value at Risk and Tail Value at Risk) with respect to portfolio
parameters would support the development of such a method. This paper presents general formulas for
gradients of risk measures including VaR and TVaR. While the derivative of VaR in the case of linear risk
models is widely known, this paper presents the general solution applicable not only to linear portfolio
weights, but also to nonlinear parameters, such as retentions and limits, Implementation of the theoretical
formulas within existing catastrophe simulation models is elaborated. A normal mixture approximation
leads to a closed form solution for the incremental impact on VaR or TVaR of adding or removing a
contract from a portfolio of excess-of-loss contracts.

1. Introduction

Reinsurance pricing is, in part, a portfolio problem: a matter of determining a sufficiently high expected
return (margin in the premium) to compensate the firm for the risk it is taking on. In a survey of the
practice of catastrophe excess-of-loss (XOL) pricing among reinsurers, Major and Kreps [2002] find the
more sophisticated markets “attempt to assess the incremental impact a new contract would have on the
capital needed to support the overall portfolio....” (Models of such an approach can be seen in Kreps
[1990; 1999]. Tasche [1999] centers a theory of capital allocation and portfolio component returns on the
first derivative of the risk measure.) They also state that most markets “lacked the analytical skills or the
brute force computing power needed to accomplish it.” Typically, catastrophe models running on the entire
portfolio take hours or days so runs are done only a few times per year, ruling out incremental analysis of
new contract proposals. Therefore a method of assessing incremental impact which did not require
simulating losses to the entire portfolio would be quite useful.

Key statistics for measuring risk in the context of insurance capital requirements include Probable
Maximum Loss, also known as Value at Risk or VaR, and Expected Shortfall, which is closely related to
Tail Value at Risk or TVaR. Efficient procedures for calculating the first derivatives of these risk measures
with respect to portfolio parameters would support the development of desired pricing algorithms. These
risk measures also extend far beyond the domain of catastrophe insurance. Because of the Basel
Committee [1996], VaR is used heavily by nearly all banks and financial institutions. TVaR is also
becoming of considerable interest to financial risk managers (Andersson et. al. [2000], Gaivoronski and
Pflug [2000], Yamai and Yoshiba [2002]). Efficient computation of gradients would then support efforts in
risk management throughout the financial services industry.

This paper presents general formulas for the gradients of risk measures including VaR and TVaR with
respect to parameters of a loss function (which may be nonlinear) over an arbitrary smooth distribution of
risk factors. While the derivative of VaR in the case of linear risk models is widely known (see, for
example, Gourieroux et. al. [2000]) a theorem of Uryasev [1995a,b; 1999] is applied to derive the general
solution applicable to nonlinear parameters, such as retentions and limits, as well as to linear portfolio
weights.
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Specializations to linear and quadratic loss functions and analytic solutions for normally distributed risk
factors will be discussed. A normal mixture approximation will be shown to lead to a closed form solution
for the incremental impact on VaR or TVaR of adding or removing a contract from a portfolio of piecewise
linear excess-of-loss contracts.

Section 2 of the paper provides the theoretical results. First the risk measures of interest are defined, and
the role of the gradient in first-order Taylor series expansions and optimization is outlined. Second, the
main theorems representing gradients as functions of expectations are given. Section 3 presents the bilinear
special case and applications to insurance and reinsurance problems.

Section 4 discusses the efficient implementation of the theoretical formulas within existing Monte Carlo
catastrophe simulation models. Section 5 addresses analytical solutions and approximations, including the
delta-normal and gamma-normal models as well as conditional normal models. Ultimately the piecewise-
linear normal-mixture is revealed as a generic analytic approximation. Section 6 showcases the results of a
simulation study comparing “brute force” and theorem-based Monte Carlo methods to the re/insurance
applications.

Section 7 provides an overview of some related work. Section 8 concludes. Section 9 is an appendix with
a dictionary of mathematical symbols and selected derivations.

2. Theory

2.1 Mathematical framework

Let X in RY represent a random variable that underlies a loss process (think of hurricane wind speeds or
earthquake peak ground acceleration at various locations). Let f{x) be the (multivariate) probability density
function. The pdf f is assumed smooth for the theoretical development, but this will be relaxed in the
discussion of Monte Carlo simulation later. X describes the “hazard” independently of any particular
portfolio of exposures.? The components of X are often referred to as “risk factors.”

Let L = g(X,0) define the net losses to a portfolio of insured exposures, where 8 in RM is a parameter
describing the exposure (think of all the financial specifications of a reinsurance deal: exposures at various
locations, as well as retentions, limits, sublimits, etc.).

The cumulative probability distribution of net losses is given by the multidimensional integral
M —_— < _
F(1;0)=Pr{L <1} j{g oy 4V

where dV = dx,dx,...dxy represents a volume integral element. That is, integrating (or summing) all the
probability for events which cause losses less than or equal to / gives the cumulative probability. Note that

the set {XI g(x, 9) =] } is an (N-1)-dimensional submanifold of R™ which divides the space of X points

into two regions: those that result in losses less than / and those that result in losses greater than /. Call this
boundary surface an isoclast.®

% The reader may regard this discussion as being concerned with severity or per-occurrence distributions
only. For an extension to compound processes, see Daykin et. al. [1994].

3 From the Greek “isos” = “equal” and “klastos” = “broken.”
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2.2 Defining risk measures

The cumulative probability distribution of L can be cumbersome to deal with. It is a function and requires
an infinite set (theoretically) or at least a very large set (practically) of numbers to describe it. One often
seeks scalar measures of risk to characterize the distribution more economically.

2.2.1 Expectations and moments

One class of risk measures consists of mathematical expectations of functions of the random loss E[h(L)].
The simplest nontrivial form of this is the first moment, or mean:

pL]=ElL]= [g(x;0)- f(0aV

The mean is a measure of central tendency or location. In statistical practice, it is usually associated with a
companion measure of spread, the second moment (variance) or its square root, the standard deviation:

2.2.2 Exceedance probabilities

While it is inconvenient to assess the entire distribution, it may be valuable to capture certain points on the
curve. For example, the loss of particular dollar amounts corresponding to various levels of financial
distress (e.g., insolvency or regulatory thresholds) may be of interest. Define the exceedance probability at
loss amount [ as:

00)=Pr{L>1}=1-F()= [f(x}av

§(x:0)>1

2.2.3 VaR L, and TVaR T4

Value at Risk (VaR) answers the question: “If this portfolio experiences an adverse outcome, how bad
could it be?” An exercise in measuring VaR consists of specifying the time and probability level and
quantifying the monetary outcome (Jorion [2000]). Because time and probability must be specified, there
are many VaR measurements that can be taken on a particular portfolio. In this paper, it is assumed that
one time horizon (not symbolized) and one probability level (symbolized by ¢) have been specified. In
application, many measurements can (and should) be taken for a more complete understanding of the risk.

Define the Value-at-Risk (VaR) L g (8) as the solution to the equation

o(L,(®)0)=q.

That is, VaR is the level of losses that will only be exceeded with probability g. Note that it is a function of
the portfolio description 8.

The typical VaR application in finance has X representing changes to current values of key interest rates,

foreign exchange rates, etc., and L the resulting change in value of an investment portfolio. The parameter
6 might be implicit in the computation of g, especially if the task is to compute VaR on the current
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portfolio, without regard to changes in the portfolio composition. When explicit, 8 may represent
quantities of various securities or classes of securities held.

A pure insurance species of VaR is Probable Maximum Loss (PML). Here, X represents the random
contingencies affecting a portfolio of insurance liabilities and L the associated loss. The canonical example
from property insurance is the use of a catastrophe model to answer the question “What catastrophe loss
will not be exceeded, on average, once in a hundred years?” The “100-year return period loss” is the one-
year VaR corresponding to g = 0.01.* Similar questions about net operating results, including underwriting
gain as well as investment income, are now routine in insurance applications of Dynamic Financial
Analysis (DFA).

Tail Value at Risk (TVaR) is defined as the conditional expectation of the loss (the average loss) given
that the loss is greater than the VaR. That is, it is the average loss among only those losses that exceed the
VaR:

s(obLy ) (x,0)- f(x)dV

1
TO=2 |

TVaR is gaining favor relative to VaR because it possesses a property known as coherence (Artzner et. al.
[1999).

2.2.4 The gradient operator V

Managing a portfolio means observing and controlling (or at least influencing) its changes over time to
achieve desired outcomes. The gradient of a risk measure — formally, the vector of partial derivatives —~
with respect to changes in parameters defining the portfolio provides a “sensitivity map” that shows
explicitly how any small change to the portfolio will change the measure. Coupled with other sensitivity
measures, the gradient can be used to design a change strategy aimed at improving the risk/reward
characteristics of the portfolio.

If a portfolio described by © has a risk measure R (8) , and the portfolio parameter @ is perturbed by a
small A, then the new value of R can be approximated by a first-order Taylor expansion:

R(0+A0) =R (8)+V,R - A0
where, in the case of an (M=1)-dimensional parameter 8, V gR is the first derivative of R (6) with

respect to 6, or, in the general vector case (M>1), the vector of partial derivatives, i.e., the gradient vector
of R (0) with respect to the portfolio vector parameter. Specifically,

V6R=<8R R OR 8R>

06,706, 06, " 24,

Writing out the vector multiplication term-by term, it would look like:

4 Actually, the 100-year return period loss corresponds to VaR at q=0.00995 under Poisson frequency
assumptions, but this distinction is often ignored in practice.

49



Major: Gradients of Risk Measures 2004 Ratemaking Discussion Papers

IR (0)
V,R A0 = A8,

j
where the j indexes over all the components of 6.

The significance of the gradient is this: with the gradient in hand, the incremental impact of proposed
(small) changes to the portfolio can be evaluated without recomputing R. The gradient can be used as part
of an optimization procedure to seek out “change directions” for portfolio improvement, thereby reducing
the number of computations of R in the search. Without using the gradient, if the dimension M of the
portfolio parameter is large, it may be impractical to schedule all the required recomputations of R, even if
a single cycle is fairly efficient. Additionally, if the model is analytically tractable, optimal change vectors
might be obtained by a closed-form solution. Both of these points will be elaborated below.

2.3 Main theorems — gradients as integrals and expectations

2.3.1 Gradient of moments

The gradients of moments follow from smoothness giving us the ability to interchange differentiation and
integration:

VL=V, [2(x:0)- f()dV = [V,g(x:0)- f(x)aV = E[V,g(X,0)]

where the subscript 8 on the gradient symbol V is there to emphasize that the partial derivatives are with
respect to the 8 arguments, not the x arguments.” This equation, as written, involves the integral of vectors,
but it can be interpreted one term at a time by substituting 9/96; for the V symbol.

The reader can verify that
Voo’lL]=2- [g-Vyg- F()AV - pt-Vou =2 E[(g - 1) V,8(X,0)]

V,olL]=— V,0*[L]= E[-g—;fi've g(x,eﬂ

2.3.2 “Integral over the surface formula”

The most direct route to deriving the gradients of exceedance probabilities is to make use of the following
result (Uryasev [1995a, b; 1999]). Let the domain of integration be defined by

p(\y) = {X e R Nl }’(X, \y) < O} and by dp the boundary of this set. Consider the volume integral

H (w) = I¢(X, W)dV where dV denotes x-integration as before. Note that both the integrand and the

ply)
region of integration are functions of a free parameter y. If the constraint function yis differentiable and
the following integrals exist, then the gradient of H with respect to y is given by:

> Superficially, it appears that Stokes’ Theorem — j V, gdV = L gdS - might be relevant here, but
o o

we are dealing with Vg, not V,.
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_ ) v, 7(xv)
N LS N o R

where dS denotes (hyper)surface element and livll denotes vector norm.%

2.3.3 Gradients of exceedance probabilities

The derivative of Q(L,0) with respect to L can be obtained by taking y= L, H(y) = Q(L.0), ¢(x, 1) = {(x),
and Y(x, W) = L-g(x,0), where 0 is treated as a constant. Since @is not a function of i, the first integral -
vanishes and one is left with:

90(L,8) _ _ 1
oL 2(x,8)=L "ng OXI

prefactor C,, = J- f(x)ds.
g(x:0)=L

fx)dS =-C, Eﬂ]ng (X.0)"[g(X.0)= L] where the

The gradient of Q(L,0) with respect to 8 is obtained similarly by taking y = 6, H(y) = Q(L,8), ¢(x, ) =
f(x), and Y(x, ¥) = L-g(x,0), where now L is treated as a constant:

~V,2(x,0) V,2(X.0)
o T.800) Vs o) £ ‘h

The relevance of 1IV,gll, and how to avoid the necessity for computing it, is discussed in the section on
Monte Carlo implementation.

V,0(L,0)= - -fx)ds =c,, - EL

2.3.4 Gradient of Value at Risk
Applying the implicit function theorem to the equation Q(L,(8),8)-q = 0:

ok, __239 /o0
06 06/ oL

Substituting the previously-obtained derivatives of Q:

S [ vl s u ; )
. 90/36 _uin, Y s ol Vasx0)lsx.0)= 1
06~ 0QfoL  [|V,g[" £(x)ds E|v,sx.0)" g(x.6)=L,]

glx0kL,

8 See previous footnote.
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Corollary: Define the probability density function A(x) on the g(X;H) =L g isoclastic hypersurface by

h(x) = ”v"g“‘l F¥) )
fIv.el™ fx)as
slxif)=L,

VoL, =E, [Veg(X, 9)]

q

where the expectation is taken with respect to the density A(X), on its domain (the isoclast).

2.3.5 Gradient of Tail Value at Risk

With the result for the gradient of VaR in hand, the gradient of TVaR is obtained by a more-or-less
straightforward application of the integral over the surface formula:

V,8(x,0) f(x)dV = E[V,5(X,0)1 g(X,0)> L, 0)]= E,[V,5(X,0)]

x:g(x,9)>Lq(9)}

1
VTq(e)z.-;j{

where k(x) is the conditional distribution of X in the tail where L > L,. This is proved in the appendix
(section 9.2).

Note the conceptual similarity between the gradient of VaR and the gradient of TVaR. Both are
conditional expectations of Veg ; they differ in the underlying conditional distribution on X. For VaR, it

is h, the distribution restricted to the isoclast (but reweighted for “thickness™). For TVaR, it is k, the
distribution restricted to the tail, the half space where X puts losses over the VaR.

3. Applications

3.1 Bilinear, delta model

Perhaps the simplest nontrivial form is the bilinear loss function L = g(X; 9) =0" . X, where the

superscript “T” indicates matrix transpose. The bilinear case occurs in property catastrophe loss modeling
where elements of @ represent exposed property values at subscripted locations and the elements of X are
corresponding damage rates (in a hurricane, say). L represents “ground-up” loss in CAT modeling
parlance. This will be illustrated in the case study later. The bilinear case is by far the most frequently
used form in financial modeling. There, X represents prices or returns of various asset classes and §
represents the quantity of each asset in a portfolio.

3.1.1 Moments
Calculation of moments is nearly trivial.

,u[L] =97 ;z[X] and 02 [L] =07. vcv[X]- 0 where vcv[X] = El(X —u)- (X~ ,U)Tj, making

VoulL]= pu[X] and V,02[L]=2 - ver[X]-8 and V o[L]=0 -0
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3.1.2 Exceedance probabilities
Recalling the constant Cy from section 2.3.3, the simple form of g results in simple gradients:

90/aL=~C, |p] and Vo0 =(Cy /|o])- EIX 107 -X = L].

3.1.3 Value at Risk and Tail Value at Risk
VaR and TVaR follow as: VL = ElX 107 - X = LqJ and VT = E[Xl 0" -X> LqJ. Note in

the case of VaR that the “transformed distribution” h is simply the conditional distribution of X on the
isoclast.

The gradient of VaR in the special bilinear case has been proved in many papers. See, e.g., Gourieroux et.
al. [2000] and Tasche [1999].

3.1.4 Delta approximation

The bilinear case corresponds to the use of the “delta” approximation and most often emerges as part of the
“delta-normal” model of VaR. The delta approximation writes:

L=g(XO+X)=gO+(ng)~X

. T . . .
and considers the vector 6 = (Vx g) to comprise the portfolio parameter 0. The delta-normal model will
be considered in section 5.1 in the context of analytic approximations.

3.2 Reinsurance layers

The model L = Q"X can describe gross or ground-up losses in catastrophe risk assessment, but a bit more is
needed to analyze reinsurance. Say a treaty covers the losses up to a limit A after a retention (attachment
point) of @and a co-reinsurance of x: Specifically, define a reinsurance function as

(Lo, A x)= (1-x)- max(0, min(L - o, A)). This makes the net loss, after reinsurance, equal to
N=L~- r(L, o, A, K’) =Q7. X~ r(QT X, a, A, K‘) = g(X;e) . The symbol  is used to represent

. . T
exposures here, because the parameter vector 8 is the composite vector (Ql ,2,,.,Q,,0,4, K’) )

Now the question of risk measures and gradients of risk measures of the net loss random variable N can be
addressed.

3.2.1 Moments

The moment theorems still apply. While g is no longer smooth (its first derivatives are undefined at the
bottom and top of the layer), it is piecewise smooth.

VoulL]= E[V,g(X,8)] and V,0?[L]=2- E[(g(X,0)- 1)- V,2(X,0)] and
E[—g—(-&g—)-ii‘—veg(x, e)}

V,olL]

Note, however, that the gradients of g are a bit different than in the bilinear case.
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The gradient of net loss with respect to a change to exposure (for a given damage scenario X) is given by

[ X, a<Qf X<a+i
Vng=i :

X, otherwise

That is, it is the damage rate at that location if the reinsurance is not “in the layer,” but only x times that if
the contract is “in the layer.”’

The partial derivative of net loss with respect to the treaty’s attachment point is given by:

% _[(-x) a<Q@" -X<a+i
oo )10, otherwise '

For every dollar that the layer is raised, the net loss increases by (1-x) dollars, but only if the contract is “in
the layer.”

The partial derivative of net loss with respect to the limit is given by:

_E_)ig__[(lf-l), a+A<Q"7-X
oA 10, otherwise .

For every dollar the limit is increased, the net loss decreases by (1- &) dollars, but only if the contract has
exhausted (paid out fully).

The partial derivative of net loss with respect to the co-reinsurance is given by:

5 ( 0, Q" X<«
.a..g_:{QT-X—a, a<Q" -X<a+l.
x ll A, a+A<Q".X

Increasing co-reinsurance has no effect until the layer attaches, after which it applies to the amount eligible
for reimbursement.

3.2.2 Exceedance probabilities

The application of the “integral over the surface formula” is not stymied by the discontinuous derivatives;
one can divide the problem into three regions (below, in, and above the layer) where smoothness prevails,
The gradients of Q with respect to N and the components of 6 are computed according to the expectation
formulas given in section 2.3.3. The gradient of g with respect to the damage variable x is given by

(k- Q, a<Q" -X<a+l
ng(x,9)=i :

Q, otherwise

7 Actually, the derivative is undefined in the cases where the gross loss equals o or a4, but that only
occurs on a set with probability zero.
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Increasing damage rates are borne fully by the reinsured outside the layer, but only in proportion x inside
the layer.

Note, however, that if x= 0, then the gradient ng(x, 9) vanishes in the layer, making integrals involving

the left-hand derivative of Q with respect to N, and the right-hand derivative of Q with respect to ¢; are
both infinite there. The gradients of Q become undefined.

-1 T .
\% « g(x, 9)” nonexistent. In such a case, the probability distribution of N has a “mass point” at N=¢, so

3.2.3 Value at Risk and Tail Value at Risk

With the details given in section 3.2.1 for gradients of g above, in, and below the layer, the computation of
gradients of VaR and TVaR are straightforward applications of the formulas in 2.3.4-2.3.5. In the case
where x = 0, the exceedance probability Q is discontinuous and therefore the gradients of VaR and TVaR
may be undefined.

3.3 Porifolio of layers

Here the canonical reinsurance pricing problem is addressed.® Consider a reinsurer who holds a portfolio

T
oflayers L, =1 (Q<C>) X, a, /16 ,K_ /. Here the symbol ¢ indexes contracts, and the superscript <c>
is used to denote vector #c (whereas a subscript would denote component #c of the vector). °

Ideally, pricing a proposed new layer L, or considering the renewal of an existing layer L, would take into
account the effect of the change on the capital needs of the firm. The capital needs, in turn, would be
driven (at least in part) by the risk characteristics of the portfolio {L.}. A risk measure such as VaR or
TVaR is typically used to make this assessment.

Reinsurers routinely compute the probability distribution of their payouts (and, hence, VaR and TVaR) by
running a catastrophe model. This is usually done quarterly because the process is time-consuming.'® How
is one to assess the impact on VaR of adding a proposed new contract or nonrenewing an existing contract?

To cover either case, refer to the contract under consideration as contract #u. Examining contract u’s
contribution Q to the total exposure vector X, £2°° is not helpful because of the nonlinear payoff of each
contract — the total exposure I € is virtually meaningless. Nonetheless, the gradient theorem for a risk
measure R can be profitably applied to the following:

g(X;0) = Zr((ﬂ<c>)T'X,ac,/1c,K‘c) + G—r(( <“>)T-X,0{“,/1u,icu)

[

where @1is a scalar equal to 1 for the case of new business u = n and -1 for the case of renewals u = e. The
partial derivative with respect to 8 will reveal (through the conditional expectation theorems) the impact on
R of adding or dropping a “small amount™ @ of the contract under consideration to or from the portfolio. If

® It also corresponds to the evaluation of a portfolio of call options at the (future) time of their exercise.

°of course, real reinsurance often involves other complicating factors as well, such as reinstatements, per-
occurrence and aggregate retentions and limits, complex “towers” of layers, backup capacity, etc., etc. The
abstraction presented here is complex enough to make the point. ,

19 Major and Kreps [2002] cite an example of seven hours.
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the contract is already “small” compared to the portfolio, then the approximation

R I, =R l,., +9R /08 will be “good.”

The partial derivative of g with respect to 8

-a% (X;6)= r((ﬂ<“>)T'X,au,/1u’Ku)

is simply the payout of the contract under consideration. The gradient with respect to X is more complex,
however.!" The Monte Carlo section presented next will discuss an approach to evaluating E, [V o g]thait

does not require computing Vx g.

4. Monte Carlo implementation

4.1 MC simulation and computation of risk measures

The most general applications of risk measures involve complicated nonlinear loss functions g and
relatively intractable probability distributions f, and are usually solved by Monte Carlo methods. The basic
method is to generate a sample of risk factor vectors X*” (i =1, 2, ..., 10000, say) and apply the loss
function to them sequentially to create a corresponding sample of loss values L;= g(X<>;0). Statistical
methods are used to estimate percentage points of the distribution of L, hence risk measures.

Variance reduction techniques (VRTs), usually involving special steps in the construction of the sample
X7, can be applied to improve the accuracy/speed tradeoff. The most common VRTSs create samples
where the points are not equally probable and adjust the estimation procedure accordingly. Stratified

sampling and importance sampling are two such approaches.'? If each scenario x< has an associated
probability p;, then one can approximate an expectation integral by a summation as follows;

Joeo- f0aV =3 o) p,

4.1.1 Moments

For example, the first and second moments of a loss L = g(X; 9) would be estimated by

HLl= [g(x0)- Fx)AV = L, - p, and

o*[L)= [(s(x:0)~u) - F0dV = 3 (L, - p) - p,

' Technically, there is a problem in that V,g vanishes where none of the layers attach or where all of the
layers have exhausted. As long as the isoclast is in neither region, however, this does not present a
practical problem.

"2 The generation of complementary pairs of sample points (“antithetic variates”) while useful in estimating
means, is generally not so helpful in tail-sensitive risk measure computations. See Rubinstein [1981] for
more on the subject.

56



Major: Gradients of Risk Measures 2004 Ratemaking Discussion Papers

4.1.2 Exceedance probabilities
The exceedance probabilities are estimated by Q(l;0) = Z{ i Pi

4.1.3 Value at Risk and Tail Value at Risk
The condition that defines the VaR level L,, g = Q(L 7 9), is evaluated by a search procedure. In

practice, this means computing L; for each scenario /, sorting the results, and then finding that position in
the sort order where the sum of probabilities p; above that point adds up to the desired exceedance
probability . The numerical value of that cut point is then the VaR L,

Having divided scenarios i into those above and those below the VaR, one can then estimate the TVaR as:

1
T,= 21— ' Z{i:Q>Lq}L" " P

4.2 MC simulation and computation of gradients

The gradient of a risk measure could be obtained by rerunning the model and recomputing the measure
after making small changes to each portfolio parameter, in turn.'* For problems of realistic size, involving
hundreds or thousands of parameters (asset classes, insured locations, etc.) and taking hours to run a single
risk measure computation, this approach would be impractical. A more efficient solution is to appeal to the
appropriate expectation theorem.

4.2.1 Gradients of moments

The first and second moment gradients, because they are expressed as expectations, are easily computed via
Monte Carlo:

VoulLl= [Vog(x:0)- f(0dV =3 Vyg(x™;0) - p; and

Voo [Ll=2- (g~ ) Vog - f0AV = Y (6(x™30) - 1) Vg (x30) -

The continuous (theoretical) versions follow from the fact that smoothness allows us to interchange
differentiation and integration. For the discrete (Monte Carlo) version, no such justification is needed.
Differentiation is linear, hence can be interchanged with summation and multiplication by constants.

4.2.2 Gradient of exceedance probabilities

The situation is not so bright with the probability gradient theorems. Strictly speaking, they do not apply to
simulation models of this type. The probability distribution for X is discrete, so the isoclast of X values

solving g(X; 9) =L g 1s nota smooth manifold.” However, if the discrete distribution were modified by

1 It would be helpful to use the same sample of X for each run, thereby reducing the between-run variance.

1 Depending on how the quantile is defined, there may be only one or no points x> at all in the solution
set.
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kernel smoothing (Silverman [1986]), so that it became smooth, then the theorems could apply. In
particular, each point in the discrete distribution of X should be replaced by a patch of density sufficiently
large and smooth so that there are no “holes” in the resulting kernel mixture.

Using a normal kernel would accomplish this. Unfortunately, a normal kernel has infinite support, and
would give every one of the original points x*> some nonzero contribution to the conditional distribution
on the isoclast. Therefore, all points would need to be included in the computation of the gradient, even
though most would be “far away” from the isoclast, contributing a negligible amount to the expectation.
The computations would be needlessly burdensome.

For this reason, a kernel with finite support is recommended. By varying the kernel bandwidth, one can
assess the numerical stability of the gradient computation. In particular, one can use the Epanechnikov
kernel, defined as:

__f 0, Itl >w
Kew= il —(e/w) < w

where ¢ is the distance from the kernel origin and w is the kernel bandwidth.

The best way to understand why kernel smoothing makes sense in this context is to write the derivatives in
the form of their definitions as limits of ratios. For example,

99 _jiml [rx)av - [fx)av |= _lim1 [fx)av.
glxpL+e glxpL 0 Leg(x)sLl+e
The last expression, the N-dimensional volume integral on the hypershell { xIL< g(x;ﬂ) <L+ 8} has

-] .
“thickness” “Vx g ! - & around the g(x; B) = L hypersurface. This is why the limiting expression is

0Q/dL = - ﬂ[ng(x, ())lrl - f (x)dS . If a finite £ were used in a Monte Carlo approximation of the

g(x.0)L
hypershell integral, one would get

_a__Q_z ._}_ Z p; = -Zl-_z I(x<i>,8)' p;

oL £ iL<g<lie

where the indicator function / takes on values 1 or 0 according to whether the point x> puts g inside the &
hypershell or not. Taking the next step and using the Epanechnikov kernel, write instead

where now w takes on the role that £had. (The prefactor is the inverse of the expected value of K, 2/3,
times the interval width 2w.)

Similarly, the partial derivative with respect to a component §is approximated by

9Q_3 _Lw). 9.
36 "7 2 KLl S5
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" The numerical implementation here is, in effect, approximating the well-behaved hypershell limit integral
by using an £ of the same order of magnitude as the kernel window. Note that the factor ”ngr does not

explicitly occur in the simulation approach; rather, its effects are handled in the windowing.

In these summations, only points x> whose g-values L; are within the kernel bandwidth of the VaR value
need be included. This can yield a substantial efficiency improvement over methods that must evaluate all
points.

4.2.3 Gradients of Value at Risk and Tail Value at Risk

The gradient of Value at Risk is computed directly as the ratio of the probability gradients derived
previously.

ZK(L,'”'L ,w)-V 8P
VL = Vo0 L Thjer ! ’

T o9gL Y KL -L,.w) p,

i:IL,»-Lq|<w

The steps are as follows:

(1) Run the model once, saving an index to L; values, and compute VaR as the desired empirical
percentile.

(2) Determine which points / are within the kernel bandwidth.

(3) Run the model a second time, computing the vectors of partial derivatives dg / 08 at the x*
points identified in step 2.

(4) Tabulate the weighted average of the partial derivative vectors to obtain the gradient of VaR

VoL,

The gradient of TVaR is estimated as

V,T,(0) = E[V,(X,0)1 g(X,0) > Lq(e)]=—1-- S Vee - p;

iL>L,

Note again the similarity between VaR and TVaR. In the Monte Carlo implementation, both are weighted
averages of Ve g ; they differ in the x-sets over which the summation is carried out and in the weights

themselves. VaR involves points x near the isoclast and with weights proportional to K(w)p;. TVaR
involves points x on one side of the isoclast and with weights proportional to p;.

4.3 Computational savings over brute force approach

One can get a rough idea, at least in relative terms, of how long it would take a computer to calculate VaR
or TVaR. Assume that most of the work is in the computation of losses for one scenario g(x;,8) and this
takes, on average, time T,. Assume there are [ scenarios ( i=1,2,...,] ), so the total time taken in

'3 The practical implementation issues of disk caching, overhead of function calls, etc., make this only a
rough approximation.
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computation of losses is Tgx/. Sorting algorithms typically take time proportional to the log of the size of
the list, say T,xlog(l). A (relatively) fast linear accumulation search finds the VaR. Assume this time is

. negligible. The addmonal step in calculating TVaR consists of multiplying some number q’x/I pairs of
losses and probabxhnes This is about twice the work as the accumulation step for VaR, so this additional
time will also be assumed negligible. To a first approximation, the time it takes to compute VaR or TVaR
is TxI+Txlog(l). If I is very large and the computation of g is particularly complex, this is approximately
TexI.

What about the gradients? Gradient components are given by
—R = Z{x) . g(x<'> 0)- p,

where the weights k; and the summation set {/} differ according to whether R is VaR or TVaR. Say there
are q’x/ terms in the summation for TVaR and q"”x/ terms for VaR. (Presumably, q”<q’<<1.) Depending
on the nature of the particular parameter 6;, computing the partial derivative at a particular scenario may be
difficult or easy. Worst case, it can be computed as

g(x*,0+A0,) - g(x*",0)
AG,

0
5, — g(x¥,0) =

making it cost approximately 2xT, in computer time. If N components j are to be evaluated, the total is
(N+1)XT, because the base case g(x*”,8) needs only be evaluated once and stored.

Say, in general, one evaluation cost @xT,. The better cases have very small d. For example, as was seen
above, an exposure change is typically linear in the loss. So is a change to a pro-rata share, Limits and
retentions on XOL contracts result in dollar-for-dollar changes or no change at all, depending on whether
the scenario is below, in, or above the layer. In all of these examples, no further evaluation of g is needed —
although there may be some overhead in tracking the status of the original g computation ~ and d is close to
zZero.

The “brute force” method of assessing changes in VaR (resp., TVaR) is to start with a base case and then
re-evaluate it for each of N perturbations of the 8 parameter, for a total computation time of approximately
T x!x(1+N) In contrast, by using the gradient, this time can be cut to approx1mately T ><I><(1+q°xde)
where q°is g’ (resp., q”"). If N'is large, then the ratio of time taken by using the theorems to the time taken
by the brute force method is approximately q%d.

5. Analytical solutions and approximations

5.1 Delta-normal model

Perhaps the most widely-used analytical model for VaR, very familiar to financial risk management, is the
Delta-normal model alluded to in section 3.1.4, The delta approximation writes:

L=g(x, +X)=g(x,)+(V,8) X

'8 If scenarios are equally probable, then q’=q. If scenarios are oversampled at the high end, then g’ is
likely to be larger than g, but still less than one.
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and considers the vector 8 = (ng\)r to comprise the portfolio parameter 8. When X is assumed to

possess a multivariate normal distribution with mean zero and variance-covariance matrix X, then L has a
(univariate) normal distribution with moments

E(L)=g(x,), o*(L)=98"-Z-8

Exceedance probabilities can be computed from the cumulative normal distribution @ (Johnson et. al.
[1994]) as:

o(L)=1- @[fﬁ;(:’f%)

VaR is readily calculated from the appropriate percentile zq of the normal distribution:

L,®)= E(L)+zq ol (L) = g(x,)+ z, RVE LD Y

To develop TVaR, a lemma about the conditional expectation of a normal random variable is needed.

Lemma: Given a scalar random variable Y distributed normally with mean & and variance o?, then

oo

E[max(0,¥ -1)]= [(y-1)- f(y)dy =

t

&t p0)= 0'¢(510£)— (f~ﬂ).(1~®(f.:ﬁ)]

o

where ¢ is the standard normal probability density function and @ is the standard normal cumulative
density function. &, 0) is related to the limited expected value function (Klugman et. al. [1998]).

Proof of Lemma. First, note that jz . ¢’(z)dz = ¢(t) , which follows by differentiating ¢(1).
t

Change variables fromY to 2 = and write the expectation as

o

00

flo-z+u-1)g(edz=0- Dﬂjz-¢(Z)dz+(ﬂ-t)' °]'sé(zr)dz

t-p -y -u

[ o o

-0 f 2 - 1-o( 2]

QED.
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TVaR is then obtained as Tq =

: ]‘L-f(L)dL= L, +-l-~§(Lq,g(X0),\/5T ‘2-5), which
q

1
q .

simplifiesto T, = g(x,)+ ¢(Zq)-\/67 ‘X9
q

5.1.1 Gradients in the delta-normal model

Above, the symbol & was used instead of 8 to en‘fphasize that its nature is more in describing the portfolio
than in controlling it. One cannot change the “delta” of a portfolio directly; it comes about as the result of
some other sort of action (e.g., changing the amount of a risk held in the portfolio). Nonetheless, it is
meaningful to inquire into the relationship between various risk measures and the delta of the portfolio.

The 3-gradients of the first two moments and the partial derivative of exceedance probability with respect
to loss amount follow directly from the bilinear case examined in section 3.1:

Vst =0
Vso?=2-L-8
99 _ Gy
oL [

Normality assumptions add nothing except to specify'’

Cy = [f(x)ds = o] ,¢( L-g(x,) ]

L Vo7 -Z-8 (o' -x-5

The gradient of exceedance probability with respect to 8 can be derived in two ways. Differentiation of the
delta-normal formula for Q gives the gradient with respect to the 8 vector. An alternative is to apply the
conditional expectation theorem. Both approaches are outlined in the appendix (section 9.3.1) and achieve

the following result: V ;0 = (C, /|8])- E[X 1 g(x,)+ 87 - X = L]= s . Z—8%0) 5 5
Notice that the result is a vector because X is a matrix and 3 is a vector. The other terms in the product are
scalars.

The gradient of VaR in the delta-normal model is then readily obtained as

Vil =% _.¥.35.

N PO

Differentiating the expression for TVaR, or applying the gradient theorem, produces:

' To see this, rotate to a new orthonormal coordinate system W where X = Win">+W,n®+.. +Wn<>
and n>= §/II8ll. Since L = I8IIW,, it follows that the marginal pdf of W, is lI3ll times the marginal pdf of L.
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o1 9k) =
T g 5Tz

These are also detailed in the appendix (sections 9.3.2-9.3.3).

5.2 Gamma-normal model

It has been widely recognized that the delta-normal model does not do a good job when nonlinear
instruments (e.g., call options) are present in the portfolio in significant quantities. That is, the first-order
Taylor approximation to the loss function g is inadequate over the range of X values relevant to the
computation of VaR or TVaR. To remedy this, various authors have suggested the use of the second-order
Taylor expansion in the gamma-normal model. Following Britten-Jones and Schaeffer [1999], consider the
model:

L=g(X;6,I‘)=V+67-X+-;—~XT T-X X~N(X)

where 8 is the vector of first-degree sensitivities and T is the (symmetric) matrix of second-degree
sensitivities. X is assumed multivariate normal. This can be rewritten by “completing the square” to
become:

1 - 1 & -
L=(v——2—-87 S -6)+-2--ZD,. (z)} z~NE-(+T"-5)1)
i=1

where £/2-T- X2 =H.D-H’, D is a diagonal matrix of eigenvalues, H is orthonormal (its columns
being eigenvectors), and I is the identity matrix. Thus L can be seen as a linear combination of non-central

chi-square variables.

In particular, the moments can be expressed in closed form. The first two are:
T 1 7 1
E[L]z V+90 ~p+§--u -F-p+~2--trace(F-Z)
c}L]=86" -2 -6+ —;— (trace(T"- )

Britten-Jones and Schaeffer [1999] discuss how to obtain a good, tractable, approximation to the cdf of L
under some circumstances. Rouvinez [1997] numerically inverts the characteristic function of the
distribution,'®

5.3 Conditional (not necessarily normal) moment models
Incomputing the gradients of VaR or TVaR, it may be possible to obtain the conditional moments of X
", z q by simulation or analytical methods.

In particular, for VaR:

18 Britten-Jones and Schaeffer also remark “It is always possible to proceed by simulation.”
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C= ZP,-'K<L:'" Lq’w)
HL~L Jew
B’ =C™ 'Zx<i> P 'K(Li - Lq’ w)
z,=C" -Z(X<" —uq)‘ (x> —nq)T -pK(L, - L)

and for TVaR:

C= Zpi

ily>h,
p,=C" Z x* - p,
zq=c—-l‘ (X<i>"‘}1q)‘(x<i>“uq)f - P

i

For a bilinear model (e.g., the delta model of sections 3.1 and 5.1) Mg can be substituted for the conditional
mean of X in the VaR and TVaR gradient formulas (section 3.1.3); covariance is of no consequence.

A quadratic g function (the gamma model, specialized in section 5.2) is nearly as simple, because
1
gX)=v+8" - X+ > X" T-X implies E[V;g]=p, and E[V,.g]=(1/2)E. This follows

from term-by-term differentiation. If § and I" are themselves functions of a scalar parameter 6, then

d o) 1 oI’ .
E| _Eﬂ =—n, o Z ], 2', il This follows from the chain rule. If 8 is a vector parameter,
96! 36 "1 2 =9 T
the obvious componentwise extension applies. Here, only the first two moments matter and normality is
not needed.

5.4 Conditional normality yields analytic solution for XOL
portfolio management

The problem of evaluating the marginal impact of adding or dropping a cat layer yields to a tractable
solution under the assumption of conditional normality. Recall the marginal impact model from section
3.3:

T
g(X0) = g+6- r(( ) ~Xau,&,fq,)
with the solution VR . =E. lr(( <> )T ‘X0, 4, K, )J where the conditional expectation is taken

with respect to the distribution appropriate for R being VaR or TVaR. If X is assumed conditionally
distributed as N( p,, X, ), define the following:'*

¥ Computation of M, and Z, are discussed in section 5.3.
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p=le*) u,
0.2 — (Q<u> )T , Eq . Q<">
¢(t)=¢0p,0)

where &1, 4, 0) was defined in section 5.1. Then:
VR, =E[r]=(-x,) (sle.)-¢le, +4,).

This follows from the lemma proved in section 5.1 and the construction of the r function.

The normal approximation reduces the calculation of the marginal impact of a contract to a matrix
multiplication, two vector multiplications, and a relatively simple scalar formula.”’

This technique can be refined by extending to a mixture of normals.?' Divide sample points into groups
(x5}, (x9),..., (x¥},..., {x9©}, e.g., by a clustering algorithm (Anderberg [1973]). Compute
separate moment vectors j, and variance-covariance matrices X, for each group k as described previously.

Instead of a single multivariate normal with density ¢(X, 1, E) , the mixture has density

y 3oy

G
Z o, -3(X;n,, X, ), where the coefficients ¢ are proportional to z p, K (Lik -L,, w) for the
k=1 i
VaR and to Z P for the TVaR (and sum to one). The layer expectation is similarly a weighted sum of
ik
terms of the previous form. The added cost is more computation;* the benefit is improved accuracy of the
approximation.

6. Case study

6.1 Background: CAT model

In this section a simplified CAT model illustrates the application of the gradient theorems and helps assess
their numerical accuracy in the context of Monte Carlo simulation.

Consider a hypothetical stretch of coastline with locations measured from O to 10. An event will consist of
a simulated hurricane making landfall at location r and producing damage at location s of X(s,1,7) where the
parameter r is the maximum loss rate for that event. Specifically,

» Good approximations for the normal cdf are available in many mathematics and statistics handbooks
(e.g., Abramowitz and Stegun [1964], Johnson et. al. [1994]) and are built-in functions in many PC
software packages, e.g. Excel.

! One could go further and model arbitrary g by a piecewise linear approximation built up from several 7
functions.

22 Not necessarily proportional to G, however. It may be the case that separate groups reflect a number of
shared zero X-components, thus reducing the effective dimensions of the group variance-covariance
matrices compared to the matrix for the entire isoclast which must be at least as large.
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X(s,t,r): 1+(t-——s)2 .

Figure 1 shows such a damage profile for t=0.4,r= 1.

The simulation will create random hurricanes (X-vectors indexed by s) according to a specific joint
distribution for t and r. The joint distribution is defined as follows. The variable 7 is distributed uniformly
between 0 and 10. Conditional on ¢, the variable r is distributed exponentially with mean

T =10+4-cos02-7-(=1.5)+2-5in07 - (1~ 4.5))"

Figure 2 graphs the conditional mean of r as a function of 1.

From this distribution, 50,000 equal-probability events were generated. This set was resampled by
importance sampling (Rubinstein [1981]) on r resulting in 5002 events with associated sampling weights
(relative frequencies). Figure 3 shows a 20% subsample of these events.

Events generated as (,1) pairs were converted to vectors <X;: 5 =0,1,...,10> and stored on disk.

6.2 Ground up losses

Figure 4 shows, and Table 1 enumerates, a hypothetical schedule of insured property exposures along a
stretch of coastline, with locations numbered from 0 to 10. This vector corresponds to the parameter Q in

the equation L = Q7 - X . Note the subscripting needs to handle potential as well as actual members of
the portfolio. In a real simulation, rather than list thousands of individual insured properties one would
create group aggregations, say, by ZIP code and occupancy type. If location #s has no current presence,
but a potential future presence, in the portfolio being studied, then Q, = 0, but there is still a need to model
the risk factor component X;.

After carrying out the multiplication L, = Q7 - X for each event i, one has a discrete distribution of

total (ground up) losses L; each with associated probability p;. The cumulative distribution function is
shown in figures 5a and 5b. Moments for the loss are = 0.682 and ¢ = 0.805. The mean is indicated in
figure Sa.

Take g = 0.02 as the reference point for VaR and TVaR. VaR for losses is 3.139, or just a bit more than 3
standard deviations above the mean. VaR is indicated in figures 5a and 5b. TVaR is 4.251.

The gradients of VaR and TVaR were computed both via the “brute force” approach and by the conditional
expectation theorems (section 4.2.3). The brute force approach was to make a discrete change AQ; to the
exposure at location s, recomputing the statistic R, and then calculating the rate of change by
(RQ+AQ)-R(Q-AQ))/2AQ. This requires a choice for the increment AQ. Values of 2 and 8 were chosen
for illustrative purposes.

The computation of VTVaR by the expectation theorem® does not require a “bandwidth.” The results are
shown in figure 6. The vertical axis (for the curves) represents the gradient of TVaR with respect to
changes in the exposure at each location. Exposures are shown by small bars at the bottom of the graph.
The results from the theorem are shown by the dashed line. The thick and thin lines show the brute force
approach with different AQ. The results are quite consistent between the three methods. Locations 6 and

2 For ground-up loss, Vog=X.
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7, with the most intense event risk, are also the most sensitive to exposure change. Locations 3, 4, and 10
are the least. Location 1 is more sensitive than locations 9 and 10, despite the fact that the event risk at
location 1 is less intense than it is at the right-hand end. This is because of the relative concentration of
exposures on the left end. Of the 5002 events, 781 (15.6%) entered into the theorem-based calculation of
VTVaR.

The computation of VVaR by the expectation theorem does require a “bandwidth” w. Choices of 0.05 and
0.2 were used.?* The results are shown in figure 7. They are quite similar to that of the TVaR graph, except
that the various methods and parameter picks show less consistency. For w=10.05, only 66 events were
within the kernel, and for w = 0.2, 213 events. Thus by using the expectation theorems only 1.3% or 4.3%
of the events needed to enter into the weighted average. Since this is the bilinear model, the vectors being
averaged took on a particularly simple form (i.e., Vag = X).

Coupled with a model for the gradient of profitability, the gradient of VaR or TVaR can map proposed
(small) portfolio changes into changes in the risk-reward plane of a portfolio risk management model. For
example, if the relative profitability of business varied little over the locations, strategies involving writing
business in locations 2-4 and 10, possibly coupled with attrition at locations 1 and 6, would yield the best
changes in risk-reward position. While some of this might seem obvious from examination of the
exposures and damage distributions alone, in a real application there would be many more locations (and
classes of business) with correspondingly more difficult tradeoffs to assess.

6.3 Reinsurance buying

To make the problem a bit more realistic, consider that each location has a per-risk treaty associated with it,
with an attachment & = 0.5, limit A, = 1, and co-reinsurance x; = 0.1.

The mean and standard deviation of net loss are 0.569 and 0.563, respectively. Thus the expected net loss
is 84% of the expected gross loss. The 2% VaR is 2.00, only 64% of the gross loss’s, and the TVaR is
2.98, about 70% of what it is for the gross loss.

But is this the optimal set of attachments and limits? After all, the gxposures vary by a factor of 4:1 from
location to location. Perhaps it would make more sense to alter the aand A parameters. Specifically, how
do changes in arand A vectors translate to changes in VaR and TVaR? Here, the gradient theorems must be
applied in their more general form, because the relationship between net loss and the parameters in question
is not linear.”> There are 12 nontrivial parameters to be assessed here: one attachment point and one limit
for each of the six locations with a treaty. Attachments and limits for locations at which there is no
exposure have no effect on the loss and hence a zero gradient.

Figure 8 shows the VTVaR results for the attachment parameters. Values for Acof 0.05 and 0.2 were
chosen for the brute-force method. Curiously, location 1 is much iess sensitive to a change in attachment
than the adjacent locations 0 and 2. Out of the tail events defining TVaR, location 1 is only “in the layer”
about 4.4% of the time whereas locations 0 and 2 are in the layer 18% and 21% of the time, respectively.
While location 1 is more likely to exhaust the layer, that situation is insensitive to changes in attachment
point. In particular, this means that the attachment point can be raised with (relatively) little impact on the
net loss. A canny buyer would investigate the possibility of a premium reduction to accompany such a
change. For net losses, 812 events (16.2%) entered into the computation of VTVaR by the expectation
method.

2 These choices are consistent with the AQ picks of 2 and 8 because the mean X across all locations is
0.027.

¥ V,g and V,g are given in section 3.2.1.
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Location 6 has a low sensitivity for the same reason as location 1: in the tail, location 6 usually either does
not attach (42.9% of the time) or completely exhausts the layer (55.2%); it is only in the layer 1.7% of the
time.

Figure 9 shows the comparable results for VVaR with respect to attachment parameters. Again, bandwidth
w = 0.05 and 0.2 were chosen for the expectation method.?® These results are comparable to those of the
TVaR graph, and again show less consistency. For the two bandwidth picks, 78 (1.6%) and 338 (6.8%)
events, respectively, entered into the expectation calculations.

Figures 10 and 11 show the results for VTVaR and VVaR with respect to changes in the limits at each
location. Since increasing a limit can only reduce net loss, the negative of the gradients is graphed.
Changing limit is most effective at location 6 (which exhausts its cover in over half the tail events) and
nearly ineffective at location 2 (which only exhausts in about 1% of the tail events).

6.4 Reinsurer portfolio of XOL layers

Consider now the problem of assessing the impact that adding a new contract or nonrenewing an existing
contract has on the VaR and TVaR of a portfolio of layers.

Table 2 shows a proposed contract and 25 existing contracts. Each is defined by exposures at the same 11
locations as modeled previously, with attachments and limits applying to the total damages from all
locations of a contract combined. With this small an example, it is feasible to rerun the model on the new
portfolio, to find the new values of VaR and TVaR, and hence the new contract’s marginal contributions to
risk. On the other hand, application of the theorems requires evaluating the losses on only the new contract,
and only for the scenarios within the kernel window or tail. In this case, that means one instead of 25
contracts and typically 2% to 20% of the scenarios (depending on bandwidth and risk measure), resulting in
hundreds of times fewer loss evaluations.

The mean payout for this portfolio is 0.68, and its standard deviation is 2.908. The mean payout of the
proposed new contract is 0.033 and its standard deviation is 0.175. Figure 12 shows the means and
standard deviations for the existing contracts, with the statistics for the new contract overlaid as horizontal
dotted lines.

The 2% VaR for the existing portfolio is 12.48, a bit more than 4 standard deviations above the mean. The
TVaR is 18.21. Of the 5002 simulated events, 825 (16.5%) are in the 2% upper tail.

Direct computation of the change in VaR or TVaR upon adding or dropping a contract does not require a
choice for the change amount as in previous examples; the natural unit is one contract. The computation of
VTVaR by the expectation theorem does not require a bandwidth,

The approximation formula for VTVaR (based on the model for g in section 3.3) is:
VT, ~=Y Al -x*,0,.4.x,)
AN g {isL o) » &y A Ky | D

where the summation, please note, is over the scenarios where the loss to the existing portfolio exceeds the
VaR. In the case of dropping existing contracts, this formula is exactly the discrete implementation of the
co-TVaR measure (Kreps [2003]). In the case of adding a proposed contract, the slight difference here is
that the VaR does not include the effect of the proposed contract.

%8 These are consistent with Ac. because in the layers, changes in attachment are approximately one-for-one
effective in changing net losses.
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The change in TVaR upon adding the new contract is 0.682, whereas it is estimated by the expectation
theorem to be 0.683. Figure 13 shows the change in TVaR upon cancelling each of the existing contracts.
The estimates are quite close, with a root mean square error of 0.012.

For the computation of VVaR by the expectation theorem, bandwidths of 0.5 and 1.5 were assumed. These
encompassed 74 and 245 events, respectively. The change in VaR by adding the new contract is 0.198; it is
estimated as 0.246 or 0.234 for the two bandwidths, respectively, 24% and 18% higher than the actual,
Figure 14 shows the change in VaR upon cancelling each of the existing contracts. The estimates track
fairly well, with a root mean square error of 0.083.

6.5 Normal approximation

Using the mean and variance-covariance matrix of the X vectors in the 2% tail, one can assume a normal
distribution and evaluate VTVaR by a closed-form expression (section 5.4). The estimate for the new
contract is 0.728, about 7% higher than the actual figure of 0.682. Figure 15 shows the results for the
existing contracts. The root mean square error is 0.092.

Again, less accurate results are obtained for closed-form VVaR computation. The estimates for the new
contract based on the two bandwidths are 0.304 and 0.329, respectively, 53% and 66% higher than actual.
Figure 16 shows the results for the existing contracts. These had root mean square errors of 0.121 and
0.114, respectively.

7. Related work

The Value-at-Risk (VaR) approach to risk assessment is becoming more prevalent in the insurance industry
as computing power increases and the convergence between finance and insurance disciplines continues.
However, the VaR concept is not new to insurance. Actuaries have been familiar with the VaR approach
(although not the name) since at least 1969, when McGuinness [1969] proposed a mathematical definition
for PML.’ What is different today is the recognition of the similarities between insurance and finance risk
management needs and the consequent cross-fertilization of methodologies for evaluating the risk of a
portfolio (whether that be an investment portfolio, a portfolio of insurance policies, or an entire enterprise).

Kreps [1990] links reinsurance pricing to the incremental risk a new contract adds to the reinsurer’s
portfolio. Kreps [1999] places reinsurance pricing on the same theoretical footing as other investment
decisions. Major and Kreps [2002] present a field study on how reinsurers think and behave with respect to
pricing catastrophic risk.

Kreps [2003] provides a general method to decompose risk measures into additive component “co-
measures.” Tasche [1999] develops a theory of capital allocation and portfolio component returns where
the first derivative of a (fairly arbitrary) risk capital measure of choice plays a central role. His principle of
“suitability” can be interpreted as saying that the rate of return on a component of a portfolio (with respect
to allocated capital) should exceed the portfolio rate of return in precisely those situations where an
additional increment of that component would increase the overall portfolio rate of return. He shows that
in order for suitability to hold, the capital allocation must be equal to the first derivative of the risk
measure. Acerbi [2002] presents a “spectral decomposition” of coherent risk measures which includes
TVaR as a special case. Major [2003] provides an analysis of suitability for a variety of risk measures and
explores the relationship between suitability, spectral measures, and co-measures.

7 Since VaR is essentially a quantile of the cumulative distribution function, it is difficult to assign original
credit. Gauss’s [1809] work on the normal distribution extended the work of De Moivre [1738] and
Laplace [1783], with other distributions having been studied a century earlier.
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The literature on VaR is enormous; many papers are accessible through www.gloriamundi.org. Jorion
[2000] is a good introduction. Fuglsbjerg [2000] applies variance reduction techniques to estimate VaR.
Glasserman et. al. [2000] discuss efficient VaR estimation in the presence of heavy-tail risk factors.
Artzner et. al. [1999] present axioms for risk measures which lead many to conclude that TVaR is superior
to VaR.

The gradient of Value at Risk in the context of the linear loss model is well known. Garman [1996]
analyzes the gradient in the delta-normal model and provides a blueprint for using the gradient in risk
management. Hallerbach [1999] focuses on the decomposition of VaR between the risk factors, with a
nuanced discussion distinguishing marginal, component, and incremental VaR. Gourieroux et. al. [2000]
also deal with the second derivative and discuss kernel smoothin ¢ in the context of estimation. Tasche
[1999] presents the gradient in a more general case for the distribution of the risk factors. Wang {2002]
develops the Monte Carlo sampling distribution of incremental VaR.

Many researchers have gone beyond the derivative to explore VaR and TVaR optimization in the linear
loss model. Andersson et. al. [2001] apply their results to the problem of credit risk TVaR. Rockafellar and
Uryasev [2000], Uryasev [2000a, b}, Krokhmal et. al. [2001], and Larsen et. al. [2002] develop a technique
that simultaneously calculates VaR and optimizes TVaR. Krokhmal et. al. [2001] provide an example based
on a portfolio of S&P 100 stocks. Larsen et. al. [2002] provide an example based on a portfolio of
emerging market bonds. Gaivoronski and Pflug [2000] optimize the VaR and show that mean-VaR-optimal
frontiers are quite different from mean-TVaR frontiers. Lemus Rodriguez [1999] proposes a nonparametric
statistical technique for the estimation of the gradient and uses it to numerically optimize linear
combinations of VaRs. Yamai and Yoshiba [2002] focus on sampling issues in comparing VaR and TVaR
optimization.

The literature on the gradient of VaR in the context of nonlinear loss models is less well developed. Britten-
Jones and Schaefer [1999] “complete the square” in the quadratic model to show that the distribution of
losses is a sum of non-central chi-squares. They also provide formulas for the mean and variance and show
how to approximate the cumulative distribution function.? Uryasev [1995a, b; 1999] provides the general
framework for evaluating derivatives as integrals for arbitrary loss models. Uryasev [2000a] explicitly
treats the derivative of VaR in the general case. (The optimization discussed there is with regard to the
linear model, however.) Major et. al. [2001] and Belubekian [2003] discuss the use of the gradient in an
insurance portfolic management context.

There is also a vast body of literature on other approaches to risk measurement, analysis, and management.
Only a few items will be mentioned here. Berger et. al. [1998] optimize risk-adjusted return through the
“tabu search” technique. Manganelli et. al. [2002] develop the gradient of GARCH variance in the linear
model. Studer [1995] and Studer and Luthi [1996] present “Maximum Loss” as an alternative concept to
VaR, and show its relationship with and advantages to VaR.

8. Conclusion

The gradient of a risk measure is a powerful tool for analyzing the high-dimensional problem of directing
change in the composition of a portfolio. Whereas thousands of simulation runs might be needed to test all
the relevant “what-if” scenarios (assuming they could all be identified), the gradient can quickly point out
the maximally advantageous directions for change, whether that means growth in opportunity areas,
attrition in risk-concentrated areas, or adjusting other contractual terms. Since Parkinson’s Law (Parkinson

% See section 5.2 for a discussion
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[1958]) seems to apply to simulation modeling,? the ability to lever modeling resources in this manner is
crucial to a thorough analysis.

This paper reviewed basic risk measures including VaR and TVaR and discussed various closed-form and
simulation implementations of the gradient. Insurance examples illustrated their use in CAT modeling,
reinsurance program design, and reinsurance portfolio management. The general simulation methods are
equally effective with linear parameters such as exposure amounts and non-linear parameters such as
retentions and limits. A normal approximation was shown to solve the XOL contract marginal impact
problem with a simple formula.

9. Appendix

9.1 Dictionary of mathematical symbolism

9.1.1 Styles and fonts

These standards are typical, but not rigidly enforced:

bold is a vector or matrix

italic is a scalar variable or function

CAPITAL is a random variable

YPEEK is a parameter

Special is a probabilistic operator (risk measure)

9.1.2 Specific symbols

X

fx)
L=g(X.,0)
0

J foav
[ foods

E[gX)]
h(x)
k(x)
EAlg(X)]
R(©)
Lq -

Tq

random variable in RY, represents hazard process (section 2.1)
probability density function of X (section 2.1)
defines the losses to a portfolio of insured exposures {section 2.1)

parameter in R™, describes the transformation of X to a loss dollar amount (section 2.1)

volume integral where x ranges over the N-dimensional region f in RY

surface integral where x ranges over the (N-1)-dimensional submanifold ¢ in RN

mathematical expectation of g(X) with respect to pdf {x)
transformed density on isoclastic hypersurface (section 2.3.4)
conditional density in tail (section 2.3.5)

mathematical expectation of g(X) with respect to pdf h(x)

generic risk measure (section 2.2.4)

value at risk or VaR (section 2.2.3)

tail value at risk or TVaR (section 2.2.3)

¥ «Work expands to fill the available time” becomes “requirements expand to absorb available computer

resources.”
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af / ox partial derivative of f with respect to x (section 2.2.4)

1 gradient operator; vector of partial derivatives (section 2.2.4)
. ﬂv“ norm (magnitude) of vector v

Cy normalizing factor, probability integrated over the isoclastic surface (section 2.3.3)
o attachment (retention) of reinsurance layer (section 3.2)

A limit of reinsurance layer (section 3.2)

x co-reinsurance of reinsurance layer (section 3.2)

Q parameter vector defines exposures (section 3.2)

rL,e, A, K)  reinsurance payoff function (section 3.2)

N=L~-r net loss after reinsurance (section 3.2)

Q< vector number ¢; column ¢ of matrix (section 3.3)

K(tw) Epanechnikov kernel function (section 4.2.2)

i mean operator or mean of X

D(z) cumulative normal distribution function (section 5.1)

&2) normal probability distribution function (section 5.1)

y conditional mean of X at the VaR isoclast or TVaR tail (section 5.3)

z summation operator or variance-covariance matrix of X

Z, conditional variance-covariance of X at the VaR isoclast or TVaR tail (section 5.3)
f (t, J7R O’) expected value E[max(0,Y-t)] for normal distribution (section 5.1)

9.2 Gradient of Tail Value at Risk
The gradient of TVaR is derived. Recall

1
T, (6)= Py copt, 80 0) FOOAV.

Applying the integral over the surface formula with y = 6, H= T, ¢= g(x,0)f(x), and y= Lq-8(x,8),
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V,T,(0)= E[V,5(x.0)5(X,0)> L, |+ é-‘ sxFL, Veﬁé(:;&)’;);}‘q)
[Vo(g(x,e)— L,)

[V.s(x.6}

+8(x,0)- f(x)dS =

S g

q

= E[Veg(x,ﬂ)ig(X,e)> Lq]+ L - ]g(x,9)= Lq~I

9

where C, = _[f(x)dS.
W

) Cy [ | Veg(X.6)
- 7l ofetx.a)> L Jo L, HM

1 ]
V*’Lq'E{mnvxg(x,em’g“ L"J

Recall (section 2.3.4)

Veg(X,G)
o)

8 g "
B —  _lg(x,0)=L
meu U

Therefore the expression in parentheses is zero and we are left with

g(X,0)= Lj

V,T,(0)= EV,s(x,0)s(x.0)> L, .

9.3 Derivations of gradients under the delta-normal model

9.3.1 Gradients of exceedance probability
Cy L- 8(xo)
To[ 8" -z-8

B
Here, the gradlents "5” and V ;0 = - X - 0, presented in section 5.1.1, are

derived in two ways.

Method 1: Differentiation of the expression Q(L;8)=1~ (D(}—'—;——gg)ig)-j
6 -x-0

0ot ) 2L ) f Lsli)
| el | ?’;3?/2 f L)
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Recalling (section 5.1.1) that C), =

0 L-gix

" ” ¥ s 0) , the expressions using Cy follow.
V8T - 2.8 o7 -£-8

Method 2: Using the conditional expectation theorem for Q (section 2.3.3), provides insight into the nature
of the isoclast. As a consequence of the linear case,

Lo, elplp X =L sl -, ]

e I A XURR R SUEN
Vie=Cr E[nvxgn’g‘%‘c” E[uan‘ﬁ X=L-gla))

Apply a singular value decomposition Z=A -P- A’ where Pis diagonal (eigenvalues) and A

(eigenvectors) satisfies A"TA=L. Then transform variables to X = A - P2 . Z where Zis a spherical unit
normal (i.e. mean zero and identity variance-covariance matrix) random variable. Therefore, one can
rewrite

VSQ=§_N_.A.P‘/2JE[ZI(‘S]r APV 'Z=L~8(Xo)]-

o]

The conditional distribution of Z is an N-1 dimensional spherical normal with mean=mode being the point
2, on the conditional hyperplane closest to the origin. The unit vector u in that direction is given by:

Pl/Z'AT'ﬁ
u=
V87 -A-P-AT -5

Putting z = ku and solving for & gives us k = L- g(XO) and therefore

JoT-A-P-AT .3

- V2 AT -
V5Q=—qﬂ—--A-P’/2~ L-g(x,) _PA S =£1.____LT g(XO).Z.ﬁ
il VT -A-P-A".5 JoT-A-P.-AT.5 || 8 -5

9.3.2 Gradient of Value at Risk
Here, the gradient

Vil =— 0 __.%.5

BV 0
is derived in two ways.

Method 1: Term-by-term differentiation with respect to 8 of the expression for L. 4 (8) givesus
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VoL, )=V, lglxo)t 2, VB E8) = Vyglxy)+Vsle, V5 Z-8)

1
= Z VS( 6T L. 6) m (6T pap 5)
5" -X-8

Method 2: Apply the formula from 2.3.4 expressing V5L (8) as the ratio of gradients of ©:

g_N... Lq "8(xo)

oL, g Bl o Eo D0 Lsba) o5 L
06 3Q/oL _Cy -3 5. T-5 '
Jol

9.3.3 Gradient of Tail Value at Risk

Here, the gradient

v k) =8
g 5" .xs

is derived in two ways.

Method 1: Term-by-term differentiation with respect to & of the expression forTq (0) givesus

¢(;q), 57 .2-6}=ng(xo)+v{f%_)' d ‘Z‘BJ

Vqu(5) =V5(g(x0

¢(Z) T ¢(Z) 1 T
oy (Vo £ )= v,(6" -5
" 3 | g 267X ol )
o)z
g +8"-Z-5

Method 2: We may use the conditional expectation theorem (sections 2.3.5, 9.2) in a manner parallel to the
derivation of the gradient of exceedance probability above. As a consequence of linearity,

87X ]

VT =E|V.gX,0)lg>L =E[Xl—-—-—-———————>z .
3¢ [6( ) q] \[87-—2-5 ql_]

As before, transform variables to X = A - PY2 . Z with spherical unit normal Z, and then by a rotation to

N
Yvia Z =Y, a4+ Z Y, -u*’”” where u*" is the “u” defined in séction 9.3.1.
p=;
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Note that the u¥” are orthogonal to each other. The random variable Y is still spherical normal, being
related to Z by a rotation. Therefore, one can rewrite

N
VSTq :Ak-Pl/2 E[Y] -u<l> +Zyj .u<f> ‘u<’>T Z> qu
j=2
— . 12 <I> Y <> _l
=A-P7 EY, u™ 1Y, >z, |+ E| )Y, u 1Y,>zq[J
j=2

Since components Y; are independent of Y;, the second expectation is zero, and therefore (recalling the & -
function from section 5.1):

VT, =A-P" E[Yl 1Y, > Zq]-ﬂd) =A-P" '(Zq+E[Y: —z, 1Y, >ZqD'U<b

= A PV '(Zq + ‘;' &z, ,OJ))'ud) =A-P” '(Zq + ;11' (olz,)- 2, - (- a(z, )))) u™”

1 as ple,) P”.AT-5
=A~P‘/2-(zq+;'(¢(zq)“zq'Q)]'“‘ =A-P¥. qq \/5T.A-P‘AT'6

_#lz,) A-P-AT-3
g Yo AP-A S
_¢(zq) -8
g J&T oz
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10. Figures

1

05

Damage Rate

Location

Figure 1: Profile of simulated hurricane damage, landfall at t=4, maximum loss rate r=1.
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Figure 2: Conditional mean r as a function of location t.
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Figure 3: 1000 of the final 5002 events. Note: events with lower r values have higher associated weights.
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Figure 4: Insured exposures by location for simulation experiment

Location Exposure

O OV N e O
B3| aj ) 0ol o0

10 6

Table 1: Insured exposures by location for simulation experiment
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Figure 5a: Cumulative loss distribution for portfolio in figure 4
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Cumukitive Probability
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Figure 5b: Cumulative loss distribution for portfolio in figure 4 (closeup)
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Figure 6: Comparison of methods for computing gradient of Tail Value at Risk with respect to exposures
for ground up losses

79



Major: Gradients of Risk Measures 2004 Ratemaking Discussion Papers

025 T I ¥ T T T
o2 —
& 045 -
-
-
s
S
3
° apE -
I
005 |- -
0 ]
0 2 4 6 3 10
Location

& Exposure (/100)
“~ Theorem w=0.05
™ Theorem w=0.2
“= Brute Force dA=2
™ Brute Force dA=8

Figure 7: Comparison of methods for computing gradient of Value at Risk with respect to exposures for
ground up losses
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Figure 8: Comparison of methods for computing gradient of Tail Value at Risk with respect to attachment
for losses net of treaty reinsurance
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Figure 9: Comparison of methods for computing gradient of Value at Risk with respect to attachment for
losses net of treaty reinsurance
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Figure 10: Comparison of methods for computing gradient of Tail Value at Risk with respect to limit for
losses net of treaty reinsurance.
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Figure 11: Comparison of methods for computing gradient of Value at Risk with respect to limit for losses
net of treaty reinsurance,
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Table 2: Portfolio of reinsurance layers with proposed new contract.
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Figure 12: Payout statistics for new and existing contracts.
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Figure 13: Comparison of actual and estimated change in TVaR upon cancelling each existing policy.
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Figure 14: Comparison of actual and estimated change in VaR upon cancelling each existing policy.
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Figure 15: Comparison of actual and estimated change in TVaR upon cancelling each existing policy,
including multivariate normal closed-form approximation.
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Figure 16: Comparison of actual and estimated change in VaR upon cancelling each existing policy,
including multivariate normal closed-form approximation.
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