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Abstract

When actuaries write about an insurance pricing
formula, they first identify the formula in question
and then discuss the pros and cons of it. This is in
stark contrast to capital markets pricing papers,
which start with a list of desirable axioms and then
proceed by deriving the necessary and sufficient
formula that satisfies these axioms. This paper
follows the capital markets paradigm, deriving the
necessary and sufficient risk load formula from a
set of axioms that are uniquely appropriate for
insurance. The derivation follows the same basic
approach as Black-Scholes, but it differs in that the
axioms have been re-selected to be descriptive of
how an efficient insurance market operates. The
result is a risk load formula commonly known as the
Proportional Hazard Transform. This paper also
provides an outline of how to implement the
Proportional Hazard Transform, making it relevant
and accessible to pricing actuaries.

1. MEASURING RISK

In capital market derivations, ‘arbitrage free’ means that we can not construct a hedging
strategy that is guaranteed to make a profit. This assumption is the key to the dynamic
hedging strategies that form the basis for many capital market derivations. The simplest
version is the Black-Scholes derivative pricing formula. Variants of Black-Scholes have
been derived to overcome the overly simplistic assumptions that Black-Scholes relies
upon, but they all follow the same basic construction: they all rely on a dynamic hedging
strategy to cancel out the risk.

When it comes to insurance, the main problem with the capital market’s arbritrage free
approach is that it assumes that the financial institution is not the ultimate risk bearer.
This is an important observation because the secret to the Black-Scholes derivation is
that it is carefully crafted to make the calculation of risk loads somebody else’s problem.
Since the dynamic hedging strategy transfers all of the risk to commodity speculators,
whether these speculators are adequately compensated for this risk becomes their
_problem. The existence of speculators who are eager to do the hard work for us is all
the derivation requires.

Insurance does not have a separate group of speculators; Insurers and reinsurers fill this
role themselves. As a result, insurance pricing formulae must explicitly contain risk
loads. So, we can not derive these formulae by pretending they are someone else’s
problem. Nor can we skirt the issue by creating a virtual commodity market, because we
would still need formulae that describe the behavior of the virtual commodity
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speculators. If we want to derive an insurance pricing formula with an adequate risk
load in it, we are going to have to take a different approach.

If we want to borrow the capital market's paradigm, then we need to redefine the term
‘arbitrage free’ so that it is appropriate for insurance. A more appropriate insurance
definition would be that every way we carve up a risk produces the same total risk
premium. That s, every two insurance programs that offer the exact same coverage will
have the exact same price. In this paper, this insurance version of the arbitrage neutral
assumption will be represented by the following axioms:

a. Monotonicity: If Fx(t) > Fy(t) for all t, then the price of insuring X is less than or
equal to the price of insuring Y.

b. Scale Invariance: If only p% of a risk is proportionately insured, then the proper
premium is p% of the full premium.

c. Layer Invariance: If a risk is carved up into a series of layers, then the sum of the
premiums for all of the layers equals the full premium.

d. Continuity: Let X; be a series of risks that converge to X.. [That is, the series of
CDFs Fi(x) converge to F..(x).] Then the price of X; converges to the price of X...

The above axioms are useful to those who care about quantifying what price the market
will support, such as insurance brokers and regulators. But, they are not appropriate for
risk bearers. Nor are they appropriate when the market is not efficient, such as the
market for natural catastrophe reinsurance. In these situations, capital constraints
dominate and many of the axioms cease being true.

We can now derive the unique pricing formula that satisfies these axioms. The formula
is known as the Proportional Hazard Transform (PHT) and it calculates the risk premium
for a risk X. This is the amount of money we need to collect for the expected loss plus
the profit load.

PHT Theorem: Let S be a collection of all risks with policy limits of L or less, and let
S contain all Bernoulli random variables with payoff of L or less. Then the market
premium functional H satisfies Axioms (a)-(d) if and only if H can be represented as:

L
H[X;r] = j G'(H)dt
4]

where r has an arbitrary value and G(t) is the decumulative distribution of any risk X
in S.

Proof: Appendix A for proof.
Therefore, the risk premium for a risk X is equal to H[X;r], where the parameter r is the
risk tolerance parameter. The lower r is, the higher the premium is. When r=1, the

premium equals the expected loss. When r=0, the premium equals the policy limit. This
gives us the following corollary.
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PHT Corollary: r £ [0,1] if and only if H[X;r] € [E(Loss),Limit] where Limit<eo

Proof: Appendix A for proof.

Note that the restriction that all risks must have a policy limit of L or less can be
significantly relaxed, and in many instances removed completely. The restriction is only
required for proving the axiom of Continuity from the PHT formula — a relationship with
no applied value. Weaker assumptions are possible, but they result in significantly more
complicated proofs. These enhancements are left for curious readers to pursue.

It must be reiterated that the PHT is not appropriate for risk bearers. In addition to the

weaknesses mentioned above, it should be mentioned that the PHT is not a robust
methodology for allocating capital. While an implied capital allocation can be derived
from the PHT, it is impossible to create a general formula equating the two that permits
the underlying parameters to vary. See Appendix B for an example.

Finally, the above axioms are similar to the axioms originally proposed by Wang, Young
& Panjer. The key difference is that the axiom of Comonotonic Additivity has been
replaced with Scale and Layer Invariance. The change permits actuaries to better
assess the applicability of the axioms as well as permitting a more intuitive proof of the
PHT Theorem. See Appendix C for the Wang, Young & Panjer axioms.

2. MEASURING DIVERSIFICATION

While the PHT results in an arbitrage neutral risk premium for any one risk, it does not
result in an arbitrage neutral risk premium for a diversified pool of risks. Changing the
amount of diversification changes the proper value of the risk tolerance parameter r, as
the following examples demonstrate.

Example #1: Calculate H[X;r] for X=B(p,1), a Binomial risk of probability p and payout
$1.

__fO probl-p
ﬂX]—iI probp

~fl-p x<1
R P
GX—(p x<1
[ ]—10 x 21
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L
HIX;r) = [G'(hdt = p*
0

Example #2: Calculate H[X+Y;r] for X=Y=B(p,1), i.i.d.

0 prob.(1-p)*
fX]={1 prob.2p-2p>

|2 prob.p’
{(1—p)2 x<1
F[X]=41-p* 1<x<2
U Xx22
{Zp-p2 x<1
G[X]={p* 1<x<2
LO X2

HEXH = [ Gt = (p-p?) +p*
0

The above examples demonstrate that it is more expensive to insure two risks
separately than it is to insure them together, assuming the same risk tolerance
parameter is used for both calculations. This can be shown by comparing the price of
insuring two identical Bernoulli risks separately, as in example #1, against insuring the
risks together, as in example #2. If the two approaches produced identical risk
premiums, then we would have:

2p" = (2p-p?)" +p¥ forallp
which we can rewrite as:
(2-p)=@-p) forallp

But, this is true only when r equals 0 or 1. That s, this is true only if the premium equals
the expected loss or the full limit — the two extremes.

The conclusion is that there are no natural values for the risk tolerance parameter other
than the two extremes. Risk tolerance is necessarily a relative measure that reflects the
degree of portfolio diversification that a risk benefits from. The better diversified a risk is,
the greater the market’s risk tolerance for that risk.
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For this reason, the PHT does not actually permit actuaries to compute the risk premium
for a risk from first principals. Instead, it requires the actuary to first establish the correct
risk tolerance parameter for that risk by determining what the market supports, and then
it calculates the risk premium from that value. The result is a price that is consistent with
the prevailing state of the market. This is the price that the market is expected to be
able to bear.

There are several ways to calibrate the risk tolerance parameter r. The simplest
approach is to keep a table of risk tolerance values for comparable risks. These are
what the market has supported for similar risks. For example:

Example #3: Suppose we have just bound a quota share treaty where the market

supported a 60% loss ratio pick and a 65% risk premium. The empirically derived .
loss distribution is listed below. Then the corresponding r is determined by finding

the value that results in the risk premium. The resulis are as follows:

X £(X) F(X) G(X) H(X)
0% 0.0% 0.0% 100.0% 100.0%
10% 0.0% 0.0% 100.0% 100.0%
20% 0.0% 0.0% 100.0% 100.0%
30% 0.0% 0.0% 100.0% 100.0%
40% 10.0% 10.0% 90.0% 94.0%
50% 20.0% 30.0% 70.0% 81.1%
60% 40.0% 70.0% 30.0% 49.2%
70% 20.0% 90.0% 10.0% 25.8%
80% 10.0% 100.0% 0.0% 0.0%
90% 0.0% 100.0% 0.0% 0.0%
Sum 100.0% 600.0% 650.0%

Now, since the width of each layer is 10%, the expected loss is 10% of the sum of
G(X) and the risk premium is 10% of the sum of H(X). Note that H(X)=G"(X) in this
table. The value that resulted in the risk premium equaling 65% was r=0.589. This
value then gets put into a table that lists the name of the account, a description of the
business, the date of inception and the value of r that the market supported.

Note that when constructing tables of r's, different reinsurance products for the same line
of business can have different r's. That s, r is not always the same from product to
product even when the underlying business is the same. There are several reasons for
this:

1. Different reinsurance products are supported by different sectors of the
reinsurance market. Each sector has a different amount of capacity available to
it, resulting in differences in supply by product.

2. Different reinsurance products have different regulatory and statutory
consequences. Some are treated more favorably than others, resulting in
differences in demand by product.

3. Large and small losses can come from different causes of loss, each with a
different parameter variance. Thus, parameter variance can vary by product.

Finally, when a risk is carved up, we are faced with the problem that the sum of the parts
may not equal the whole. Equality holds for programs carved up vertically and

158



horizontally, but it does not hold for other structures. Notably, when we refer to “Layer
Invariance,” we are referring to aggregate stop loss layers only. It does not hold for
excess reinsurance because Layer Invariance slices up the loss distribution after
frequency has been reflected. The result is that excess reinsurance structured as two
narrow layers costs slightly more than one wide layer, as the following example
demonstrates.

Example #4: Suppose we are analyzing a line of business which has a frequency
that is Poisson with a mean of 10 and a severity that is Exponential with a mean of
$1M. We are interested in pricing the $1M x $1M, $3M x $2M and $4M x $1M
excess layers. If r=0.589 then the risk premium for the $1M x $1M, $3M x $2M and
$4M x $1M layers are $2,842,000, $2,049,000 and $4,740,000 respectively. In other
words, reinsuring both layers together is 3.1% cheaper than reinsuring them o
separately. (See Appendix D for the calculation details.)

There are times when this inequality should be compensated for, such as when
reinsurers all take the same shares on two consecutive excess layers. For example, if
the reinsurers in Example #4 behave this way, then the pricing of the individual layers
should be multiplied by a compensation factor of 0.969 = $4,740,000 / ($2,842,000 +
$2,049,000) to force the sum of the parts to equal the whole.

When pricing any structure, the actuary should always check the final results to see if
diversification is being properly applied. In many situations, diversification is not being
properly applied and a compensation factor is required. Also, when borrowing r's from
comparable reinsurance programs, be careful what you consider a comparable program
to be. Not only must the underlying risk be comparable, the market's acceptance of the
product must also be comparable.

3. MEASURING DURATION

A practical risk load formula has three components to it: a measure of risk, a measure of
diversification, and a measure of duration. The PHT formula includes a measure of risk
and the compensation factor corrects for diversification, but we have yet to reflect
duration. The main complication we must address is that risk can run off very differently
from expected loss. For example, the fact that 50% of the loss has incurred does not
mean that 50% of the risk has occurred.

We can model the run-off of risk by borrowing ideas from IBNR theory. In IBNR theory,
the Paid Loss Lag at time t is defined to be the percentage of the total expected loss that
we expect to have been paid by time t. Similarly, the Incurred Loss Lag at time tis
defined to be the percentage of the total expected loss that that we expect to have
incurred by time t.- We can define the Risk Lag at time t as the percentage of the total
expected risk that we expect to have occurred by time t.

The concept of a Risk Lag permits us to use the Paid Lags and Incurred Lags as
benchmarks for estimating Risk Lags. First notice that no risk remains after a loss has
been fully paid. Therefore, the Paid Lags can serve as an approximate upper bound for
the Risk Lags. Also notice that all of the risk remains until the claim has been first
reported. Therefore, the Incurred Lags can serve as an approximate lower bound on the
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Risk Lags. This permits us to estimate Risk Lags as weighted averages of Paid and
Incurred Lags.

Where exactly the Risk Lags lie between the Paid Lags and Incurred Lags would depend
on how claims are handled. If case reserves are always established with 100%
accuracy, then the only risk occurs when the loss occurs, so the Risk Lag should equal
the Incurred Lag. If case reserves have zero credibility until the loss is paid, then risk
does not diminish until the loss is paid and the Risk Lag should equal the Paid Lag. An
intermediate reserving approach would result in an intermediate Risk Lag.

While this model of duration is not exceptionally precise, it does produce reasonable and
practical estimates. Its strength is that it permits actuaries to make intelligent estimates
of how risk runs-off and it permits relatively sophisticated calculations of the cost of '
capital. More complicated structures can be created to model the time value of risk
more accurately, but these are left for ambitious readers to pursue.

4. CONCLUSION

The PHT calculates risk premiums that are consistent with what an insurance market
bears, reflecting the market’s tolerance for risk. This makes the PHT especially useful to
brokers who are interested in predicting the price that the market should support. But,
the PHT assumes that an efficient insurance market exists. To the extent that an
efficient market does not exist, the result of the PHT will not be accurate. None-the-less,
the PHT derived price should be a lower bound on the market price, permitting
benchmarking even when the market is not efficient.

The PHT is significantly less useful to risk bearers. This can be seen in the way the
axioms do not reflect the risk bearer's capital structure. Risk bearers can use the PHT
formula to estimate what the market should bear for a risk, but they should not use the
formula to establish if this risk is an effective use of their capital. Other formulae, such
as Value at Risk, are more appropriate for this purpose.

Interestingly, while the PHT does not reflect the capital structure of an individual
company, it does make assumptions about the capital utilization of the industry as a
whole. This is evident in the fact that the resulting risk loads are not zero, indicating that
the industry does have capital at risk. But, instead of modeling capital as a fixed quantity
the way individual insurers do, the PHT assumes that market forces will require insurers
to actively manage their capital to match the risk they assume. In other words, the
companies who use their capital efficiently will determine the market and everyone else
must struggle to keep up.

Considerably more work needs to be done on pricing & capital allocation. We have
historically assumed that the Law of Large Numbers makes our industry different and
our pricing formulae unique. But, it is increasingly obvious that insurance is a form of
finance and that the financial markets paradigms should be applied to insurance.
Hopefully, this paper contributes to the change in the direction of actuarial discourse,
closing some of the divides that currently exist between insurance and the capital
markets.
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APPENDIX A
PROOF OF THE PHT THEOREM & COROLLARY

Lemma 1: Let B(q,k) represent a Bernoulli risk with probability q and severity k. Let
H(q,k) represent the premium we would charge for insuring this risk. The unique
formula for H(q,k) that satisfies axioms (a), (b) & (e) is the following:

H(g,k) = q"k (1]
where r is an arbitrary risk tolerance parameter.

Proof: Let us model B(q,k) as a biased coin toss, where the coin has a probability p
of heads (p is not necessarily equal to q in [1]). Consider the following process: Flip
a biased coin. If heads, flip it again. If heads again, then collect $k. This process
can be insured in two ways. First, it can be considered a Bernoulli risk with p?
probability of heads and a pay-out of k. Second, it can be considered as a Bernoulli
risk with probability p and a pay-out that buys another insurance policy insuring
against the second coin toss. Since these two insurance structures provide the
exact same protection, the axiom of Monotonicity says that they must have the exact
same price. Thus, we can equate the risk premiums for these two different
insurance structures:

H(p® k) = H(p,H(p.K)) (2]

Furthermore, the axiom of Scale Invariance implies that the premiums are linearly
proportional to the payoff:

H(p,X) = X H(p,1) [3]
Applying [3] to [2] we get:
H(p%1) = H(p,1) [4]

For the sake of notational simplicity, the k’s have been cancelled out. We will
reintroduce them at the end. Applying the above argument repeatedly gives us:

H(p™,1) = H™(p,1) for all positive integers m [5]
Which we can rewrite as:
HY™(™,1) = H(p,1) for all positive integers m [6]

Letting n be another integer (not necessarily equal to m), we can rewrite [6] with n
replacing m. Equating the two versions of [6] gives us:

HY™(p™,1) = H"(p",1) for all positive integers m,n [7]
or

H(p™,1) = H™"(p",1) for all positive integers m,n (8]
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Now, let g=p" and substitute this into [8]:

H(@™ ,1) = H™"(q,1) for all positive integers m,n [9]
Applying the Continuity assumption gives us:

H(q",1) = H¥(g,1) for all positive real numbers v [10]
Which we can write as:

H"™(q",1) = H(q,1) for all positive real numbers v [11]

Now, since v can be anything, let us select v such that q' = 0.5. In other words,
v=In(0.5)/In(q). Substituting this into [11]:

H(g,1) = @S0 5 1) [12]
Which we can rewrite as:

H(q,1) =q In(H(0.5,1))1n(0.5) [1 3]
Letting r = In(H(0.5,1)) / In(0.5), reintroducing k and applying [3] again, we get:

H(a.k) =g’k [14]

which is the PH-Transform for B(q,k).

Lemma 2: Let H[Z] represent the premium charged for an arbitrary risk Z. Let G(z)
be the decumulative distribution of Z. The unique H[Z] that satisfies axioms (a) - (e)
is the following:

H[Z]=°].G’(t) dt [15]
0

Proof: By the Layer Invariance assumption, the price for risk Z is the sum of the
prices for each of its layers. Carve the risk Z into a series of layers, each of width i.
Let j enumerate the layers with j=0 being the first layer. Now we must evaluate the
prices of the layers.

First, by the axiom of Monotonicity, the price of excess layer number j is bounded
from above by a Bernoulli risk of probability G(ji) and severity of i. [Probability of
entering the layer & severity of one layer width. This prices every partial loss in the
layer as if it were a total loss, resulting in a price that is too high.] So we can write:

H[Z]SiH[G(ji),i] [16]

j=0
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The Continuity assumption permits us to take the limit as i approaches zero giving
us:

H[Z] < Lirglz HI[G(i), 1] [17]
e d j=0
Applying Lemma 1 and evaluating:
HIZ] < [G'(t)dt [18]
0

Second, by the axiom of Monotonicity, the price of excess layer j is bounded from
below by a Bernoulli risk of probability G((j+1)i) and severity i. [Probability of
exhausting the layer & severity of one layer width. This ignores partial losses
entirely, resulting in a price that is too low.] So, we can write:

H{Z}ZiH{G(Q%—I)i),i] [19]
=0

The Continuity assumption permits us to take the limit as i approaches zero giving
us:

H[Z] = Lirglz H[G((j+ i), i) [20]
 d j:O
Applying Lemma 1 and evaluating:
H[Z] = J.G’(t) dt [21]
0

Equations [18] and [21] together produce [15].

Lemma 3: Let {G'} be a sequence of measurable functions on E=[0,L] such that
G'—G' a.e. in E. Since |El<+e and IG(I<1 a.e. in E, then J¢ G-/ G".

Proof: This is a specific case of the Bounded Convergence Theorem. See any Real

Analysis textbook (such as Wheeden & Zygmund) for the proof.

PHT Theorem: Let S be a collection of all risks with policy limits of L or less and let S
contain all Bernoulli random variables with payoff of L or less. Then the market
premium functional H satisfies Axioms (a) - (e) if and only if H can be represented as
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L
H[X;r]= jG‘ (Odt (18]
0

where r has an arbitrary value and G(t) is the decumulative distribution of any risk X

in 8.

Proof:

= Apply Lemma 2
< The PHT has the following properties:

a)

b)

d)

If Fx() = Fy(t) for all t, then Gx(t) < Gy(t) for all t and the result immediately
follows.

The price of a risk X is:

H[X:r]= j G'(t)dt [19]
0
Let v=p-t and dv=p-dt, then
p-H[X;r]= jG’{l}iv (20]
0 P

And since the integral is H[pX;r], this proves Scale Invariance.
The price for the layer that starts with A and ends with B equals:

B
H[X;r]= [ G (tdt [21]

Layer Invariance immediately follows.
Apply Lemma 3.

PHT Corollary: r € [0,1] if and only if H € [E(Loss),Limit] where Limit<e

Proof:

= If r=0, then H=Limit. If r=1, then H=E(loss). All thatis left is to prove H is strictly
monotonic. We know that 0<G(t)<1 for all t. Therefore, if r<s, then G'(t)>G(t)
and H[X;r]>H[X;s] for all Hzee. In our situation, H-is bounded above by Limit, so H
is necessarily finite.

<= Since all finite H are strictly monotonic with respect to r, there is only one r that
results in H=Limit and only one r that results in H=E(Loss). We know from above
that these are r=0 and r=1 respectively. Application of strict monotonicity
completes the proof.
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APPENDIX B
IMPLIED CAPITAL ALLOCATION

While the PHT can be used for calculating an implied capital allocation, it is not a robust
approach. For example, a Bernoulli risk with a probability of p and a payout of $1 has an
expected loss of p and a risk premium of p". This means that the load for risk is p™'. If
the market supports an ROE of R, then the implied capital allocation is p”'/R.

The problem occurs when the insurance market's pricing changes (either getting harder
or softer). Continuing the above example, if we assume that the ROE changes to R’
while the capital allocation stays the same, then the new price H’ for the risk is:

H=p+p”"xR/R=p"

Notice that the capital allocation is a function of r & R and the new risk tolerance
parameter r’ is a function of p. This is the problem. If the PHT is equivalent to a capital
allocation methodology, then we should have a capital allocation that is a function of only
p and the cost of capital should be invariant with respect to p. instead, the PHT results
in the two being commingled. It appears to be impossible to disaggregate the PHT's risk
load into an amount of capital formula times a cost of capital formula.

For example, suppose we have three $1 Bernoulli risks with p equal to 25%, 50% and
75% respectively. If r=0.85, then the risk pure premiums for the three risks are 0.308,
0.555 and 0.783 respectively. If R=10%, then the implied capital allocations are 0.578,
0.548 and 0.331 respectively. If the ROE now changes to 15%, then the new risk pure
premiums are now 0.337, 0.582 and 0.800 respectively. But, this results in the new risk
tolerance parameter varying by risk. The risk tolerance parameters for the three risks
are now 0.785, 0.780 and 0.777 respectively. Notice that the only way to make the new
risk tolerance parameter constant is to either vary the new ROE or to change the capital
allocations. The risk tolerance parameter, the ROE and the capital allocation can not all
be invariant.

Therefore, the PHT approach to pricing and the capital allocation approach to pricing are
incompatible. As the insurance market gets harder or softer, one of the following must
be true:

1. The PHT’s risk tolerance parameter r varies by risk
2. The market’'s ROE varies by risk
3. The capital allocations change in addition to the cost of capital changing
In other words, the assumptions underlying the two pricing methodologies can not all be

true. Further research must be performed to determine which set of assumptions better
explains the behavior of the insurance market.

166



APPENDIX C

THE WANG-YOUNG-PANJER AXIOMS

in 1997, Wang, Young and Panjer published the paper “Axiomatic Characterization
of Insurance Price” in which they identified and proved a set of necessary and
sufficient conditions for the PHT. The axioms Wang, Young and Panjer identified
were as follows:

1.

Conditional State Independence: For a given market condition, the price of an
insurance risk X depends only on its distribution.

Monotonicity: For two risks X and Y in X, if X(w) < Y(w), for all we Q, a.s.,
then H[X] < H[Y].

Comonotonic Additive: if X and Y in X are comonotonic, then H[X+Y] =
HIX]+H[Y].

Continuity: For X ¢ X'and d = 0, the functional H satisfies
lim H[(X -d), |=H[X] and lim H[min(X,d)]=H[X]

in which (X - d), = max(X - d, 0).

Reduction of compound Bernoulli risks: Let X = IY be a compound Bernoulli
risk, where the Bernoulli frequency random variable | is independent of the
loss severity random variable Y = X | X>0. Then the market prices for risks X
=Y and IH[Y] are equal.

From these axioms, Wang, Young and Panjer prove the following:

W.Y.P’s PHT Theorem: Assume that a collection of risks X contains all of the

Bernoulli random variables. Then the market premium functional H satisfies
Axioms 1-5 if and only if H can be represented as

H[X;r] =°]- G’ (t)dt
0

where r is some unique positive constant and G(t) is the decumulative distribution
of any risk in X.
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APPENDIX D
EXCESS REINSURANCE EXAMPLE
Assume that frequency is Poisson with a mean of 10, severity is Exponential with a
mean of $1M, and r=0.589. We want to price the excess reinsurance layers $1M x $1M,
$3M x $2M and $4M x $1M. First we determine the decumulative distribution G(X) by
simulating 10,000 years of experience. Then we calculate H(X):

$1M x $1M Excess Layer

Discretization

Point X Midpoint G(X) H(X)
- 500,000 89.1% 93.4%
1,000,000 1,500,000 62.0% 75.5%
2,000,000 2,500,000 33.3% 52.3%
3,000,000 3,500,000 14.4% 31.9%
4,000,000 4,500,000 4.9% 16.9%
5,000,000 5,500,000 1.3% 7.7%
6,000,000 6,500,000 0.4% 3.9%
7,000,000 7,500,000 0.2% 2.6%
8,000,000 8,500,000 0.0% 0.0%
Sum 205.6% 284.2%
Layer Width 1,000,000 1,000,000
Expected Loss 2,056,000
Risk Premium 2,842,000

$3M x $2M Excess Layer

Discretization
Point X Midpoint G(X) H(X)
- 500,000 53.8% 69.4%
1,000,000 1,500,000 30.4% 49.6%
2,000,000 2,500,000 16.6% 34.7%
3,000,000 3,500,000 6.9% 20.7%
4,000,000 4,500,000 3.2% 13.2%
5,000,000 5,500,000 1.4% 8.1%
6,000,000 6,500,000 0.6% 4.9%
7,000,000 7,500,000 0.2% 2.6%
8,000,000 8,500,000 0.1% 1.7%
Sum 113.2% 204.9%
Layer Width 1,000,000 1,000,000
Expected Loss 1,132,000
Risk Premium 2,049,000
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Discretization

$4M x $1M Excess Layer

Point X Midpoint G(X) H(X)
500,000 89.1% 93.4%
1,000,000 1,500,000 71.7% 82.2%
2,000,000 2,500,000 54.1% 69.6%
3,000,000 3,500,000 38.7% 57.2%
4,000,000 4,500,000 26.2% 45.4%
5,000,000 5,500,000 16.9% 35.1%
6,000,000 6,500,000 10.1% 25.9%
7,000,000 7,500,000 6.2% 19.4%
8,000,000 8,500,000 3.4% 13.6%
9,000,000 9,500,000 1.9% 9.7%
10,000,000 10,500,000 1.0% 6.6%
11,000,000 11,500,000 0.6% 4.9%
12,000,000 12,500,000 0.3% 3.3%
13,000,000 13,500,000 0.2% 2.6%
14,000,000 14,500,000 0.1% 1.7%
15,000,000 15,500,000 0.1% 1.7%
16,000,000 16,500,000 0.1% 1.7%
17,000,000 17,500,000 0.0% 0.0%
Sum 320.7%. 474.0%
Layer Width 1,000,000 1,000,000
Expected Loss 3,207,000
Risk Premium 4,740,000

Note that, in the above calculations, the discretization includes a point at the origin. The
probability assigned to a discretization point equals the cumulative probability from the
midpoint directly below the discretization point to the midpoint directly above the
descretization point. For example, the probability assigned to the $2.0M discretization
point is the cumulative probability that the loss will be between $1.5M and $2.5M. This
discretization process results in an expected loss that is slightly lower than the simulated
expected loss. For example, the $4M x $1M layer expected loss is calculated above to
be $3,207,000 while it the simulation really resulted in an expected loss of $3,211,307.

Also note that the values of G(X) and H(X) are both rounded to the first decimal point, as

shown above. This was done solely to make the calculations easier for readers to
follow.
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