
RWP on Correlations and Dependenc~s Among Al l  Risk Sources Report 

The Report of the Research Working Party on 
Correlations and Dependencies  Among All Risk 

Sources 

Part I 

Correlation and Aggregate Loss Distributions With An 
Emphasis On The Iman-Conover Method 

Stephen J. MildenhaU, Member, CAS Research Working Party on Correlations 
and Dependencies Among All Risk Sources 

November 27, 2005 

Abstract 
Motivation. The C.~S Research Working Party on Correlation and Dependencies .~.mong All Risk Sources 
has been charged to "lay the theoretical and experimental foundation for quanti~,ing variability when data is 
limited, estimating the nature and magnitude of dependence relationships, and generating aggregate 
distributions that integrate these disparate risk sources." 
Method. The Iman-Conover method represents a straight forward yet powerful approach to working with 
dependent random variables. We explain the theory behind the method and give a detailed step-by-step 
algorithm to implement it. XXte discuss various extensions to the method, and give detailed examples 
showing how it can be used to solve real world actuarial problems. We also summarize pertinent facts from 
the theory of unix'adam and multivariate aggregate loss distributions, with a focus on the use of moment 
generating functions. Finally we explain how Vitale's Theorem provides a sound theoretical foundation to 
the Iman-Conover method. 
Availability. The software used to generate the paper's examples is available at http://www.mynl.com/wp. 
Keywords. Dependency, correlation, aggregate loss distributions, fast Fourier transform. 
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Chapter I 

INTRODUCTION 

The Iman Conover (IC) Method is a practical, down-to-earth approach to dealing 

with dependent random variables. It should be part of every actuary's toolkit. 

When two variables X and Y are positively correlated there is a tendency for 

large values of X to be associated with large values of Y. Knowing how the 

large values are associated would make it possible to work in reverse: by ordering 

samples from X and Y so that large-large matches and small-small matches are 

more likely would result in a bivariate sample with positive correlation. The Iman- 

Conover (IC) method gives a way of determining reasonable associations, and 

hence inducing correlation between samples of variables. It is ideally suited to 

simulation work where marginal distributions are sampled independently but must 

be combined to achieve some desired level of correlation. The IC method is used 

by the popular @Risk software package to induce correlation. 

Before describing the IC method, we begin with a review of measures of corre- 

lation and association in Chapter 2. Then, in Chapter 3 we describe several useful 

techniques for working with univariate and multivariate aggregate loss distribu- 

tions. These include formulae to compute moments of aggregates using moment 

generating functions, a discussion of mixed Poisson counting distributions, ap- 

proximating univariate aggregates using the shifted gamma and shifted lognormal 

distributions, Fast Fourier transform methods, and computing correlation coeffi- 

cients related to multivariate aggregates in a variety of situations. 
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Next we turn to a description of the IC method itself, which can simplistically 

be described as follows. Given two samples of n values from known marginal dis- 

tributions X and Y and a desired correlation between them, first determine a sam- 

ple from some reference bivariate distribution that has exactly the desired linear 

correlation. Then re-order the samples from X and Y to have the same rank order 

as the reference distribution. The output will be a sample from a bivariate distribu- 

tion with the correct marginal distributions and with rank correlation coefficient 

equal to that of a bivariate distribution which, in turn, has exactly the desired 

correlation coefficient. Since linear correlation and rank correlation are typically 

close, the output has approximately the desired correlation structure. What makes 

the IC method work so effectively is the existence of easy algorithms to determine 

samples from reference distributions with prescribed correlation structures. Ob- 

viously the method can then be extended to work with samples from multivariate 

distributions in any dimension. 

In their original paper, Iman and Conover [21] point out that their method has 

several desirable properties. 

1. It is very simple to understand and implement. 

2. It is distribution free; it may be used with equal facility on all types of input 

distributions. 

3. It can be applied to any sampling scheme for which correlated input vari- 

ables could logically be considered. That is, the output sample contains the 

same values as the input, only with a different pairing. Hence in Latin hyper 

cube sampling, the integrity of the intervals is maintained. 

4. The marginal distributions remain intact. 
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The actual IC method involves some enhancements over such a naive imple- 

mentation, and we give full details in Chapter 4. We give a step-by-step example 

to explain how the method works in practice in Section 4.3. In Section 4.4 we 

show how the basic IC method can be extended, and illustrate the impact these 

extensions have on the types of multivariate distributions the method produces. 

Section 4.5 compares the IC method with the normal copula method described in 

Wang [37]. 

Chapter 5 gives a detailed practical example which computes the bivariate dis- 

tribution of ceded and retained losses in a book with an excess of loss reinsurance 

structure. Such a bivariate distribution is necessary to compute the net under- 

writing result if the reinsurance contains any variable feature like a sliding scale 

commission, profit commission or annual aggregate deductible. 

Chapter 6 discusses the theoretical underpinnings of the IC method in a more 

technical manner. It can be ignored with impunity by readers more interested in 

practice than theory. 

Appendix A discusses practical computational issues and describes some freely 

available software which can be used to implement the IC method in Excel. 

Some sections are marked with an asterisk. These I regard as interesting, but 

not "core". The remaining, un-starred sections, contain core facts which I think 

every actuary working with correlation and aggregate losses should know. 

When modeling correlation the reader should remember that the model must 

follow an understanding of reality. Model building, especially modeling correla- 

tion, must start with an understanding of the underlying processes. Graphical rep- 

resentations are often useful to aid understanding and help communicate results. 

It may be necessary to build pre-models to understand the underlying processes 

and use these to parameterize quicker, more computationally efficient, implemen- 

tations. The IC method is ideal here: having understood the drivers of correlation 

and estimated an appropriate correlation matrix and suitable multivariate struc- 

ture, the IC method can be used to produce correlated samples with blistering 

speed. However, the reader should not succumb to the temptation to estimate a 
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200 x 200 correlation matrix using data and expect to get realistic result from it. 

It will be more noise than signal. 

In conclusion, we recommend the IC method as being fast, simple to under- 

stand, and efficient. We also recommend the use of a shifted gamma or shifted 

lognormal distribution to model univariate aggregate losses. 

Throughout the paper bold face roman variables represent vectors (lower case) 

and matrices (upper case). Sections in a smaller typeface are optional, more tech- 

nical discussions. Sections marked with an asterisk* contain non-core material. 

Acknowledgement. I would like to thank Christopher Monsour, Chuck Thayer, 

Leigh Halliwell, Roger Hayne, Phil Heckman, and Kevin Shang for their helpful 

comments and suggestions. 
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Chapter 2 

CORRELATION AND 
ASSOCIATION 

Before discussing specific measures of correlation and association, recall that two 

random variables X and Y are independent if 

Pr(X E A,Y C B) = Pr(X C A)Pr(Y E B) (2.1) 

for all suitable sets A and B. It is possible to prove that X and Y are independent 

if and only if 

E[f(X)g(Y)] = E[f(X)]E[g(Y)] (2.2) 

for all functions f and g. 

See Wang [37] and Press et al. [31] for more information on the definitions 

and terms described here. 

2.1 Correlation, Rank Correlation and Kendall's Tau 

There are three common measures of association (more commonly called simply 

correlation) between two random variables X and Y: linear or Pearson correla- 

tion, rank correlation and Kendall's Tau. 
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The linear or Pearson correlation coefficient, usually just called correlation, is 

defined as 

Coy(X, Y) E[(X - E(X) ) (Y  - E(Y))] 
p ( X , Y )  - a ( X ) ~ ( Y )  - a ( X ) a ( Y )  (2.3) 

where cr(X) is the standard deviation of X.  By the Cauchy-Schwarz inequality 

the correlation coefficient always lies in the range [ -1 ,  1]. The correlation coeffi- 

cient is sometimes called the Pearson correlation coefficient or linear correlation 

coefficient. Perfect correlation, when p = +1, occurs if and only if Y = a X  + b 

for constants a > 0 (resp. a < 0) and b. The correlation coefficient is a natural 

measure of association when X and Y come from a bivariate normal distribution 

because it is enough to completely specify the dependence between the marginals. 

Needless to say, such pleasant results do not hold in general! For a multidimen- 

sional distribution the correlation matrix has i, j th  element equal to the correlation 

coefficient of the i and j th marginals. 

A related measure is the covariance coefficient defined as 

Coy(X, Y) 
w(X, Y) -- E (X)E(Y)  (2.4) 

By (2.2) independent variables are uncorrelated. However, the converse is 

not true. The classic counter-examples of uncorrelated but dependent variables 

include 

• X a standard normal and Y = X 2, 

• (X, Y) uniformly distributed over a circle of radius one centered at the ori- 

gin, and 

• (X, Y) distributed with a bivariate t-distribution with zero correlation. 

• Let X, X1, X2 , . . .  be identically distributed random variables with mean 

zero and let N be a counting distribution. Then A = X1 + • • • XN  and N 

are uncorrelated but not independent. If X and Xi have a non-zero mean 

then Coy(A, N) = E(X)Var(N) .  
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The correlation coefficient of a bivariate sample (X,, Yi), i = 1 . . . .  , n, is 

defined as 
- 2 ) ( Y ,  - 

(2.5) 
P = x / ~ , ( x  ' _ R)~ ~ , ( ~  _ ;~)2 

where )(  = n -1 Y'~-i Xi and similarly for ~7. 

Let X be an n x r matrix representing an n-fold sample of 1 x r vectors. 

Suppose that the means of the columns of X are all zero (subtract the means if 

necessary). Then the variance-covariance matrix of X is simply n - i X ' X ,  where 

X '  denotes matrix transpose. 

The second measure of association we consider is rank correlation. Given 

a sample X 1 , . . . ,  Xn of observations from a random variable X the rank order 

statistics X(1) , . . . ,  X(,,) are a permutation of the original observations ordered so 

that X(1 ) ~ X(2 ) ~ . .° ~ X ( n ) .  Call j the rank of X0). The rank correla- 

tion, or Spearman rank correlation, of a sample is defined as the correlation of 

the ranks of the sample. Rank correlation lies in the range [ -1 ,  1] because it is a 

correlation. It is invariant under strictly monotonic transforms of X and Y, so for 

example the rank correlation of a sample (X, Y) is the same as the transformed 

samples (log(X), log(Y)) or (exp(X),  exp(Y)).  Rank correlation is a nonpara- 

metric measure of association because it is invariant under transformation. For 

continuous random variables rank correlation can also be computed as 

12E[( Fx(  X )  - 0.5)( Fy (Y)  - 0.5)] (2.6) 

where Fx (resp. Fy) is the distribution function of X (resp. Y). 

The third common measure of association is called Kendall's tau. Kendall's 

tau looks at concordances and discordances between pairs of data points (xi, y,) 

and (x3, yj). A pair of observation-pairs is concordant if (x~ - xj, Yi - -  Yj) lies 

in the upper right hand or lower left hand quadrants of the plane, and discordant 

otherwise. Take all n(n - 1)/2 distinct pairs of data from the sample and count 

the number of concordances c and discordances d, except that if the ranks of the 

x's are the same the pair is called an extra y pair and if the ranks of the y's are the 

same the pair is an extra x pair. If the ranks of both x and y are the same the pair 
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does not count at all. Let ez and % be the number of extra x and y pairs. Kendall's 

tau is defined in Press et al. [31] as 

c - d  
r = . (2.7) 

V/C + d + ey x/c + d + ex 

Kendall's tau can also be computed as 

folfo 1 r ( X , Y )  = 4 Fx,y(x,y)d2Fx,r(x,y) - 1 (2.8) 

provided singularities are handled appropriately, see Wang [37]. The Kendall's 

tau of a sample (Xi, Y~), i = 1 , . . . ,  n can be computed as 

2 Z sign((X~ - Xj)  (Y~ - Yj)) (2.9) 
r -  n (n- -1)  ,<a 

where sign(z) is 1,0 or - 1  when z is positive, zero or negative. 

The statistics of Kendall's tau are covered in more detail by Conover, [6]. 

Conover points out that if the null hypothesis that (X, Y) are independent is true, 

the distribution of tau approaches the normal quite rapidly. Hence the normal 

approximation for tau is better than the one for Spearman's rho under the null 

hypothesis. He also points out that tau has a natural interpretation in terms of the 

probability that an observation is concordant versus discordant. 

Equation (2.9) is precisely consistent with the definition in Equation (2.7) only 

when there are no ties. In the no-ties case, (2.9) is the form that Kendall proposed 

in his 1938 paper. When there are ties, (2.9) ignores ties in either X or Y, but it 

counts every pair of observations in the total used in the denominator. 

Equation (2.7) accounts explicitly for ties without distorting the answer un- 

duly, and it always provides an answer regardless of the number of ties in the 

sample. Conover's method fails when every pair results in a tie in the rank of the 

Xs. On the other hand, if the ranks of all the Xs  are tied, X should not really be 

termed a "variable", much less a "random variable"! 

Conover's alternative to (2.9) is to use a different method to account for ties. 

If the Y ranks are tied, he adds 1/2 to both c and d. If the X ranks are tied, the 
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comparison is dropped entirely, adding nothing to c or to d. Otherwise, c gets 

incremented for positive signs and d counts the negatives in the sum. Conover's 

final statistic is 
c - d  

r - (2.10) 
c + d "  

Conover's statistic adopts a form of Kendall's tau that was introduced by Good- 

man and Kruskal [14]. Equation (2.10), which is also called the gamma coeffi- 

cient, can attain the values +1 and - 1  even in the presence of ties in the sample 

data. 

There are several relationships between these measures of correlation, partic- 

ularly if the sample comes from a multivariate normal distribution. For example 

if (X, Y) are bivariate normal with correlation p then 

2 
r(~(X), ~(Y))  = - arcsin(p) (2.11) 

7r 

and the rank correlation 

6 
rankCorr(~(X), ~(Y))  = - arcsin(p/2). (2.12) 

rc 

Similar results hold for samples from any elliptically contoured distribution, 

see Fang and Zhang [11], Embrechts, Lindskog and McNeil [9] and Embrechts, 

McNeil and Straumann [10]. 

2.2 Comonotonicity* 

Two random variables X and Y are comonotonic if there exists a third variable 

Z and non-decreasing functions f and 9 such that X = f(Z) and Y = g(Z). 
For example, if X and Y are two different excess layers on the same risk then 

they are comonotonic. A stock and an option on it have comonotonic payouts. 

Comontonicity represents a high level of association between two values, but it 

need not result in a high level of linear correlation. 

Some authors propose that risk measures r should be sub-additive, r(X+Y) <_ 
r(X) + r(Y), with the tag-line "mergers cannot cause risk". Coherent measures 

require sub-additivity, see Artzner et al. [2]. Others authors propose additivity for 

comonotonic risks r(X + Y) = r(X) + r(Y) if X and Y are comonotonic, see 

Wang [36]. 
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2.3 Measures for Non-Normal Variables* 

Linear correlation is the perfect measure of association for normally distributed 

random variables. It does not deal so effectively with non-normal variables. How- 

ever, any continuous random variable X with distribution function F can be trans- 

formed into a normal variable Y via 

Y = ~-I(F(X)).  (2.13) 

It therefore makes sense to transform non-normal variables using (2.13) and then 

to compute correlations between the transformed variables. If X is already a 

normal variable then (2.13) simply normalizes X to mean 0 and standard deviation 

1. 

Normalizing transformations are related to the IC method and the normal cop- 

ula method as we will explain with Theorem 2 below. The normalizing trans- 

formation has been used in the literature by Wang [38] and Sornette et al. [32] 

amongst others. 
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Chapter 3 

GENERAL PROPERTIES OF 
AGGREGATE LOSS 
DISTRIBUTIONS 

Here we gather together some useful techniques for working with aggregate dis- 

tributions, modeling correlation, parameter uncertainty, and so forth. Many of the 

techniques we introduce here will be used in the extended example, given in the 

Chapter 5. We introduce the negative multinomial distribution and we provide an 

introduction to Fast Fourier Transform (FFT) methods in both one and two di- 

mensions. We begin with a discussion of moment generating functions and mixed 

Poisson frequency distributions. 

We will use the following notation. The variance of a random variable X is 

Var(X) = E(X 2) - E(X) 2. The standard deviation is ~r(X) = v/Var(X). The 

coefficient of variation (CV) of X is CV(X) = a ( X ) / E ( X ) .  The skewness of X 

is E[(X - E(X))a]/a(X) a. 

3.1 Moment Generating Functions 

The moment generating function of a random variable X is defined as 

Mx(~) = E(exp(~X)). (3.1) 
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The moment generating function is related to the characteristic function of X 
which is defined as ~Sx(~) = E(exp( i (X) )  = Mx(i(). ~ is guaranteed to con- 
verge for all real ( and so is preferred in certain situations. 

Moment generating functions get their name from the fundamental property 
that 

OnMx ;=0 = E(Xn) (3.2) 
0C ~ 

for all positive integers n provided the differential exists. 

Let F be the distribution function of X.  Feller [12, Section XVII.2a] shows that if F has 
expectation # then 4~, the characteristic function o fF ,  has a derivative q¢ and qT(0) = ip.  However 
the converse is false. Exactly what does hold is spelt out in the next theorem. 

Theorem 1 (Pitman) The fol lowing are equivalent. 

1. ~'(o) = iu. 
2. As t --+ oo, t(1 - F( t )  + F ( - t ) )  -+ 0 and 

i t  t x d F ( x )  --+ #. (3.3) 

F ( - t )  := lira F(s )  as s T t. 

3. The average ( X1 + . . "  + X n  ) / n tends in probabiliO' to #, that is Pr(I(X1 + . . .  + X,~ ) / n - 
Pb > e) - -+Oasn  + ac. 

Note that the condition for the limit in (3.3) to exist is weaker than the requirement that E (X)  

exists if X is supported on the whole real line. For the expectation to exist requires f ~  x d F ( x )  

exists which means l i m t _ _ ~  lim,_~o f t  x d F ( x ) .  

The moment generating function of a bivariate distribution (X1, X2) is defined 
as 

Mxl,x2((x, ~2) = E(exp(~aX, + (2X2)). (3.4) 

It has the property that 

O"~+n Mx, .x= 
O~pO~ (0,o) = E ( X p X ~ )  (3.5) 

for all positive integers n, rn. 
The MGF of a normal variable with mean # and standard deviation a is 

M(~) = exp(#~ + a2~2/2). The MGF of a Poisson variable with mean n is 

M(¢) = exp(n(e ¢ - 1)), (3.6) 

a fact we will use repeatedly below. 
See Feller [12] and Billingsley [3] for more information on moment generating 

functions, characteristic functions and modes of convergence. 
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3.2 Mixed Poisson Frequency Distributions 

Here we consider some basic facts about mixed Poisson frequency distributions. 

Let G be a non-negative mixing distribution with E(G) = 1 and Var(G) = c. 

The variable c is called the contagion. Let N be a claim count random variable 

where the conditional distribution of NIG = g is Poisson with mean gn for some 

non-negative real n. We will call N a G-mixed Poisson random variable. 

By (3.6), the MGF of a G-mixed Poisson is 

MN(() = E(e ¢N) = E(E(e4NIG)) = E(e ~G(e¢-')) = Mc(n(e ~ - 1)) (3.7) 

since Me(() := E(eCa). Thus 

E(N)  = M~v(O ) = nM~(O) = n, (3.8) 

because E(G) = M~(O) = 1, and 

E(N 2) = M~(0) = n2M~(O) + nM~(O) = n2(1 + c) + n. (3.9) 

Hence 

Finally 

Var(N) = n(1 + cn). (3.10) 

E ( N  3) = ~I~)(0)  = 7/3j~I~3)(0) --{- 3Tt2J~1~(0) --{-- gtAJb(0 ) (3.11) 

from which it is easy to compute the skewness. 

We can also assume G has mean n and work directly with G rather than nG, 

E(G) = 1. We will call both forms mixing distr!butions. 
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Table 3.1: Parameterizations of the Gamma Distribution 

M o d e l  D e n s i t y  M G F  

(a) o~,/3 

(b) a,/3 

(c) c~, 0 

xa-le-X/~ 

xa-l~oe-X~ 

Xo~- I E-x/O 
oor( ) 

M e a n  Var  

(1 - / 3 t )  -~ o63 o~/32 

(1 - t / /3)  - ~  a / / 3  o~/¢3 2 

(1 - tO) -'~ c~O o~0" 

3.3 Gamma and Negative Binomial Variables 

Recall that a negative binomial is a gamma-mixed Poisson: if NIG is distributed 

as a Poisson with mean G, and G has a gamma distribution, then the unconditional 

distribution of N is a negative binomial. Both the gamma and negative binomial 

occur in the literature with many different parameterizations. The main ones are 

shown in the Tables 3.1 and 3.2. 

In Table 3.1 model (a) is used by Microsoft Excel, Wang [37] and Johnson et 

al. [22, Chapter 17]. Model (b) is used by Bowers et al. [4]. Model (c) is used by 

Klugman, Panjer and Willmot in the Loss Models text [25]. Obviously model (c) 

is just model (a) with a change of notation. 

In Table 3.2 model (a) is used by Wang and Loss Models, (b) by Johnson et al. 

[24, Chapter 5] and (c) by Bowers et al. [4] and Excel. In model (c) the parameter 

r need not be an integer because the binomial coefficient can be computed as 

( r + x -  1) _ F ( r + x )  

z r ( r ) x !  ' 

an expression which is valid for all r. The cumulative distribution function of the 

negative binomial can be computed using the cumulative distribution of the beta 
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distribution. Using the model (c) parameterization, if N is negative binomial p, r 

then 

1 I p u r - l ( l  __ u)kdu P r ( N  < a n) = BETADIST(p; r, k + 1) := B(r, k + 1) .,0 

where B is the complete beta function. See Johnson, Kotz and Kemp [24, Eqn. 

5.31 ] for a derivation. BETADIST is the Excel beta cumulative distribution func- 

tion. 

The name negative binomial comes from an analogy with the binomial. A 

binomial variable has parameters n and p, mean np and variance npq, where p + 

q = 1. It is a sum o f n  independent Bernoulli variables B where P r (B  = 1) = 19 

and P r (B  = 0) = q = 1 - p. The MGF for a binomial is (q + pe¢) n and the 

probabilities are derived from the binomial expansion of the MGE By analogy 

the negative binomial can be defined in terms of the negative binomial expansion 

o f ( Q -  Pe¢) -k where Q = 1 + P,  P > 0 and k > 0. 

For the actuary there are two distinct ways of looking at the negative binomial 

which give very different results and it is important to understand these two views. 

First there is the contagion view, where the mixing distribution G has mean n and 

variance c producing a negative binomial with mean n and variance n(1 + cn). 

(In fact G is a gamma with model (a) parameters c~ = r and/3 = 1/r.) The word 

contagion was used by Heckman and Meyers [17] and is supposed to indicate a 

"contagion" of claim propensity driven by common shock uncertainty, such as 

claim inflation, economic activity, or weather. Here the variance grows with the 

square of n and the coefficient of  variation tends to v ~ > 0 as n --+ oo. Secondly, 

one can consider an over-dispersed family of Poisson variables with mean n and 

variance vn for some v > 1. We call v the variance multiplier. Now the coefficient 

of variation tends to 0 as n ~ oo. The notion of over-dispersion and its application 

in modeling is discussed in Clark and Thayer [5] and Verrall [34]. 
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Table 3.2: Parameterizations of the Negative Binomial Distribution 

Model Density MGF 

(a) a,  

(b) P,  k 

(c)p, r > 0 

3 x 1 (o~ +Xx -1)(1+--+--+--+--+--+-~) (l+--~:"J) 

( r+x-1)p,  qX 
X 

Mean 

(1 - /3(e  t - 1)) -a a3  o~3 2 

(Q - pet)  -k kP kPQ 

pr rq/p rq/p 2 
(1  - q~*)" 

Var 

Q = P  + l , q =  l - p , O  < p <  l andr > O, a n d P =  l/(;3+ l). 

Table 3.3: Fitting the Negative Binomial Distribution 

Param- Variance Multiplier 
Model eters Scale Shape 

(a)  r,  pq r = m / ( v  - 1) 

(b) k, P k = m / ( v  - 1) 

(c) r ,  p r = m / ( v  - 1) 

Contagion 
Scale Shape 

= v - 1  r = l / c  ~ = e n  

P = v - 1  k = l / c  P = c n  

p=Uv r=l /c  p=l / ( l+cn)  
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3 . 4  A g g r e g a t e  D i s t r i b u t i o n s  

Let A = X1 + --. + XN be an aggregate distribution, where N is a G-mixed 
Poisson and X, are iid severity random variables. Then, proceeding by analogy 
with 3.7, we have 

AIA(() = E(exp(((X1 + . . .  XN)))  

= EE(exp(((X1 + . . .  XN))[N)  

= E(E(exp((X1)N)) 

= E(E(Mx(~)NIG)) 

= E(exp(nG(Mx( ( )  - 1))) 

= M o ( n ( M x ( ( )  - 1)) (3.12) 

Thus 

and 

E(A) = M.~(0) = nM~(0)M~(0) = hE(X) (3.13) 

E(A 2) = M'~(O) 

= n2Mg(0)M5,.(o) 2 + nMb(0)M (0) 

= n2E(G2)E(X) 2 + nE(X2). (3.14) 

Hence, using the fact that E(G 2) = 1 + c, we get 

Var(A) = n2E(G2)E(X) 2 + nE(X 2) - n2E(X) 2 

= 2 + nE(X 
= (Var(N) - E(N))E(X) 2 + E(N)E(X 2) 

= Var(N)E(X) 2 + E(N)Var(X). (3.15) 

Continuing along the same vein we get 

E(A a) = E ( N ) E ( X  a) + E(Na)E(X) 3 + 3 E ( N 2 ) E ( X ) E ( X  2) 
(3.16) 

- 3 E ( N ) E ( X ) E ( X  2) - 3E(N2)E(X) 3 + 2E(N)E(X) 3. 

and so we can compute the skewness of A--remember that E[(A - E(A)) a] = 
E(A a) - 3E(A2)E(A) + 2E(A) a. Further moments can be computed using deriva- 
tives of the moment generating function. 

Having computed the mean, CV and skewness of the aggregate using these 
equations we can use the method of moments to fit a shifted lognormal or shifted 
gamma distribution. We turn next to a description of these handy distributions. 
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3.5 Shifted Gamma and Lognormal Distributions 

The shifted gamma and shifted lognormal distributions are versatile three parame- 

ter distributions whose method of moments parameters can be conveniently com- 

puted by closed formula. The examples below show that they also provide a very 

good approximation to aggregate loss distributions. The shifted gamma approxi- 

mation to an aggregate is discussed in Bowers et al. [4]. Properties of the shifted 

gamma and lognormal distributions, including the method of moments fit param- 

eters, are also shown in Daykin et al. [7, Chapter 3]. 

Let L have a lognormal distribution. Then S = s + L is a shifted lognormal, 

where s is a real number. Since s can be positive or negative and since L can equal 

s + L or s - L, the shifted lognormal can model distributions which are positively 

or negatively skewed, as well as distributions supported on the negative reals. The 

key facts about the shifted lognormal are shown in Table 3.4. The variable 7/is a 

solution to the cubic equation 

77 a + 3 r / -  ")' = 0 

where "7 is the skewness. 

Let G have a gamma distribution. Then T = s 4- G is a shifted gamma distri- 

bution, where s is a real number. Table 3.1 shows some common parametric forms 

for the gamma distribution. The key facts about the shifted gamma distribution 

are also shown in Table 3.4. 

The exponential is a special case of the gamma where a = 1. The X 2 is a 

special case where c~ = k/2 and/3 = 2 in the Excel parameterization. The Pareto 

is a mixture of exponentials where the mixing distribution is gamma. 
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Table 3.4: Shifted Gamma and Lognormal Distributions 

Item 
Parameters 
Mean m 
Variance 
CV, u 

Skewness, 7 

Shifted Gamma 
8, 0 G 0 

s + a O  
ceO 2 

2/v  

Shifted Lognormal 
8, # ,  cr 

s + exp(# + (72/2) 
m 2 exp(a  2 - 1) 

exp((~r ~ - 1)/2) 
7 = u( u2 + 3) 

Method of Moments Parameters 
n/a 71 

Shift variable, s 

O~ oro-  

f l o r / z  

m - af t  
4 / 7  2 

rouT~2 

7 I = u - 1 /u  where 

u a = ~ + 4/2 + ")'/2 
m(1 - u~) 

v/in(l + W2) 
ln(m - s) - a2/2  

3.6 Excess Frequency Distributions 

Given a ground-up claim count distribution N,  what is the distribution of the 

number of claims exceeding a certain threshold? We assume that severities are 

independent and identically distributed and that the probability of exceeding the 

threshold is q. Define an indicator variable I which takes value 0 if the claim is 

below the threshold and the value 1 if it exceeds the threshold. Thus P r ( I  = 0) = 

p = 1 - q and P r ( I  = 1) = q. Let b i n  be the moment generating function of N 

and N '  is the number of claims in excess of the threshold. By definition we can 

express N '  as an aggregate 

N '  = I1 + . . .  + IN. (3.17) 

Thus the moment generating function of N '  is 

= Mu(log(Mt( ))) 

= a6 , ( l og (p  + qe¢)) (3.18) 

Using indicator variables I is called p-thinning by Grandell [15]. 

Here are some examples. 
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Let N be Poisson with mean n. Then 

M?~,,(4) = exp(n(p + qe ~ - 1)) = exp(qn(e ~ - 1)) (3.19) 

so N '  is also Poisson with mean qn-- the simplest possible result. 

Next let N be a G-mixed Poisson. Thus 

= M u ( l o g ( p +  qe )) 

= M G ( n ( p  + qe - 1)) 

= MG(,,q(e  -- 1)) .  (3.20) 

Hence N '  is also a G-mixed Poisson with lower underlying claim count nq in 

place of n. 

In particular, if N has a negative binomial with parameters P and c (mean cP,  

Q = 1 + P,  moment generating function MN(~) = (Q - Pe¢)-l/c), then N '  

has parameters qP and c. If N has a Poisson-inverse Gaussian distribution with 

parameters # and/3, so 

MN(~) = exp (--#(X/1 + 2 ~ ( e ¢ -  1 ) - - 1 ) ) ,  

then N is also Poisson inverse Gaussian with parameters >q and/3q. 

In all cases the variance of N'  is lower than the variance of N and N '  is closer 

to Poisson than N in the sense that the variance to mean ratio has decreased. For 

the general G-mixed Poisson the ratio of variance to mean decreases from 1 + cn 

to 1 + cqn. As q ---+ 0 the variance to mean ratio approaches 1 and N '  approaches 

a Poisson distribution. The fact that N '  becomes Poisson is called the law of small 

numbers. 
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3.7 Negat ive  M u l t i n o m i a l  Dis tr ibut ion  and  Re la ted  

F r e q u e n c y  Dis tr ibut ions*  

When we consider mixed Poisson distributions we often regard G as carrying 

inter-risk correlation, or more evocatively "contagion", information about weather, 

the state of the economy and inflation, gas prices etc. Hence if we have two related 

frequency variables N1 and N2 we should expect to use the same G and produce 

a bivariate mixed Poisson where, conditional on G = 9 ,  Ni has a Poisson distri- 

bution with mean nig and N1 and At2 are conditionally independent. The MGF of 

such a distribution will be 

M(~'1,C2) = E(e aNI+;=Na) 

= L(E(e~'NI+~2N2[G)) 

= Ec(E(eOU~IG)E(e<~N~IG)) 
= Ec(exp(G(nl(e  (' - 1) + n2(e ~2 - 1)))) 

= J ~ I G ( ' r L I ( C  ~1 - -  1 )  "~ '/~,9(C ~2 - -  1)). (3.21) 

For example, if O is a gamma random variable with MGF 

Mc(~) = (1 - /3~) -k (3.22) 

(mean kl3, variance k/32) we get a bivariate frequency distribution with MGF 

J~l(#l,~2) = [1 - / 3 ( n 1 ( e  <~ - 1 ) + n 2 ( e  ~2 - 1))] -k  

= [ l + / 3 ~ n i - / 3 E n i e ¢ ' ] - k  

= (0 - - k  (3.23) 
i 

where Pi = /3n~, P = ~ i  Pi and Q = 1 + P. Equation (3.23) is the moment 
generating function for a negative multinomial distribution, as defined in John- 
son, Kotz and Kemp [23]. The negative multinomial distribution has positively 

correlated marginals as expected given its construction with a common contagion 

G. 
The form of the moment generating function for negative multinomial distri- 

bution can be generalized allowing us to construct multivariate frequency distri- 

butions ( N1, . . . , Nt  ) where 
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1. Each Ni is a negative binomial. 

2. The sum N1 + • • • + Nt under the multivariate distribution is also negative 

binomial. (In general, the sum of independent negative binomials will not 

be negative binomial.) 

3. The Ni are correlated. 

We will call such multivariate frequencies, with common mixing distributions, 

G-mixed multivariate Poisson distributions. 

3.7.1 Evolution of Claims Over Time* 

Hm:e is an application of the NMN distribution. If  A is an aggregate distribution 

representing ultimate losses we may want to determine a decomposition A = 

}--~-t Dt into a sum of losses paid at time t for t = 1 , . . . ,  T. 

If  A = X1 + . . .  + XN has a compound Poisson distribution then such a 

decomposition is easy to arrange. Let 7rt be the expected proportion of ultimate 

losses paid at time t, so }--~ft---1 r r~t = 1. By definition we mean 

E(Dt) = rrtE(A). (3.24) 

(Equation (3.24) is a different assumption to 

E(Dt)  = rrtE(Alinformation available at t - 1) = 7rtAt_l, 

which is closer to the problem actually faced by the reserving actuary. Our rrt's 

are prior estimates assumed known at time O. These types of differences have 

interesting implications for actuarial methods and they are explored further in 

Mack [28].) Now we seek a decomposition 

A = D1 + D2 + . . .  + DT (3.25) 

but we know only (3.24). The simplest approach is to assume that severity X is 

independent of time and that 7rtn of the total n claims are paid at time t. If  we 
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further assume that the number of claims paid at time t is also Poisson, then the 

moment generating function of D1 + • . .  + DT is given by 

MD,+...+Dr(() = ~ exp(r:,n(Mx(() - i)) 

=exp(n(Z~tMx(~ ) - I)) 
t 

= exp (n (Mx( ( )  - 1)) 

= MA((). (3.26) 

Thus we have a very simple decomposition for (3.25): the individual Dt are inde- 

pendent compound Poisson variables with expected claim count rrtn and severity 

distribution X. 

Moving one step further, it is often observed in practice that average severity 

increases with t so the assumption that X is fixed for all t is unrealistic. It may be 

better to assume that losses which close at time t are samples of a random variable 

Xt. As above, we assume that the expected number of such losses is 7r~n where 

n is the expected ultimate number of claims, and r~ adjusts the original rot for the 

difference in average severity E(X)  vs. E(Xt). Now 

MD,+...+Dr(() = I I  exp(rr~n(Mx,(() - 1)) 
t 

= exp(n(Z rc~alx,(~) -- i)) 
t 

= exp(n(Mx, ( ( )  - 1)) 

= ~IA (¢) (3.27) 

where X '  is a mixture of the Xt with weights 7r~. Equation (3.27) is a standard 

result in actuarial science, see Bowers et al. [4]. 

If we try to replicate the compound Poisson argument using a negative bino- 

mial distribution for N we will clearly fail. However if X is defined as a mixture 

of Xt with weights 7rt, as before, then we can write 

~IDI,...,DT ( ¢ 1 , . . - ,  CT) = (Q - Z PrrtMx~ (¢t)) -k (3.28) 
t 
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and so 

MA(¢) = aiD,,. ,V~(¢ , . . . ,  4) = (Q - ~ e , ~ l x , ( ¢ ) )  -~ = (O - P M x ( ¢ ) )  -~ 
t 

(3.29) 

where Pt := rctP. Equation (3.28) is the MGF for a negative multinomial dis- 

tribution, as defined in the previous section and Johnson, Kotz and Kemp [23]. 

As we have seen the negative multinomial distribution has positively correlated 

marginals, in line with our prior notions of liability dynamics. It therefore pro- 

vides a good model for the decomposition of ultimate losses into losses paid each 

period. 

3.7.2 Related Multivariate Frequency Distributions* 

We can use the same trick with other mixing distributions than the gamma. The 

Poisson inverse Gaussian (PIG) distribution is an inverse Gaussian mixture of 

Poissons, just as the negative binomial distribution is a gamma mixture. The MGF 

is 

M(~') = e x p ( - r ( v / 1  +/3(e~ - 1) - 1)). (3.30) 

The mean is r3 and the variance is r3(1 +/3). We can define a multivariate PIG 

(MPIG) by 

M(¢I,..., @) = exp(-r(~l + ~/3i(e~ - i) - I)). (3.31) 

Sichel's distribution is an generalized-inverse Gaussian mixture of Poissons. 

The MGF is 
Kv(wV/1 - 2/3(e¢ - 1)) 

AI(4) = K~(co)(1 - 2/3(e¢ - 1))~/2 (3.32) 

The mean and variance are given in Johnson, Kotz and Kemp [24, page 456]. 

Clearly we can apply the same techniques to get another multivariate frequency 

distribution. 
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The Poisson-Pascal distribution is a Poisson-stopped sum of negative binomi- 

als. It has moment generating function 

M(~) = exp(0((1 - P(e ~ - 1)) -~ - 1)) (3.33) 

and so will also yield another multivariate family. The mean and variance are 

given by 

# = OkP (3.34) 

1~2 = OkP(Q + k,P). (3.35) 

3.7.3 Excess count interpretation of G-mixed multivariate Pois- 
son distributions* 

The reader has probably realized that a G-mixed multivariate Poisson seems closely 

related to a single G-mixed Poisson and a series of indicator variables, combin- 

ing results from the previous sub-sections with Section 3.6. Let N be G-mixed 

Poisson with parameter n and Var(G) = c. Let (N1, N2) be G-mixed bivariate 

Poisson with parameters nl and n2 and the same G, so the MGF of (N1, ?v~) is 

M1(~1,~2) = Ma(nl (e  ¢1 - 1 ) +  n2(e c2 - 1)). (3.36) 

Finally let (I, J )  be a bivariate distribution supported on {0, 1} x {0, 1} with 

P r ( I  = 0, J = 0) = p0o 

P r ( I  = 1, J = 0) = pm 

P r ( I  = 0, J = 1) = pol 

P r ( I  = 1, J = 1) = pn  

and y~ p , j  = 1. 

We can define a new bivariate distribution from (I, J )  and N as 

(M1, M2) = (I1, al) + . . .  + (IN, dx).  (3.37) 
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The MGF of (M1, M2) is 

]~f2(~l, ~2) = Mc(n(pl le  ¢x+¢= + p l o e  ¢1 +Pine ¢2 +Poo). (3.38) 

Thus, if Pll = 0 we see the single-frequency sum of the bivariate (M1, M2) is 

actually a G-mixed bivariate Poisson. If P00 = 0 then n = T/. 1 -1- 122, otherwise 

(1 - Poo)n = nl + n2 and there are some extraneous "zero" claims. However, if 

Pn  :P- 0 then the single frequency sum is not a G-mixed bivariate Poisson. 

Here is an interesting interpretation and application of (I ,  or). We can regard 1 

as an indicator of whether a claim has been reported at time t and J and indicator 

of whether the claim is closed. Then 

P r ( I  = 0, J = 0) = meaningless 

P r ( I  = 1, J = 0) = reported claim which closes without payment 

P r ( I  = 0, J = 1) = claim not yet reported which closes with payment 

P r ( I  = 1, J = 1) = claim reported and closed with payment. 

Combining with a distribution N of ultimate claims we can use (3.37) to produce 

(M1, M2) = (11 + .-- + 1N, 3"1 + "'" + JN)--a  bivariate distribution of (claims 

reported at time t, ultimate number of claims)! Note the value (0, 0) is a meaning- 

less annoyance (it scales n) and we assume P00 = 0. The three other parameters 

can easily be estimated using standard actuarial methods. 

Given such a bivariate and a known number of  claims reported we can produce 

a posterior distribution of ultimate claims. Furthermore, in all these techniques we 

can extend the simple count indicators (I ,  J )  to be the distribution of case incurred 

losses and ultimate losses. Then we would get a bivariate distribution of case 

incurred to date and ultimate losses. I believe there is a lot of useful information 

that could be wrought from these methods and that they deserve further study. 

They naturually give confidence intervals on reserve ranges, for example. 

We end with a numerical example illustrating the theory we have developed 

and showing another possible application. Rather than interpreting p,j as reported 
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and ultimate claims we could interpret them as claims from line A and line B, 

where there is some expectation these claim would be correlated. For example A 

could be auto liability and B workers compensation for a trucking insured. Let 

c = 0.02 be the common contagion and n = 250. Then let 

P r ( I  = 0, J = 0) = 0 

P r ( I  = 1, a = 0) = 0.45 

P r ( I  = 0, J = 1) = 0.05 

P r ( I  = 1, J = 1) = 0.50. 

We interpret I as indicating a workers compensation claim and J as indicating 

an auto liability claim. The distribution says that when there is an auto liability 

claim (J  = 1) there is almost always an injury to the driver, resulting in a workers 

compensation claim (I  = 1). However, there are many situations where the driver 

is injured but there is no liability claim--such as back injuries. Overall we expect 

250(0.45 + 0.50) = 237.5 workers compensation claims and 250(0.05 + 0.5) = 

137.5 auto liability claims and 250 occurrences. 

We will consider the single-frequency bivariate distribution and the nega- 

tive multinomial. We have seen that the negative multinomial distribution will 

be slightly different because Pn :fl 0. The appropriate parameters are nl = 

250(P10 q- P11) = 237.5 and nl = 250(pol + P l l )  - -  137.5. Figure 3.1 shows 

the negative multinomial bivariate (top plot) and the single-frequency bivariate 

aggregate of (I,  J )  (bottom plot). Because of the correlation between 1 and J ,  

pll ---- 0 .5 ,  the lower plot shows more correlation in aggregates and the con- 

ditional distributions have less dispersion. Figure 3.2 shows the two marginal 

distributions, which are negative binomial c = 0.02 and mean 237.5 and 137.5 re- 

spectively, the sum of these two variables assuming they are independent (labelled 

"independent sum"), the sum assuming the negative muitinomial joint distribution 

("NMN Sum") which is identical to a negative binomial with c = 0.02 and mean 

350 = 237.5 + 137.5, the total number of claims from both lines, and finally, the 

sum with dependent (I, J )  ("bivariate sum"). The last sum is not the same as the 

negative binomial sum; it has a different MGF. 
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Figure 3.2 also shows the difference between the sum of two independent neg- 

ative binomials with means nl and n2 and contagion c and a negative binomial 

with mean nl + n2 and contagion c. The difference is clearly very material in the 

tails and is an object lesson to modelers who subdivide their book into homoge- 

neous parts but then add up those parts assuming independence. Such an approach 

is wrong and must be avoided. 

As the contagion c increases the effects of G-mixing dominate and the differ- 

ence between the two bivariate distributions decreases, and conversely as c de- 

creases to zero the effect is magnified. The value c = 0.02 was selected to balance 

these two effects. 
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Figure 3.1: Comparison of negative multinomial (top) and single frequency bi- 
variate claim count (bottom) bivariate distributions. 
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Figure 3.2: Comparison of negative multinomial and single frequency bivariate 
claim count marginal and total distributions. 
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3.8 Fast Fourier Transforms 

The FFF method is a miraculous technique for computing aggregate distributions. 

It is especially effective when the expected claim count is relatively small and the 

underlying severity distribution is bounded. These assumptions are true for many 

excess of loss reinsurance treaties, for example. Thus the FFT is very useful when 

quoting excess layers with annual aggregate deductibles or other variable features. 

The FFT provides a discrete approximation to the moment generating function. 

To use the FFT method, first "bucket" (or quantize) the severity distribution 

into a density vector x = ( x l , . . . ,  xm) whose length m is a power of two m = 2 n. 

Here 

zi = Pr(( i  - 1/2)b < X < (i + 1/2)b) (3.39) 

Xl = Pr (X  < b/2), z,~ = P r (X  > (m - 1/2)b) (3.40) 

for some fixed b. We call b the bucket size. Note ~ z, = 1 by construction. The 

FFT of the m x 1 vector x is another m x 1 vector i whose j th  component is 

2 n - - 1  

zk exp( 2rri j k /2n). (3.41) 
k=O 

The coefficients of ~: are complex numbers. It is also possible to express ~ = Fx 

where F is an appropriate matrix of complex roots of unity, so there is nothing 

inherently mysterious about a FFr.  The trick is that there exists a very efficient 

algorithm for computing (3.41). Rather than taking time proportional to m s, as 

one would expect, it can be computed in time proportional to m log(m). The 

difference between m log(m) and m 2 time is the difference between practically 

possible and practically impossible. 

You can use the inverse FFT to recover x from its transform ~. The inverse 

FFT is computed using the same equation (3.41) as the FFT except there is a 

minus sign in the exponent and the result is divided by 2 n. Because the equation 

is essentially the same, the inversion process can also be computed in m log(m) 

time. 
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The next step is magic in actuarial science. Remember that if N is a G-mixed 

Poisson and A = X1 + • • • + X N  is an aggregate distribution then 

~IA(~) = ~IG(n(~IX(~)  -- 1)). (3.42) 

Using FFTs you can replace the function M x  with the discrete approximation 

vector ~i and compute 

= M a ( n ( i -  1)) (3.43) 

component-by-component to get an approximation vector to the function MA. 

You can then use the inverse FFT to recover an discrete approximation a of A 

from ~i! See Wang [37] for more details. 

Similar tricks are possible in two dimensions--see Press et al. [31 ] and Homer 

and Clark [20] for a discussion. 

The FFT allows us to use the following very simple method to qualitatively ap- 

proximate the density of an aggregate of dependent marginals X1,. • •, Xn given 

a correlation matrix E. First use the FFT method to compute the sum S' of the X~ 

as though they were independent. Let Var(S') = a '2 and let a 2 be the variance of 

the sum of the X~ implied by E. Next use the FFT to add a further "noise" ran- 

dom variable N to S' with mean zero and variance a 2 - a '2. Two obvious choices 

for the distribution of N are normal or shifted lognormal. Then S' + N has the 

same mean and variance as the sum of the dependent variables Xi. The range of 

possible choices for N highlights once again that knowing the marginals and cor- 

relation structure is not enough to determine the whole multivariate distribution. It 

is an interesting question whether all possible choices of N correspond to actual 

multivariate structures for the X, and conversely whether all multivariate struc- 

tures correspond to an N. (It is easy to use MGFs to deconvolve N from the true 

sum using Fourier methods; the question is whether the resulting "distribution" is 

non-negative.) 

Heckman and Meyers [17] used Fourier transforms to compute aggregate dis- 

tributions by numerically integrating the characteristic function. Direct inversion 

of the Fourier transform is also possible using FFrs.  The application of FFrs  is 

not completely straight forward because of certain aspects of the approximations 

involved. The details are very clearly explained in Menn and Rachev [29]. Their 

method allows the use of FFTs to determine densities for distributions which have 

analytic MGFs but not densities--notably the class of stable distributions. 
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3.9 Correlated Aggregate Distributions 

Here we extend some of the ideas in Section 3.7.3 from plain frequency distri- 

butions to aggregate distributions. Begin with bivariate aggregate distributions. 

There are two different situations which commonly arise. First we could model a 

bivariate severity distribution and a univariate count distribution: 

(A, B) = (Xl, Y1) + " "  + (XN, YN). (3.44) 

Equation (3.44) arises naturally as the distribution of losses and allocated expense, 

ceded and retained losses, reported and ultimate claims, and in many other situa- 

tions. Secondly we could model 

(A,B) = (X~ +. . .  + XM, Y~ +""  + YN) (3.45) 

where Xi and ~ are independent severities and (A1, N) is a bivariate frequency 

distribution. (3.45) could be used to model losses in a clash policy. 

We will use the following notation. A = X1 + . - .  +XM and B = Y1 +" • • + YN 

are two aggregate distributions, with Xi iid and Yj iid, but neither X and Y nor 

M and N necessarily independent. Let E(X)  = x and E(Y) = y, Var(X) = vx 

and Var(Y) = %. Let E(M) = m, E(N)  = n, c be the contagion of M and d 

that of N. Hence Var(M) = m(1 + c r a )  and Var(N) = n(1 + dn). 

Will now calculate the correlation coefficient between A and B in four situa- 

tions. 

3.9.1 Correlated Severities, Single Frequency 

Assume that the bivariate severity distribution (X. Y) has moment generating 

function M(xy)(~', r) .  Also assume that the claim count distribution N is a G- 

mixed Poisson. Then, just as for univariate aggregate distributions, the MGF of 

the bivariate aggregate (A, B) is 

~I(A,B)(~, T) = ~IG(Zl,(~I(X,y)(~, T) -- 1)). (3.46) 
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Therefore, since E(G) = i and E(G 2) = 1 + c, 

E(AB) = 0 2 J ~ ( A ' B )  
O~Or (o,o) 

: . ,  

O ~  + o;or 
= (1 + c),~xy +,~E(XY) 

= (1 + c)n2xy + nCov(X, Y) + nxy. (3.47) 

The value of Coy(X, Y) will depend on the particular bivarate severity distribu- 

tion. 

For example, suppose that Z represents ground up losses, X represents a re- 

tention to a and Y losses excess of a (per ground up claim), so Z = X + Y. Then 

(X, Y) is a bivariate severity distribution. Since Y is zero when Z < a we have 

Cov(X, Y) = (a - x)y. 

3 . 9 . 2  B i v a r i a t e  F r e q u e n c y  

The second method for generating correlated aggregate distributions is to use a 

bivariate frequency distribution. So, suppose (M, N) has a G-mixed bivariate 

Poisson distribution. The variance of A is given by Equation (3.15). To compute 

the covariance of A and B write the bivariate MGF of (A, B) as 

- ~ ( A , B ) ( ~ ,  ~)  = J~f(~,  71) = A I G ( T t ' t ( J ~ X ( ~ )  - -  1) +n(Mv(~) - 1)) = M c ( ¢ ( ~ ,  71)) 

(3.48) 

where the last equality defines ~b. Then, evaluating at the partial derivatives at 

zero, we get 

Hence 

E(AB) 
02 M 
0¢ 0~ 
02Me O~ O~ OMG 02¢ 

- -  . q -  - -  - -  

Ot 2 0 (  O~ Ot 0~0~ 
= (1 + c ) m x n y .  (3.49) 

Cov(A, B) = E(AB) - E(A)E(B) = cmnxy. (3.50) 
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3.9.3 Parameter Uncertainty 

It is common for actuaries to work with point estimates as though they are certain. 

In reality there is a range around any point estimate. We now work through one 

possible implication of such parameter uncertainty. We will model E(A) = R and 

E(B) = S with R and S correlated random variables, and A and B conditionally 

independent given R and S. We will assume for simplicity that the severities 

X and Y are fixed and that the uncertainty all comes from claim counts. The 

reader can extend the model to varying severities as an exercise. R and S pick up 

uncertainty in items like the trend factor, tail factors and other economic variables, 

as well as the natural correlation induced through actuarial methods such as the 

Bornheutter-Ferguson. 

Suppose E(R) = r, E(S) = s, Var(R) = Vr, Var(S) = vs and let p be the 

correlation coefficient between R and S. 

By (3.15) the conditional distribution of AIR is a mixed compound Poisson 

distribution with expected claim count R/x and contagion c. Therefore the con- 

ditional variance is 

Var(A[R) = E(MIR)Var(X) ÷Var(MIR)E(X) 2 

= R / x v ~  + R / x O  + c n / x ) ~  2 

= xR(1 + v~/x 2) + cR 2, (3.51) 

and the unconditional variance of A is 

Var(A) = E(Var(AIR))  + V a r ( E ( A I R ) )  

= E ( x R ( v ~ / x  ~ + 1) + cR  ~) + Var(R) 

= x r ( y x / X  2 + 1) --~ c(v r + r 2) --~ v r. (3.52) 

Next, because A and B are conditionally independent given R and S, 

Cov(A, B) = E(Cov(A, B[R,S)) + Cov(E(AIR), E(BIS)) 

= Coy(R, S). (3.53) 

Note Equation (3.53) is only true if we assume A ~ B. 
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3.9.4 Parameter Uncertainty and Bivariate Frequency 

Finally, suppose E(A) = R, E(B) = S with R and S correlated parameters 

and conditional on (R, S) suppose that (M, N) has a G-mixed bivariate Poisson 

distribution. By (3.50) Coy(A, BIR, S) = cRS. The unconditional variances are 

as given in (3.52). The covariance term is 

Cov(A, B) = E(Cov(A, BIR, S)) + Cov(E(AIR),E(BIS)) 

= cE(RS) + Cov(R, s)  

= +  )Cov(R, s) + 

= p Vv/7~%~v%(1 + c) + crs. (3.54) 

3.10 Severity is Irrelevant 

In some cases the actual form of the severity distribution is essentially irrelevant 

to the shape of the aggregate distribution. Consider an aggregate with a G-mixed 

Poisson frequency distribution. If the expected claim count n is large and if the 

severity is tame (roughly tame means "has a variance"; any severity from a policy 

with a limit is tame; unlimited workers compensation may not be tame) then par- 

ticulars of the severity distribution diversify away in the aggregate. Moreover the 

variability from the Poisson claim count component also diversifies away and the 

shape of the aggregate distribution converges to the shape of the frequency mix- 

ing distribution G. Another way of saying the same thing is that the normalized 

distribution of aggregate losses (aggregate losses divided by expected aggregate 

losses) converges in distribution to G. 

We can prove these assertions using moment generating functions. Let Xn be 

a sequence of random variables with distribution functions Fn and let X another 

random variable with distribution F. If F,~(z) --+ F(z) as n ~ to for every point 

of continuity of F then we say Fn converges weakly to F and that Xn converges 

in distribution to F. 

Convergence in distribution is a relatively weak form of  convergence. A stronger form is 

convergence in probability, which means  for all e > 0 P r ( l X n  - X I > e) ---* 0 as n ~ a t .  I f X n  
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converges to X in probability then Xn  also converges to X in distribution. The converse is false. 

For example, let X n  = Y and X be binomial 0/1 random variables with P r ( Y  = 1) = P r ( X  = 

1) = 1/2. Then  X n  converges to X in distribution. However, since Pr(IX - YI = 1) = 1/2, Xn 

does not converge to X in probability. 

It is a fact that Xn converges to X if the MGFs Mn of Xn converge to the 

MFG of M of X for all t: Mn(t) --* M ( t )  as n ~ ~ .  See Feller [12] for more 

details. We can now prove the following theorem. 

Proposition 1 Let N be a G-mixed Poisson distribution with mean n, G with 

mean 1 and variance c, and let X be an independent severity with mean x and 

variance x(1 + '3'2). Let A = X1 + ' "  + X N  and a = nx. Then A / a  converges in 

distribution to G, so 

e r ( A / a  < c~) ---, Pr(G < c~) (3.55) 

as n --+ co. Hence 

Proof: By (3.12) 

i x(1 + 72) x/~. (3.56) I ) = c + + 

a 

MA(()  = M c ( n ( M x ( ( )  - 1)) 

and so using Taylor's expansion we can write 

lim MA/a(() 
n ~ O 0  

= lim M a ( ( / a )  

= ] i m o o M G ( n ( M x ( ( / n x )  - 1)) 

= } i r a  + 

= lim M e ( (  + n R ( ( / n x ) ) )  
n ~ O 0  

= M a ( ( )  

(3.57) 

for some remainder function R(t)  = O(t2). Note that the assumptions on the 

mean and variance of X guarantee M~(0) = x = E(X) and that the remainder 

term in Taylor's expansion actually is O(t2). The second part is trivial. 
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Figure 3.3: Theoretical distribution of scaled aggregate losses with no parameter 
or structure uncertainty and Poisson frequency. 
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F i g u r e  3 . 4 :  T h e o r e t i c a l  d i s t r i b u t i o n  e n v e l o p e  o f  s c a l e d  a g g r e g a t e  l o s s e s  w i t h  a 

g a m m a  m i x e d  P o i s s o n  f r e q u e n c y  w i t h  m i x i n g  v a r i a n c e  c = 0 . 0 6 2 5 .  
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The proposition implies that if the frequency distribution is actually a Pois- 

son, so the mixing distribution G is G = 1 with probability 1, then the loss ratio 

distribution of a very large book will tend to the distribution concentrated at the 

expected, hence the expression that "with no parameter risk the process risk com- 

pletely diversifies away." 

Figures 3.3 and 3.4 illustrate the proposition, showing how aggregates change 

shape as expected counts increase. 

In Figure 3.3 G = 1 and the claim count is Poisson. Here the scaled distribu- 

tions get more and more concentrated about the expected value (scaled to 1.0). 

In Figure 3.4 G has a gamma distribution with variance 0.0625 (asymptotic 

CV of 25%). Now the scaled aggregate distributions converge to G. 

It is also interesting to compute the correlation between A and G. We have 

Coy(A, G) = E(AG) - E(A)E(G) 

= E E ( A G I G ) -  nx 

= E(nxG 2 ) - n x  

: n X C ~  (3.58) 

and therefore 

Corr(A, G) = nxc /x /nx  7 + n(1 + cn)V"c ~ 1 (3.59) 

a s h - +  c~. 

The proposition shows that in some situations severity is irrelevant to large 

books of business. However, it is easy to think of examples where severity is 

very important, even for large books of business. For example, severity becomes 

important in excess of loss reinsurance when it is not clear whether a loss distri- 

bution effectively exposes an excess layer. There, the difference in severity curves 

can amount to the difference between substantial loss exposure and none. The 

proposition does not say that any uncertainty surrounding the severity distribution 

diversifies away; it is only true when the severity distribution is known with cer- 

tainty. As is often the case with risk management metrics, great care needs to be 

taken when applying general statements to particular situations! 
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Chapter 4 

THE IMAN-CONOVER METHOD 

Here is the basic idea of the Iman-Conover method. Given samples of n val- 

ues from two known marginal distributions X and Y and a desired correlation/9 

between them, re-order the samples to have the same rank order as a reference 

distribution, of size n x 2, with linear correlation/9. Since linear correlation and 

rank correlation are typically close, the re-ordered output will have approximately 

the desired correlation structure. What makes the IC method work so effectively is 

the existence of easy algorithms to determine samples from reference distributions 

with prescribed linear correlation structures. 

Section 4.1 explains the Choleski trick for generating multivariate reference 

distributions with given correlation structure. Section 4.2 gives a formal algorith- 

mic description of the IC method. 

4.1 Theoretical Derivation 

Suppose that M is an n element sample from an r dimensional multivariate dis- 

tribution, so M is an n × r matrix. Assume that the columns of M are uncorre- 

lated, have mean zero, and standard deviation one. Let M' denote the transpose of 

M. These assumptions imply that the correlation matrix of the sample M can be 

computed as n -aM'M,  and because the columns are independent, n -aM'M = I. 

(There is no need to scale the covariance matrix by the row and column standard 
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deviations because they are all one. In general n - I M ' M  is the covariance matrix 

of M.) 

Let S be a correlation matrix, i.e. S is a positive semi-definite symmetric ma- 

trix with l ' s  on the diagonal and all elements <_ 1 in absolute value. In order to 

rule out linearly dependent variables assume S is positive definite. These assump- 

tions ensure S has a Choleski decomposition 

S = C 'C (4.1) 

for some upper triangular matrix C, see Golub [13] or Press et al. [31]. Set T = 

MC. The columns of T still have mean zero, because they are linear combinations 

of the columns of M which have zero mean by assumption. It is less obvious, but 

still true, that the columns of T still have standard deviation one. To see why, 

remember that the covariance matrix of T is 

n - a T ' T  = n - I C ' M ' M C  = C 'C  = S, (4.2) 

since n - I M ' M  = I is the identity by assumption. Now S is actually the correlation 

matrix too because the diagonal is scaled to one, so the covariance and correlation 

matrices coincide. The process of converting M, which is easy to simulate, into 

T, which has the desired correlation structure S, is the theoretical basis of the IC 

method. 

It is important to note that estimates of correlation matrices, depending on how 

they are constructed, need not have the mathematical properties of  a correlation 

matrix. Therefore, when trying to use an estimate of a correlation matrix in an 

algorithm, such as the Iman-Conover, which actually requires a proper correlation 

matrix as input, it may be necessary to check the input matrix does have the correct 

mathematical properties. 

Next we discuss how to make n x r matrices M, with independent, mean zero 

columns, The basic idea is to take n numbers a l , . . . ,  a ,  with ~'-~ a i = 0 and 

n -  ~ ~-'~, a, 2 = 1, use them to form one n x 1 column of M, and then to copy it r 

times. Finally randomly permute the entries in each column to make them inde- 

pendent as columns of random variables. Iman and Conover call the ai "scores". 
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They discuss several possible definitions for the scores, including scaled versions 

of a~ = i (ranks) and ai uniformly distributed. They note that the shape of the 

output multivariate distribution depends on the scores. All of the examples in 

their paper use normal scores. We will discuss normal scores here, and consider 

alternatives in Section 4.4.1. 

Given that the scores will be based on normal random variables, we can either 

simulate n random standard normal variables and then shift and re-scale to ensure 

mean zero and standard deviation one, or we can use a stratified sample from the 

standard normal, a, = ~b-l(i/(n + 1)). By construction, the stratified sample 

has mean zero which is an advantage. Also, by symmetry, using the stratified 

sample halves the number of calls to ~b -1. For these two reasons we prefer it in 

the algorithm below. 

The correlation matrix of M, constructed by randomly permuting the scores in 

each column, will only be approximately equal to I because of random simulation 

error. In order to correct for the slight error which could be introduced Iman and 

Conover use another adjustment in their algorithm. Let E = n - I M ' M  be the 

actual correlation matrix of M and let E = F 'F be the Choleski decomposition of 

E, and define T = MF-1C.  The columns o f T  have mean zero, and the covariance 

matrix of T is 

n - I T ' T  = n - I C ' F ' - I M ' M F - 1 C  

= C 'F ' - IEF-1C 

= C 'F ' - IF 'FF-1  C 

= C'C 

= S, (4.3) 

and hence T has correlation matrix exactly equal to S, as desired. If E is singular 

then the column shuffle needs to be repeated. 

Now the reference distribution T with exact correlation structure S is in hand, 

all that remains to complete the IC method is to re-order the each column of the 

input distribution X to have the same rank order as the corresponding column of 

T. 
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4.2 Algorithm 

Here is a more algorithmic description of the IC method. The description uses 

normal scores and the Choleski method to determine the reference distribution. 

As we discussed above, it is possible to make other choices in place of these and 

they are discussed in Section 4.4. We will actually present two versions of the 

core algorithm. The first, called "Simple Algorithm" deals with the various ma- 

trix operations at a high level. The second "Detailed Algorithm" takes a more so- 

phisticated approach to the matrix operations, including referencing appropriate 

Lapack routines [1]. Lapack is a standard set of linear algebra functions, Soft- 

ware vendors provide very high performance implementations of Lapack, many 

of which are used in CPU benchmarks. Several free Windows implementations 

are available on the web. The software described in the Appendix uses the Intel 

Performance http://www.intel.com/softwarelproducts/perflibl. The reader should 

study the simple algorithm first to understand what is going in the IC method. In 

order to code a high performance implementation you should follow the steps out- 

lined in the detailed algorithm. Both algorithms have the same inputs and outputs. 

Inputs: An n x r matrix X consisting of n samples from each of r marginal 

distributions, and a desired correlation matrix S. 

The IC method does not address how the columns of X are determined. It is 

presumed that the reader has sampled from the appropriate distributions in some 

intelligent manner. The matrix S must be a correlation matrix for linearly indepen- 

dent random variables, so it must be symmetric and positive definite. If S is not 

symmetric positive semi-definite the algorithm will fail at the Choleski decompo- 

sition step. The output is a matrix T each of whose columns is a permutation of 

the corresponding column of X and whose approximate correlation matrix is S. 

Simple Algorithm: 

1. Make one column of scores a, = gP-l(i/(n + 1)) for i = 1 , . . .  , n  and 

rescale to have standard deviation one. 
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2. Copy the scores r times to make the score matrix M. 

3. Randomly permute the entries in each column of M. 

4. Compute the Correlation matrix E = n- IM'M of M. 

5. Compute the Choleski decomposition E = F 'F of E. 

6. Compute the Choleski decomposition S = C'C of the desired correlation 

matrix S. 

7. Compute T = MF-1C. The matrix T has exactly the desired correlation 

structure by Equation (4.3). 

8. Let Y be the input matrix X with each column reordered to have exactly the 

same rank ordering as the corresponding column of T. 

Detailed Algorithm: 

1. Compute the Choleski decomposition of S, S = C'C, with C upper triangu- 

lar. If the Choleski algorithm fails then S is not a valid correlation matrix. 

Flag an error and exit. Checking S is a correlation matrix in Step 1 avoids 

performing whsted calculations and allows the routine to exit as quickly as 

possible. Also check that all the diagonal entries of S are 1 so S has full 

rank. Again flag an error and exit if not. The Lapack routine DPOTRF 

can use be used to compute the Choleski decomposition. In the absence of 

Lapack, C = (cia) can be computed recursively using 

.4--1 
sij - Y~k=l CikCjk (4.4) 

CiJ ~ ¢ ~"~j--1 
1 - z_,k=l c2jk 

for 1 < i < j _< n--since all the diagonal elements of S equal one. The 

empty sum }-~0 ° = 0 and for j > i the denominator of (4.4) equals c,~ and 

the elements of C should be calculated from left to right, top to bottom. See 

Wang [37, p. 889] or Herzog [19]. 
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2 .  L e t  m = Ln/2J be the largest integer less than or equal to hi2 and v i  = 

q?-l(il(2m+ 1)) fo r i  = 1 , . . .  ,m. 

3. If n is odd set 

V -.~ ( V r a ,  V m - 1 ,  . . . , V l ,  O,  - - V l ,  . . . , - - V m )  

and if n is even set 

V = ( V m ,  V r n - 1 , . . . , t ' l , - - V l , . . . , - - V m ) .  

Here we have chosen to use normal scores. Other distributions could be 

used in place of the normal, as discussed in Section 4.4.1. Also note that 

by taking advantage of the symmetry of the normal distribution halves the 

number of calls to ~-1 which is relatively computationally expensive. If 

multiple calls will be made to the IC algorithm then store v for use in future 

calls. 

4. Form the n x r score matrix M from r copies of the scores vector v. 

5. Compute m, zx = n -1 )-~ v/2, the variance of v. Note that ~-'~i vi = 0 by 

construction. 

6. Randomly shuffle columns 2 , . . . , r  of  the score matrix M. Knuth [26, 

pp.139-41] gives the following algorithm for a random shuffle, which we 

have implemented it in Visual Basic. 

'' vtemp[O to n-l] is the array being shuffled. 

'' vtemp[j] is the end, you work backwards up the 

'' array shuffling each element. 

'' Rnd() returns a uniform random variable 

'' between zero and one. 

dim j as long, vtemp[O to n-l] as double 

dim temp as double, u as double 
Is 

'' populate vtemp 
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j=n-1 
do while j > 0 

u = Rnd() 

k = CLng(j * u) 

temp = vtemp[j] 

vtemp[j] = vtemp[k] 

vtemp[k] = temp 

j=j -i 

loop 

. Compute the correlation matrix E of the shuffled score matrix M. Each 

column of M has mean zero, by construction, and variance rnxz. The cor- 

relation matrix is obtained by dividing each element of M'M by rex,. The 

matrix product can be computed using the Lapack routine DGEMM. If E is 

singular repeat step 6. 

8. Determine Choleski decomposition E = F'F of E using the Lapack rou- 

tine DPOTRF. Because E is a correlation matrix it must be symmetric and 

positive definite and so is guaranteed to have a Choleski root. 

9. Compute F-1C using the Lapack routine DTRTRS to solve the linear equa- 

tion FA = C for A. Solving the linear equation avoids a time consuming 

matrix inversion and multiplication. The routine DTRTRS is optimized for 

upper triangular input matrices. 

10. Compute the correlated scores T = MF-1C = MA using DGEMM. The 

matrix T has exactly the desired correlation structure. 

11. Compute the ranks of the elements of T. Ranks are computed by indexing 

the columns of T as described in Section 8.4 of [31]. Let r(k) denote the 

index of the kth ranked element of T. See Appendix B for VBA code to 

perform indexing. 

12. Let Y be the n × r matrix with ith column equal to the ith column of the input 

matrix X given the same rank order as T. The re-ordering is performed using 

the ranks computed in the previous step. First sort the input columns into 

ascending order if they are not already sorted and then set Y,,k = X~,r(k). 
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Outputs: The output of the algorithm is a matrix Y each of whose columns is a 
permutation of the corresponding column of the input matrix X. The rank correla- 
tion matrix of Y is identical to that of a multivariate distribution with correlation 
matrix S. 

4.3 Simple Example of Iman-Conover 

Having explained the IC method, we now give a simple example to explicitly show 
all the details. The example will work with n = 20 samples and r = 4 different 
marginals. The marginals are samples from four lognormal distributions, with 
parameters # = 12, 11, 10, 10 and a = 0.15, 0.25, 0.35, 0.25. The input matrix is 

'123,567 
126,109 
138,713 
139,016 
152,213 
153,224 
153,407 
155,716 
155,780 

X =  161,678 
161,805 
167,447 
170,737 
171,592 
178,881 
181,678 
184,381 
206,940 
217,092 
240,935 

44,770 15,934 13,273 ~ 
45,191 16,839 15,406 
47,453 17,233 16,706 
47,941 17,265 16,891 
49,345 17,620 18,821 
49,420 17,859 19,569 
50,686 20,804 20,166 
52.931 21.110 20,796 
54,010 22,728 20,968 
57,346 24,072 21,178 
57,685 25,198 23,236 
57,698 25,393 23,375 
58,380 30,357 24,019 
60,948 30,779 24,785 
66.972 32,634 25,000 
68.053 33,117 26,754 
70,592 35,248 27,079 
72,243 36,656 30,136 
86,685 38,483 30,757 
87,138 39,483 35,108 

(4.5) 

Note that the marginals are all sorted in ascending order. The algorithm does not 
actually require pre-sorting the marginals but it simplifies the last step. 

The desired target correlation matrix is 

1.000 0.800 0.400 0.000 
S = 0.800 1.000 0.300 -0 .200]  

0.400 0.300 1 .000 0.100 ] " 
\o.ooo -0.200 O.lOO 1.ooo / 

(4.6) 
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The Choleski decomposition of S is 

{1.000 0.800 0.400 0.000 
|0.000 0.600 -0.033 -0.333 / 

C = |0.000 0.000 0.916 0.097 ] " (4.7) 
\0.000 0.000 0.000 0.938 J 

Now we make the score matrix. The basic scores are q5-1(i/21), for i = 

1 , . . . ,  20. We scale these by 0.868674836252965 to get a vector v with standard 

deviation one. Then we combine four v's and shuffle randomly to get 

/ -1 .92062 
-1.50709 
-1.22896 
-1.00860 
-0.82015 
-0.65151 
-0.49584 
-0.34878 
-0.20723 
-0.06874 

M =  
0.06874 
0.20723 
0.34878 
0.49584 
0.65151 
0.82015 
1.00860 
1.22896 
1.50709 
1.92062 

As described in Section 4.1, 

covariance matrix 

1.22896 -1.00860 -0.49584'  
-1.50709 -1.50709 0.82015 
1.92062 0.82015 -0.65151 

-0.20723 1.00860 -1.00860 
0.82015 0.34878 1.92062 

-1.22896 -0.65151 0.20723 
-0.65151 1.22896 -0.34878 
-0.49584 -0.49584 -0.06874 
-1.00860 0.20723 0.65151 
0.49584 0.06874 -1.22896 

-0.34878 -1.22896 0.49584 
0.34878 0.65151 0.34878 

-0.06874 -0.20723 1.22896 
-1.92062 -0.82015 -0.20723 
0.20723 1.92062 -1.92062 
1.00860 1.50709 1.50709 

-0.82015 -1.92062 1.00860 
1.50709 0.49584 -1.50709 
0.06874 -0.06874 0.06874 
0.65151 -0.34878 -0.82015 

M is approximately 

(4.8) 

independent. In fact M has 

E = 

1.0000 0.0486 0.0898 
0.0486 1.0000 0.4504 
0.0898 0.4504 1.0000 

-0.0960 -0.2408 -0.3192 

-0.0960'~ 
-0 .2408]  
-0 .3192]  
1.oooo / 

(4.9) 
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and E has Choleski  decomposi t ion 

[1 .0000  0.0486 0.0898 

| 0 . 0 0 0 0  0.9988 0.4466 
F =  

| 0 . 0 0 0 0  0.0000 0.8902 
| 

\ 0 .0000  0.0000 0.0000 

Thus T = M F - 1 C  is given by 

f-1.92062 -0.74213 -2.28105 
-1.50709 -2.06697 -1.30678 
-1.22896 0.20646 -0.51141 
-1.00860 -0.90190 0.80546 
-0.82015 -0.13949 -0.31782 
-0.65151 -1.24043 -0.27999 
-0.49584 -0.77356 1.42145 
-0.34878 -0.56670 -0.38117 
-0.20723 -0.76560 0.64214 
-0.06874 0.24487 -0.19673 

T = 
0.06874 -0.15653 -1.06954 
0.20723 0.36925 0.56694 
0.34878 0.22754 -0.06362 
0.49584 -0.77154 0.26828 
0.65151 0.62666 2.08987 
0.82015 1.23804 1.32493 
1.00860 0.28474 -1.23688 
1.22896 1.85260 0.17411 
1.50709 1.20294 0.39517 
1.92062 1.87175 -0.04335 

-0 .0960 '~  
- 0 . 2 3 6 4 |  

- 0 . 2 3 0 3 ]  

0.9391 / 

-1.33232 ~ 
0.54577 

-0.94465 
-0.65873 
1.76960 
0.23988 
0.23611 

-0.14744 
0.97494 

-1.33695 
0.14015 
0.51206 
1.19551 
0.03168 

-1.21744 
1.85680 
0.59246 

-1.62428 
0.13931 

-0.97245 

(4.10) 

(4.11) 

An easy calculat ion will  verify that T has correlat ion matrix S, as required.  

To complete  the IC method we must  re-order  each column of  X to have the 

same rank order  as T. The first column does not change because it is a l ready in 

ascending order. In the second column, the first e lement  of  Y must  be the 14th 

e lement  of  X; the second the 20th, third 10th and so on. The ranks of  the other  

e lements  are 

14 20 10 18 11 19 17 13 15 8 12 6 9 16 5 3 7 2 4 1 ~ '  

) 20 19 16 4 14 13 2 15 5 12 17 6 11 8 1 3 18 9 7 10 
18 6 15 14 2 8 9 13 4 19 10 7 3 12 17 1 5 20 11 16 
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and the resulting re-ordering of X is 

7123, 567 50,686 
126, 109 44,770 
138,713 57, 685 
139,016 47, 453 
152, 213 57, 346 
153,224 45,191 
153,407 47,941 
155,716 52,931 
155,780 49,420 

T =  161,678 58,380 
161,805 54,010 
167,447 66,972 
170, 737 57, 698 
171,592 49,345 
178,881 68, 053 
181,678 72,243 
184, 381 60,948 
206,940 86,685 
217, 092 70, 592 
240,935 87, 138 

The rank correlation matrix of Y is 

approximately equal to S. The achieved value is 

1.00 0.85 0.26 
0.85 1.00 0.19 
0.26 0.19 1.00 

-0.11 -0 .20  0.10 

15,934 16,706 ~ 
16,839 25,000 
17,620 19,569 
35,248 20, 166 
20, 804 30, 757 
21,110 24,019 
38,483 23,375 
17, 859 20,796 
33, 117 27,079 
22,728 15,406 
17,265 23,236 
32,634 24,785 
24, 072 30, 136 
30,357 20, 968 
39,483 16,891 
36,656 35, 108 
17, 233 26,754 
25,393 13,273 
30,779 21,178 
25, 198 18,821 

(4.12) 

exactly S. The actual linear correlation is only 

-0.11'~ 

-0.201 
0.i0 I ' 

loo / 
(4.13) 

a fairly creditable performance given the input correlation matrix and the very 
small number of samples n = 20. When used with larger sized samples the IC 
method typically produces a very close approximation to the required correlation 
matrix, especially when the marginal distributions are reasonably symmetric. 

4.4 Extensions of Iman-Conover 

Following through the explanation of the IC method shows that it relies on a 

choice of multivariate reference distribution. A straightforward method to com- 

pute a reference is to use the Choleski decomposition method Equation (4.2) ap- 

plied to certain independent scores. The example in Section 4.3 used normal 
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scores. However nothing prevents us from using other distributions for the scores 

provided they are suitably normalized to have mean zero and standard deviation 

one. We explore the impact of different choices of score distribution on the result- 

ing multivariate distribution in Section 4.4.1. 

Another approach to IC is to use a completely different multivariate distribu- 

tion as reference. There are several other families of multivariate distributions, 

including the elliptically contoured distribution family (which includes the nor- 

mal and t as a special cases) and multivariate Laplace distribution, which are easy 

to simulate from. We explore the impact of changing the reference distribution in 

Section 4.4.2. Note that changing scores is actually an example of changing the 

reference distribution; however, for the examples we consider the exact form of 

the new reference is unknown. 

4.4.1 Alternative Scores 

The choice of score distribution has a profound effect on the multivariate distribu- 

tion output by the IC method. Recall that the algorithm described in Section 4.2 

used normally distributed scores. We now show the impact of using exponentially 

and uniformly distributed scores. 

Figure 4.1 shows three bivariate distributions with identical marginal distri- 

butions (shown in the lower right hand plot), the same correlation coefficient of 

0.643 4- 0.003 but using normal scores (top left), exponential scores (top rigtht) 

and uniform scores (lower left). The input correlation to the IC method was 0.65 

in all three cases and there are 1000 pairs in each plot. Here the IC method pro- 

duced bivariate distributions with actual correlation coefficient extremely close to 

the requested value. 

The normal scores produce the most natural looking bivariate distribution, 

with approximately elliptical contours. The bivariate distributions with uniform 

or exponential scores look unnatural, but it is important to remember that if all you 

know about the bivariate distribution are the marginals and correlation coefficient 

all three outcomes are possible. 
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Figure 4.1: Bivariate distributions with normal, uniform and exponential scores. 
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50.0 

Figure 4.2: Sum of marginals from bivariate distributions made with different 
score distributions. 
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Figure 4.2 shows the distribution of the sum of the two marginals for each 

of the three bivariate distributions in Figure 4.1 and for independent marginals. 

The sum with exponential scores has a higher kurtosis (is more peaked) than with 

normal scores. As expected all three dependent sums have visibly thicker tails 

than the independent sum. 

Iman and Conover considered various different score distributions in their pa- 

per. They preferred normal scores as giving more natural looking, elliptical con- 

tours. Certainly, the contours produced using exponential or uniform scores ap- 

pear unnatural. If nothing else they provide a sobering reminder that knowing the 

marginal distributions and correlation coefficient of a bivariate distribution does 

not come close to fully specifying it! 

4.4.2 Multivariate Reference Distributions 

The IC method needs some reference multivariate distribution to determine an 

appropriate rank ordering for the input marginals. So far we have discussed us- 

ing the Choleski decomposition trick in order to determine a multivariate normal 

reference distribution. However, any distribution can be used as reference pro- 

vided it has the desired correlation structure. Multivariate distributions that are 

closely related by formula to the multivariate normal, such as elliptically con- 

toured distributions and asymmetric Laplace distributions, can be simulated using 

the Choleski trick. 

Elliptically contoured distributions are a family which extends the normal. 

For a more detailed discussion see Fang and Zhang [11]. The multivariate t- 

distribution and symmetric Laplace distributions are in the elliptically contoured 

family. Ellipticaily contoured distributions must have characteristic equations of 

the form 

~b(t) = exp(it 'm)~(t 'St)  (4.14) 

for some ~b : R ---+ R, where m is an r × 1 vector of means and S is a r x r 

covariance matrix (nonnegative definite and symmetric). In one dimension the 
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elliptically contoured distributions coincide with the symmetric distributions. The 

covariance is S, if it is defined. 

If S has rank r then an elliptically contoured distribution x has a stochastic 

representation 

x = m + RT'u  (r) (4.15) 

where T is the Choleski decomposition of S, so S = T'T, u (r/ is a uniform dis- 

tribution on the sphere in R r, and R is a scale factor independent of u (r). The 

idea here should be clear: pick a direction on the sphere, adjust by T, scale by 

a distance R and finally translate by the means in. A uniform distribution on a 

sphere can be created as x/Ilxll where x has a multivariate normal distribution with 

identity covariance matrix. (By definition, Ilxll 2 - -  has a X~ distribution.) 

Uniform vectors u (r) can also be created by applying a random orthogonal matrix 

to a fixed vector (1, 0 , . . . ,  0) on the sphere. Diaconis [8] describes a method for 

producing random orthogonal matrices. 

The t-copula with u degrees of freedom has a stochastic representation 

v7 
x = m + - ~ z  (4.16) 

where S' ,-~ X~ and z is multivariate normal with means zero and covariance ma- 

trix S. Thus one can easily simulate from the multivariate t by first simulating 

multivariate normals and then simulating an independent S and multiplying. 

The multivariate Laplace distribution is discussed in Kotz, Kozubowski and 

Podgorski [27]. It comes in two flavors: symmetric and asymmetric. The symmet- 

ric distribution is also an elliptically contoured distribution. It has characteristic 

function of the form 
1 

• (t) = (4 .17)  
1 + t 'St/2 

where S is the covariance matrix. To simulate from (4.17) use the fact that x/WX 

has a symmetric Laplace distribution if I/V is exponential and X a multivariate 

normal with covariance matrix S. 
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The multivariate asymmetric Laplace distribution has characteristic function 

1 
• (t)  = 1 + t ' S t / 2  - im't '  (4.18) 

To simulate from (4.18) use the fact that 

mW + x/WX (4.19) 

has a symmetric Laplace distribution if W is exponential and X a multivariate 

normal with covariance matrix S and means zero. The asymmetric Laplace is not 

an elliptically contoured distribution. 

Figure 4.3 compares IC samples produced using a normal copula to those 

produced with a t-copula. In both cases the marginals are normally distributed 

with mean zero and unit standard deviation. The t-copula has u -- 2 degrees 

of freedom. In both figures the marginals are uncorrelated, but in the right the 

marginals are not independent. The t-copula has pinched tails, similar to Venter's 

Heavy Right Tailed copula [33] 
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Figure 4.3: IC samples produced from the same marginal and correlation matrix 
using the normal and t copula reference distributions. 
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4.4.3 Algorithms for Extended Methods 

In Section 4.4.2 we described how the IC method can be extended by using dif- 

ferent reference multivariate distributions. It is easy to change the IC algorithm to 

incorporate different reference distributions for t-copulas and asymmetric Laplace 

distributions. Follow the detailed algorithm to step 10. Then use the stochas- 

tic representation (4.16) (resp. 4.19 for the Laplace): simulate from the scaling 

distribution for each row and multiply each component by the resulting number, 

resulting in an adjusted T matrix. Then complete steps 11 and 12 of the detailed 

algorithm. 

4.5 Comparison With the Normal Copula Method 

By the normal copula method we mean the following algorithm, described in 

Wang [37] and Herzog [19]. 

Inputs: A set of correlated risks ( X 1 , . . .  , X r )  with marginal cumulative distribu- 

tion functions F/and Kendall's tau r~a = r(Xi, Xj) or rank correlation coefficients 

r(X,,Xj) 
Algorithm: 

1. Convert Kendall's tau or rank correlation coefficient to correlation using 

PO = sin(rrrij/2) = 2 sin(Trrij/6) (4.20) 

and construct the Choleski decomposition S = C'C of S = (Pij). 

2. Generate r standard normal variables Y = (Y1, • • •, Y~). 

3. S e t Z = Y C .  

4. Set ui = ~(Z~) fori  = 1 , . . . , r .  

5. SetXi = F~-I(ui) .  
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Outputs: The v e c t o r s  ( X 1 ,  . . . , Xr) forn'l a sample from a multivariate distribu- 

tion with prescribed correlation structure and marginals F~. 

The Normal Copula method works because of the following theorem from 

Wang [37, Theorem 2]. 

Theorem 2 Assume that (Z1, . . . ,  Zk ) have a multivariate normal joint probabil- 

ity density function given by 

1 
f ( z l , . . . ,  zk) -- ~ exp(--z 'E- lz /2) ,  (4.21) 

z = ( q , . . . ,  zk), with correlation coefficients E i j =  Pij = p(Zi, Zj). L e t H ( q , . . . ,  zk) 

be their joint cumulative distribution function. Then 

C ( U l , . . . ,  ttk) = H(c I ) - I (u l ) , . . . ,  (I)-l(uk)) (4.22) 

defines a multivariate uniform cumulative distribution function called the normal 

copula. 

For any set of  given marginal cumulative distribution functions F1 . . . .  , Fk, 

the set of variables 

X1 = FI-I(~(Z1)), . . . ,  Xk = F~l(rb(Zk)) (4.23) 

have a joint cumulative function 

Fxl,. . . ,xk(Xl,. . . ,  ock) = H(~b- l (Fx(ul ) ) , . . . ,  cb-l(Fk(uk)) (4.24) 

with marginal cumulative distribution functions F1, . • •, Fk. The multivariate vari- 

ables (X1,. . . ,  Xk) have Kendall's tau 

2 
r( X,,  X j  ) = r( Z,, Zj ) = - arcsin(p0) (4.25) 

7"C 

and Spearman's rank correlation coefficients 

6 
rkCorr(Xi, Xj )  = rkCorr(Zi, Zj) = - arcsin(pij/2) (4.26) 

7r 
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In the normal copula method we simulate from H and then invert using (4.23). 

In the IC method with normal scores we produce a sample from H such that cb(zi) 

are equally spaced between zero and one and then, rather than invert the distribu- 

tion functions, we make the 3th order statistic from the input sample correspond 

to ~(z) = 3/(n + 1) where the input has n observations. Because the 3th or- 

der statistic of a sample of n observations from a distribution F approximates 

F - l ( j / (n  + 1)) we see the normal copula and IC methods are doing essentially 

the same thing. 

While the normal copula method and the IC method are confusingly similar 

there are some important differences to bear in mind. Comparing and contrasting 

the two methods should help clarify how the two algorithms are different. 

1. Theorem 2 shows the normal copula method corresponds to the IC method 

when the latter is computed using normal scores and the Choleski trick. 

2. The IC method works on a given sample of marginal distributions. The 

normal copula method generates the sample by inverting the distribution 

function of each marginal as part of the simulation process. 

3. Though the use of scores the IC method relies on a stratified sample of 

normal variables. The normal copula method could use a similar method, 

or it could sample randomly from the base normals. Conversely a sample 

could be used in the IC method. 

4. Only the IC method has an adjustment to ensure that the reference multi- 

variate distribution has exactly the required correlation structure. 

5. IC method samples have rank correlation exactly equal to a sample from 

a reference distribution with the correct linear correlation. Normal copula 

samples have approximately correct linear and rank correlations. 
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. An IC method sample must be taken in its entirety to be used correctly. 

The number of output points is fixed by the number of input points, and 

the sample is computed in its entirety in one step. Some IC tools (@Risk, 

SCARE) produce output which is in a particular order. Thus, if you sample 

the nth observation from multiple simulations, or take the first n samples, 

you will not get a random sample from the desired distribution. However, if 

you select random rows from multiple simulations (or, equivalently, if you 

randomly permute the rows output prior to selecting the nth) then you will 

obtain the desired random sample. It is important to be aware of these issues 

before using canned software routines. 

. The normal copula method produces simulations one at a time, and at each 

iteration the resulting sample is a sample from the required multivariate 

distribution. That is, output from the algorithm can be partitioned and used 

in pieces. 

In summary remember these differences can have material practical conse- 

quences and it is important not to misuse IC method samples. 
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Chapter 5 

EXAMPLES 

We now give an extended example which applies the IC method and some of the 

other methods introduced in Chapter 3, The example will compute the bivariate 

distribution of retained and ceded losses, where the reinsurance is an excess of 

loss cover. Such a bivariate distribution would be useful for a ceding company 

trying to determine its distribution of net underwriting results if the reinsurance 

included a variable feature such as a swing rate, sliding scale commission, annual 

aggregate deductible or profit commission. 

The example will apply the following methods and techniques: 

M1. Computing aggregate distributions using FFTs. 

M2. Compare aggregate distributions computed using FFTs (essentially exact) 

with method of moments shifted lognormal and shifted gamma approxima- 

tions. 

M3. Computing the bivariate distribution of ceded and retained losses using two 

dimensional FFTs. 

M4. Computing the bivariate distribution of ceded and retained losses using the 

IC method. 

M5. Compare the FFT and IC method. 
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M6. Illustrate the effect on the IC method of using a t reference distribution. 

The first two examples compute univariate marginal distributions, the funda- 

mental inputs to the IC method. The next five examples compute multivariate 

distributions in various ways. 

The reader should take away two lessons from these examples. First, the FFT 

method works incredibly well for small claim counts and thin tailed severity dis- 

tributions. In particular, any severity distribution with an occurrence limit is thin 

tailed. Second, the shifted gamma and shifted lognormal approximations to an 

aggregate distribution are exceedingly good in all but the most extreme cases. Ex- 

treme cases include a very small claim count (say less than five) or a thick tailed 

severity distribution. 

5.1 Example Parameters 

The input parameters for the example are as follows. Severity is modeled using 

a lognormal variable with # = 9.0 and a = 2.0. Underlying policies have a 

$1M policy limit. The excess of loss reinsurance attaches at $200,000 and has a 

limit of $800,000; thus it pays all losses between $200,000 and the policy limit, 

ground-up. The ground-up expected loss is $25M. 

The nth moments of the layer g excess a of for losses with density f ,  viz. 

f 
a + y  

E[min(y, max (X-a ,O) )  n] = (x-a) '~ f (x)dx  +ynPr(X > a+y) ,  (5.1) 
J a  

can be computed using 

io+ ,x - xn-kf(x)dx (5.2) 
a a k = O  

reducing the problem to computing simpler integrals. For the lognormal, the inte- 

fa+~ xn f ( x )dx equals gral A(n) := .a 

A(n) = exp(n# + n2a2/2)O((log(a + y) - I.t - na2)/a) (5.3) 
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if a = 0 and 

A(n) = exp(n#+n2a2/2)(cb((log(a+y)-#-na2)/a)-~((log(a)-p-na2)/a)) 
(5.4) 

for a > O. Then by the above formula for the lognormal we have 

k = n  

E[min(y'max(X-a'O))~] = Y~(1-~((l°g(a+Y)-P)/cr))+Z ( k )  (-a)kA(n-k). 
k=O 

(5.5) 
Using these formulae we find that the expected ground up loss is $47,439, the 

expected retained loss is $31,591 and the expected ceded loss is $15,848. The 

probability of attaching the reinsurance is 0.054463 and so the excess severity, 

conditional on an excess claim, is $290,985. 
The expected claim count is n = 526.00 = 25000000/47439. We will model 

claims using a negative binomial with contagion parameter c = 0.0625 which by 
the discussion in Section 3.3 corresponds to an asymptotic CV of 25% for the 

aggregate distribution. The parameters of the negative binomial are r = 1/c = 16 
and p = 1/(1 + on) = 0.0295, using the Bowers et al. [4] parameterization. The 
moments of the negative binomial are 

E(N) = (1 - p)r/p 

E(N ~) = ( p -  1 ) r ( ( p -  1)r - 1)/p 2 

E ( N  a) = (1 - p ) r ( ( p -  1 ) r ( ( p -  1 ) r -  3) - p +  2)/p 3 

(computed using symbolic differentiation of the moment generating function us- 
ing a computer algebra program). 

Now we can compute the moments of the gross aggregate distribution using 
(3.14) and (3.16). Writing A = X1 +. . .  + XN the results are 

E(A) = E(N)E(X) 

E(A 2) = E(N)E(X 2) + E(X)2E(N 2) - E(N)E(X)  2 

E(A 3) = E(N)E(X 3) + E(X)aE(N 3) + 3E(X)E(N:)E(X2) - 

3E(N)E(X)E(X 2) - 3E(X)aE(N 2) + 2E(N)E(X) 3. 

From these expressions we can compute the variance, standard deviation, CV 

and skewness of frequency, severity and aggregate losses using the definitions at 

the beginning of Chapter 3. The results are shown in Table 5.1. 
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Table 5.1: Frequency, Severity and Aggregate Distribution Statistics 

Severity Ground-Up Retained Ceded 
E(X) 47,439.0 31,591.0 290,985.3 
CV(X) 2.7217 1.6745 0.9513 
skew(X) 5.2380 2.2351 0.8375 
Frequency 
E(X) 527.0 527.0 28.7 
CV(X) 0.2538 0.2538 0.3120 
skew(X) 0.5001 0.5001 0.5123 
Aggregate 
E(X) 25,000,000.0 16,648,209.8 I 8,351,790.2 
CV(X) 0.2801 0.2640 ] 0.3590 
skew(X) 0.5128 0.5018 0.5543 

5.2 Univariate Methods--Computing Marginal Dis- 
tributions 

5.2.1 Fast Fourier Transform Methods 

To compute the aggregate distribution using Fast Fourier Transforms (FFT) we 

first have to "bucket" the severity distributions. We will use 4,096 buckets (the 

number must be a power of two for the FFT to work at peak efficiency) and 

a bucket size b = 12,500. The largest loss that we can produce is therefore 

$51.1875M which will be adequate for our example. The easiest way to bucket 

the severity is to compute the cumulative distribution function F at b/2, 3b/2, . . .  

and then take differences. The coefficients of bucketed distribution must sum to 

one. The distribution for ceded losses is actually the conditional distribution given 

an excess loss, F(x)/(1 - F(a)) where a is the attachment and F is the ground 

up severity distribution. The first few terms in the bucketed severities are shown 

in Table 5.2 

There are slight errors introduced when you bucket the severity distribution, 

particularly for the retained losses. The mean of the retained severity is 1.9% 

lower than the actual; the CV is 2.8% higher and the skewness is 1.5% lower. The 
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Table 5.2: Bucketed Severity Distributions 

Bucket Start Bucket Mid-Point Ground-Up Retained Ceded 
0 

12,500 
25,000 
37,500 
50,000 
62,500 
75,000 
87,500 
100,000 
112,500 
125,000 
137,500 
150,000 
162,500 
175,000 
187,500 
200,000 
212,500 
225,000 
237,500 
250,000 
262,500 
275,000 
287,500 
300,000 

etc. 

6,250 
18,750 
31,250 
43,750 
56,250 
68,750 
81,250 
93,750 
106,250 
118,750 
131,250 
143,750 
156,250 
168,750 
181,250 
193,750 
206,250 
218,750 
231,250 
243,750 
256,250 
268,750 
281,250 
293,750 
306,250 

0.448350 
0.214215 
0.087561 
0.050294 
0.033252 
0.023819 
0.017980 
0.014089 
0.011353 
0.009351 
0.007839 
0.006667 
0.005740 
0.004993 
0.004382 
0.003876 
0.003452 
0.003093 
0.002787 
0.002523 
0.002295 
0.002095 
0.001920 
0.001765 
0.001628 

0.448350 
0.214215 
0.087561 
0.050294 
0.033252 
0.023819 
0.017980 
0.014089 
0.011353 
0.009351 
0.007839 
0.006667 
0.005740 
0.004993 
0.004382 
0.003876 
0.056238 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.030800 
0.056797 
0.051170 
0.046328 
0.042130 
0.038467 
0.035252 
0.032415 
0.029899 
0.027658 
0.025653 
0.023853 
0.022230 
0.020762 
0.019431 
0.018219 
0.017114 
0.016103 
0.015176 
0.014323 
0.013538 
0.012814 
0.012143 
0.011522 
0.010946 
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Table 5.3: Shifted Gamma Approximations to the Aggregate Distributions 

Parameter 
8 

O~ 

Ground-Up 
-2.341E+06 

15.19659 
1.7780E+06 

Retained 
-8.907E+05 

15.88163 
1.0842E+06 

Ceded 
-2.468E+06 

13.02156 
8.3084E+05 

excess severity is virtually exact--because the bucket size is small relative to the 

features of the distribution. The ground-up severity is in between. The smaller 

the bucket size the lower these discretization errors will be, but on the other hand 

the less "space" available for the aggregate distribution. Selecting a bucket size 

which is an exact divisor of the limit will greatly help improve the accuracy of the 

discretized severity distribution. To determine if your bucket size is appropriate 

look at the moments of the FFT aggregate relative to the exact moments and plot 

a graph of the output density. It is usually obvious when the method has failed. 

Next we have to take the Fast Fourier Transform of the three 4096 x 1 severity 

vectors. We will assume the reader has a computer routine available which will 

compute FFTs--see Appendix A for one freely available implementation. Then 

you apply the moment generating function of the frequency distribution (see Ta- 

ble 3.2) row-by-row to the transformed severity. Note that you will be working 

with complex numbers. Finally you apply the inverse FFT to get a vector of real 

numbers. Because of the form of the input you are guaranteed that the output will 

be real and will sum to 1. 

5.2.2 Method of Moments and the Shifted Gamma and Log- 
normal Distributions 

In Section 3.5 we introduced the shifted gamma and lognormal distributions and 

gave explicit expressions for their method-of-moments parameters in terms of 

mean, CV and skewness. In our example the gross, retained and ceded fits are 

shown in Table 5.3 for the shifted gamma, 5.4 for the shifted lognormal, and 5.5 

for the lognormal. 
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Table 5.4: Shifted Lognormal Approximations to the Aggregate Distributions 

Parameter Ground-Up Retained Ceded 
s -1.636E+07 -9.872E+06 -8.057E+06 
# 17.52370 17.07988 16.59690 
cr 0.16811 0.16463 0.18122 

Table 5.5: Lognormal Fits to the Aggregate Distributions 

Parameter Ground-Up Retained Ceded 
# 16.98348 16.57454 15.87726 
~r 0.27554 0.26015 0.34819 

Figure 5.1 shows a comparison of the shifted gamma fits (denoted with an as- 

terisk in the legend) with the FFTs. For each of the total, ground-up loss, retained 

loss and ceded or excess loss the fits appear essentially perfect. On a log-scale, 

Figure 5.2, we see that the fits are again essentially perfect except for disagreement 

for small losses. However, the disagreement actually shows an error in the FUr; 

probabilities for losses greater than the largest bucket size (approximately $50M) 

wrap around in the FFT and re-appear as small losses, thus the FFT picture is ac- 

tually inaccurate. The wrapping phenomenon is an example of aliasing; it is the 

same effect that causes wagon wheels to appear to rotate backwards in Western 

movies. See Hamming [16] for more details. The shifted gamma approximation 

is recommended in Bowers et al. [4]. 

Figure 5.3 shows the shifted lognormal fit. Although not quite as good as the 

shifted gamma, the fit is still very close. A log scale (not shown) would show 

that the shifted iognormal is somewhat thicker in the extreme tail. The fact that 

the shifted gamma does a better job in the tail should not be a surprise since the 

negative binomial uses a gamma mixing distribution. 

Finally, Figure 5.4 shows a comparison of the FFTs with a regular two param- 

eter lognormal. The lognormal is too skewed (peaks too soon) and does not match 

the true shape of the aggregate well. Using a shifted gamma or shifted lognormal 

distribution gives a much more satisfactory fit to the true aggregate for very little 

extra work. 
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Figure 5.1: FFT vs. shifted gamma approximations for total, retained and ceded 
losses, illustrating that the gamma is an almost perfect fit. 
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Figure 5.2: FFT vs. shifted gamma approximations for total, retained and ceded 
losses on a log density scale. 
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Figure 5.3: FFF vs. shifted lognormal approximations for total, retained and 
ceded losses. 
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Figure 5.4: FFT vs. lognormal approximations for total, retained and ceded losses, 
illustrating that the lognormal is a poorer fit than the shifted lognormal. 
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5.3 Multivariate Methods and the IC Method 

Now we have the marginal distributions we need we can apply the IC method to 

determine the bivariate distribution of retained and ceded losses. 

5.3.1 Fast Fourier Transform Methods 

In order to have a benchmark for the IC method we begin by computing the exact 

bivariate distribution of ceded and retained losses using two dimensional FFTs. 

The two dimensional FFT method is far more limited than the one dimensional 

version because it is impractical to use discretized distributions larger than 4096 x 

4096--the size we will use here. One is caught by the need for a small bucket size 

to capture the shape of the ground-up severity and the need for enough buckets to 

capture the whole aggregate distribution. 

The method for two dimensional FFFs is essentially the same as for one di- 

mension: compute a discretized version of the input severity distribution, which 

will be a matrix rather than a column vector, apply the FFT, apply the MGF of the 

frequency distribution term-by-term, and then apply the inverse FTT. The result- 

ing distribution is shown in Figure 5.5. 
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Figure 5.5: Two dimensional FFT estimate of bivariate distribution of ceded and 
retained losses. 
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5.3.2 IC Method 

Next we apply the IC method to the marginal retained and ceded distribution com- 

puted in the previous section. Individual ceded and retained losses are a good ex- 

ample of comonotonic variables, since they are both increasing functions of gross 

losses. Aggregate ceded and retained losses will not generally be comonotonic. 

To apply IC we need the correlation coefficient between ceded and retained losses 

which can be computed using (3.47). The only missing value from that equation 

is the covariance between retained severity R and ceded severity C. However, 

because of the simple form of the bivariate severity, viz. ceded losses are zero 

until gross losses hit the retention a = $200,000 and then ceded losses increase, 

the covariance is easy to compute: 

Cov(R, C) = E(RC)  - E(R)E(C)  = E(C)(a  - E(R)).  (5.6) 

Substituting into (3.47) gives a correlation of 0.786 between aggregate retained 

losses and aggregate ceded losses. We can now apply the Iman Conover method. 

Here we used samples of 10,000 observations from the univariate distributions of 

ceded and retained losses. The result of the IC method will be a 10000 x 2 matrix 

sample from the bivariate distribution. In order to visualize the result we produced 

a bivariate histogram, as shown in Figure 5.6. The approximation is very similar 

to the previous "exact" FFT contour plot, as you can see if you overlay the two 

plots. 

The IC method underlying Figure 5.6 used a normal copula reference distri- 

bution. As we have already discussed there are many other possible reference 

distributions we could chose to use. Figure 5.7 shows the resulting two dimen- 

sional histogram if we use a t-copula with two degrees of freedom, which is a 

very extreme choice. Just as we saw in Figure 4.3 the result of using a t-copula 

is to introduce more extreme value dependence and the contours have a pinched 

look--both in the slope 1 and slope - 1  directions. 

Clearly the normal copula IC method produces bivariate distribution closer to 

the FFT actual than the t-copula, which should not be a surprise. There is no 
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generator of extreme tail correlation in our example. However, in other modeling 

situations, such as modeling the bivariate movement of stock prices or foreign 

exchange movements, there may be empirical evidence of strong tail correlation 

and a t-copula (or other non-normal) copula approach would be more appropriate. 

Finally, Figure 5.8 shows the distribution of the sum of ceded and retained 

losses using the normal-copula, t-copula, and actual dependence relationships. 

As expected the normal copula model is closest to the actual. The t-copula sum is 

too peaked and is more thick tailed than the actual distribution. 
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Figure 5.6: Iman-Conover approximation to bivariate distribution of ceded and 
retained losses. 
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Figure 5.7: Iman-Conover approximation to bivariate distribution of ceded and 
retained Josses using the t-copula as a reference distribution. 
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Figure 5.8: Distribution of total losses (ceded + retained) under normal copula, 
t-copula and actual. 
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Chapter 6 

THEORETICAL 
UNDERPINNINGS OF THE 
IMAN-CONOVER 
METHOD 

The theoretical foundations of the Iman-Conover method are elegantly justified by 

Vitale's Theorem [35]. We will state Vitale's theorem, explain its relationship to 

the IC method, and sketch the proof. The result should give a level of comfort to 

practitioners using a simulation approach to modeling multivariate distributions. 

It is not necessary to follow the details laid out here in order to understand and 

use the IC method, so the uninterested reader can skip the rest of the section. The 

presentation we give follows Vitale's original paper [35] closely. 

Functional dependence and independence between two random variables are 

clearly opposite ends of the dependence spectrum. It is therefore surprising that 

Vitale's Theorem says that any bivariate distribution (U, V) can be approximated 

arbitrarily closely by a functionally dependent pair (U, TU) for a suitable trans- 

formation T. 

In order to explain the set up of Vitale's theorem we need to introduce some 

notation. Let n be a power of 2. An interval of the form ((j - 1)/n, j/n) for some 

n > 1 and 1 < j _< n is called a dyadic interval of rank n. An invertible (Borel) 
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measure-preserving map which maps by translation on each dyadic interval of 

rank n is called a permutation of rank n. Such a T just permutes the dyadic 

intervals, so there is a natural correspondence between permutations of n elements 

and transformations T. If the permutation of dyadic intervals has a single cycle 

(has order n in the symmetric group) then T is called a cyclic permutation. 

Theorem 3 (VitaIe) Let U and V be uniformly distributed variables. There is a 

sequence of cyclic permutations T1, T2, . . .  such that (U, TnU) converges in dis- 

tribution to (U, V) as n ~ ~ .  

Recall convergence in distribution means that the distribution function of (U, TnU) 

tends to that of (U, V) at all points of continuity as n ~ oc. 

The proof of Vitale's theorem is quite instructive and so we give a detailed 

sketch. 

The proof is in two parts. The first constructs a sequence of arbitrary permuta- 

tions Tn with the desired property. The second part shows it can be approximated 

with cyclic permutations. We skip the second refinement. 

Divide the square [0, 1] x [0, 1] into sub-squares. We will find a permutation 

T such that the distributions of (U, V)  and (U, TU)  coincide on sub-squares. Re- 

ducing the size of the sub-squares will prove the result. 

Fix n, a power of two. Let Ij = ((j  - 1)In, j / n ) ,  j = 1 , . . . ,  n. We will find 

an invertible permutation T such that 

Pr(U E / j ,  T U  e Ik) = Pr(U E / j ,  V e Ik) := Pjk (6.1) 

for j,  k = 1 , . . . ,  n. Define 

Ijl - . ~  ( ( j -  1)/n,  (j - 1) /n  + p j , )  (6.2) 

Ij2 = ((j  - 1 ) /n  + P~I, (j  - 1) /n  + Pjl + Pj2) (6.3) 

" "  (6.4) 

1Tin = ~(J -- 1) /n  + Pjl + " "  + Pj ,n- l , j /n )  (6.5) 
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and 

Ijn 

((j  - 1)In, (j - 1)In + Plj) 

((j - 1)In + Plj, (j  -- l ) / n  + Plj -+-P2j) 

((j - 1)In + P l j  + " "  + p , -1 , j , j / n ) .  

(6.6) 

(6.7) 

(6.8) 

(6.9) 

By construction the measure of ljk equals the measure of ikj. The invertible map 

T which sends each Ijk to [k; by translation is the map we need because 

Pr(U E I j ,T (U)  E Ik) = Pr(U E I j ,  U E T-~(lk))  (6.10) 

= P r ( U e I j n r - ' ( U i k t )  ) (6.1 l) 
l 

= Pr(U E U I j N I ,  k) (6.12) 
l 

= Pr(U C Ijk) (6.13) 

= P;k, (6.14) 

since the only llk which intersects lj  is I;k by construction, and U is uniform• The 

transformation T is illustrated schematically in Table 6.1 for n = 3. The fact 3 is 

not a power of 2 does not invalidate the schematic! 

If each P;k is a dyadic rational then T is a permutation of the interval• If not 

then we approximate and use some more heavy duty results (a 1946 theorem of 

Birkhoff on representation by convex combinations of permutation matrices) to 

complete the proof• 

Vitale's theorem can be extended to non-uniform distributions. 

Corollary 1 (Vitale) Let U and V be arbitrary random variables• There is a 

sequence of  functions $1, $2, . . .  such that (U, SnU) converges in distribution to 

(U,V) as n --+ a¢. 

Let F be the distribution function of U and G for V. Then F(U) and G(V) 

are uniformly distributed. Apply Vitale's theorem to get a sequence of functions 

Tn. Then Sn = G-1TnF is the required transformation. 
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Table 6.1: Schematic of  the Vitale transformation for n = 3 
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Appendix A 

SOFTWARE 
IMPLEMENTATIONS 

Having laid out the IC method and given some explicit examples, we now discuss 

implementation issues. We will follow the Detailed Algorithm laid out in Section 

4.2. 

A.1 General Implementation and Design Consider- 
ations 

A good general rule in writing software is to ensure that the steps which exe- 

cute most frequently are coded as efficiently as possible. Cutting 50% from the 

execution time of a step which runs once and takes 1 second will have a barely 

perceptible impact. Cutting 50% from a step which takes 10 msecs, but executes 

10,000 times will have a material and perceptible impact. See Hennessy and Pat- 

terson [18] for more discussion. 

Matrix and linear algebra operations can be hard to code efficiently because 

of the design of modern computer chips and the strains matrix operations put on 

memory management. Modern CPUs have on-chip cache memory, which oper- 

ates very quickly. Processors are "smart" enough to partially anticipate future 

memory calls and ensure the relevant locations have been pre-loaded into cache. 
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For example, arrays are usually stored in contiguous blocks of memory, and if you 

ask for :r[i], it is likely you will ask for z[i + 1]. Processors will pull in a block 

of memory each side of z[i] to speed operation. If the required memory is not in 

cache the CPU has a "cache-miss". These are very costly and result in a lot of 

lost processing time. Certain operations used extensively in the IC algorithm tend 

to generate lots of cache-misses: matrix multiplication being the worst (you pull 

in a row and a column; only one of these will be contiguous in memory). There 

are ways around these problems, but they are not ways you would want to nav- 

igate yourself! Fortunately, professional software designers spend a lot of effort 

to code matrix operations as efficiently as possible. Many processor benchmarks 

use matrix operations, so chip manufacturers have a vested interest here. 

The Lapack [1] package is an example of a very efficiently coded set of 

matrix algebra operations. It is build on BLAS, Basic Linear Algebra Subpro- 

grams, which implements fundamental operations like matrix multiplication. La- 

pack implementations are available for most platforms, including Windows. See 

http://www.netlib.org/lapack for a non-commercial implementation. See http://- 

www.intel.com/software/products/mkl for a version optimized for Intel proces- 

sors. It will automatically multi-thread operations if there are two or more CPUs 

available. 

The implementation in Section 4.2 describes the appropriate Lapack functions 

for all the matrix operations, such as Choleski decomposition and solving a system 

of linear equations. I cannot claim that the implementation is optimal, but it is very 

fast. 

A.2 SCARE 

SCARE, a Simulating, Correlated Aggregation and Risk Engine, is a COM ob- 

ject (DLL) program which can be used from Excel/VBA. It implements the IC 

method, some other useful copula functions and bivariate normal and t distribu- 

tions. It can be downloaded from www.mynl.com/wp. It was originally designed 

and implemented for Scor Re US, who have kindly given permission for it to 
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be made available to CAS members as part of the Working Party on Correlation 

effort. 

Before programming with SCARE you need to install it and then reference 

it from your VBA project. Within the VBA editor, click Tools, References to 

bring up the References dialog. Make sure the SCARE library is selected, as 

shown in Figure A. 1. In your application the location should show as C:/Program 

Files/Scare/Bin. Libraries are listed alphabetically, except those in use by an open 

project, which appear at the top. 
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[ ]  Visual Basic For Applications ~1~. ~i.: 
[ ]  Microsoft Excel lO, 0 Object Library : i  
[ ]  OLE Automation ...... 
[ ]  Microsoft office 10,0 Object Library 
[ ]  SADCo2 1.0 Type Library .......................... ; 
[]~i'&',~'~,l,,~i,~i, im/i,~/~..i,~i.ili'.--~.~l~.,;.,,[~,~,,~ 
[ ]  1010 Woodbine FastVarMath 1,0 Type Library 
[ ]  1010 Woodbine Gauss Integration Helper T%~e Li[ 
[ ]  1010 Woodbine VarView2Type Library 
[ ]  Acrobat Distiller 
[ ]  AcrobatPDFMaker 
[ ]  Adobe Acrobat 5,0 Type Library 
[ ]  AdobePDFMakerX 

;!iii . 

Figure A. 1: Adding a reference to the SCARE component in Excel VBA. 
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A.3 SCARE Functions 

All of the functions exposed by the SCARE DLL are described in detail in the 

User's Guide [30]. Here we give a quick overview of the key functions aimed at 

the Excel user. The SCARE DLL functions can call be referenced from VBA but 

they cannot be called directly from an Excel spreadsheet. 

A.4 SCARE Wrapper Functions 

A wrapper function "wraps" a COM function call so that it can be used directly 

from a worksheet J . For example, here is how we wrap the sort-by-aggregate func- 

tion. The scSortByAgg function takes four arguments: the input multivariate ar- 

ray, an indicator to sort in ascending or descending order, a holder for the sorted 

output with the aggregate appended in the last column and a holder for the sorted 

output without the aggregate appended. Here is the VBA code. 

Function scSortByAgg(v, ad As Long) 

Dim xx as new Shuffler 

Dim w, agg 

' ad=l ascending order, ad=-I descending order 

xx. SortByAgg v, ad, w, agg 

scSortByAgg = w 

End Function 

The argument v is the multivariate sample and the argument ad is +/-1 for 

ascending or descending order respectively. Within the function, new variables w 

and agg are defined to hold the answers, and xx is defined as a new Shuffler object 

to access the member function. The SortByAgg method of Shuffler is then called. 

Finally scSortByAgg=w sets the answer to be returned to Excel. 

In a spreadsheet, the function would be called as =scSortByAgg(Al :D 100,1) 

input as an array function in a range large enough to hold the answer. Array 

functions are entered using control+shift+enter, rather than just enter. They appear 

in the spreadsheet as {=scSortByAgg(Al :D 100,1)}. 

IExcel 2002 will automatically create wrappers for all functions using Tools, Add-Ins and 
selecting the Automation button. 
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The implementation in the Wrappers  module of  SCARE.xla uses a single vari- 

able xx which is shared between all the functions in the work book. It is defined 

as a private variable at the beginning of  the workbook. 

Several variables below are defined as "variants". Variants are a useful hold- 

all variable type in VB/VBA. Almost  all method output variables are Variants. 

They can hold a single number, a string, an array of  numbers, or a mixed ar- 

ray, or even a reference to an entire open Excel application. Code such as v = 

Range("a l :b l0" ) .va lue  will set v equal to a 2 x 10 variant array. Depending on 

the contents of  the range it could be an array of  doubles or an array of  variants. 

Code like set v = Range("al  :b l0")  sets v equal to a reference to the range object. 

It is then possible to write v.ClearContents to clear Range("al  :b l0")  or v.Value 

= 10 to set all the cells A I : B I 0  equal to the value 10. Variants need to be used 

with care. In some situations they are convenient, fast and eff ic ient- -but  in others 

they are convenient, slow and inefficient. Their use in SCARE is confined to the 

former. 

The main various functions in SCARE.xla  are as follows. 

Function scSortByAgg(v, ad As Long) 

Sums the input n x r multivariate density over columns to get an n × 1 aggregate. Sorts 

the whole input array by the aggregate. Use ad=l to sort in ascending order, and ad=-I 

for descending order. 

Public Function scCholeski(x As Variant) As Variant 

Returns the Choleski decomposition of the input r × r matrix x. Note that the C++ object 

only populates the upper half of the matrix. The VBA method "tidies-up" that return by 

zero filling the lower portion. 

Function scCorr(v As Variant) As Variant 

Computes the mean by column, covariance matrix and correlation matrix of the input 

n × r multivariate density v. Only the correlation matrix is returned to Excel, but it would 

be easy for the user to alter to return the means vector or the covariance matrix. 
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Public Function scIsCovMat(x As Variant) As Boolean 

Tests input matrix X to determine if it is positive definite. Returns true or false. 

Function scNormDist(x As Double) As Double 

Computes ¢(x) the standard normal distribution function evaluated at x. It is more accu- 

rate, and from VBA quicker, than the worksheet function NormDist. 

Function scNormlnv(x As Double) As Double 

Computes the inverse standard normal probability distribution function at probability level 

x. Also quicker and more accurate than the built in functions. 

Function scTDist (nu As Long, x As Double) As Double 

Computes the t-distribution function with v degrees of freedom at x. 

Function scTlnv(nu As Long, x As Double) As Double 

Computes the inverse to the t distribution function with v degrees of freedom at probabil- 

ity level z. 

Function scBVN(h As Double, k As Double, rho As Double) As Double 

Computes the probability Pr(X < h, Y < k) where (X, Y) have a bivariate normal 

distribution with standard normal marginals and correlation coefficient p. 

Function scBVT(nu As Long, h As Double, k As Double, rho As Double) 
As Double 

Computes the bivariate t distribution function Pr(X < h, Y < k) where (X, Y) have a 

bivariate t distribution with n v  degrees of freedom and correlation p. 

Function scQuickShuffle(rgln, corrln) As Variant 

Returns the input n x r range rgIn re-ordered to have correlation approximately equal to 

the r x r correlation matrix coffin. 
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Function scQuickShuffleParam(spec, n As Long, covMat) As Variant 

As scQuickShuffle, except the input values are parameters for shifted lognormal variables. 

The spec input is a n x r array where there are n input lines of business and nine columns. 
The meaning of the nine columns is as follows: 

1. Not used 

2. +1,  where +1 is used to represent losses and - 1  liabilities 

3 . #  

4. o 

5. s, the shift parameters 

6. 0 or 1 indicator where 1 means there is layer and attachment information for the 

current row. 

7. Layer value 

8. Attachment value; the sample is from a shifted lognormal with parameters s, # 
and or, conditional on losses being greater than the attachment. The attachment is 

subtracted and losses are limited by layer value input. 

9. Not used. 
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Appendix B 

VBA CODE FOR INDEXING 

Private Sub indexx(n As Long, arr, colNo As Long, indx() As Long) 

' Indexes an array arr[l..n], i.e., outputs the array indx[l..n] such 

' that arr[indx[j]] is in ascending order for j = i, 2, . ,N. The 

' input quantities n and arr are not changed. Translated from [31]. 

Const m As Long = 7 

Const NSTACK As Long = 50 

Dim i As Long, indxt As Long, ir As Long, itemp As Long, j As Long 

Dim k As Long, 1 As Long 

Dim jstack As Long, istack(l To NSTACK) As Long 

Dim a As Double 

ir = n 

1 = 1 

For j = 1 To n 

indx(j) = j 

Next j 

Do While 1 

If (ir - 1 < m) Then 

For j = 1 + 1 To ir 

indxt = indx(j) 

a = arr(indxt, colNo) 

For i = j - 1 To 1 Step -I 

If (arr(indx(i), colNo) <= a) Then Exit For 

indx(i + i) = indx(i) 
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Next i 

indx(i + i) = indxt 

Next j 

If (jstack = 0) Then Exit Do 

ir = istack(jstack) 

jstack = jstack - 1 

1 = istack(jstack) 

jstack = jstack - 1 

Else 

k = (i + ir) / 2 

itemp = indx(k) 

indx(k) = indx(l + I) 

indx(l + i) = itemp 

If (arr(indx(1), colNo) > arr(indx(ir), colNo)) Then 

itemp = indx(1) 

indx(1) = indx(ir) 

indx(ir) = itemp 

End If 

If (arr(indx(l + i), colNo) > arr(indx(ir), colNo)) Then 

itemp = indx(l + I) 

indx(l + I) = indx(ir) 

indx(ir) = itemp 

End If 

If (arr(indx(1), colNo) > arr(indx(l + i), colNo)) Then 

itemp = indx(1) 

indx(1) = indx(l + i) 

indx(l + i) = itemp 

End If 

i = 1 + 1 

j = ir 

indxt = indx(l + i) 

a = arr(indxt, colNo) 

Do While 1 

Do 

i = i + 1 

Loop While (arr(indx~i), colNo) < a) 

Do 

j = j - 1 

Loop While (arr(indx(j), colNo) > a) 

If (j < i) Then Exit Do 

itemp = indx(i) 

indx(i) = indx(j) 

indx(j) = itemp 

Loop 

indx(l + i) = indx(j) 
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indx(j) = indxt 

jstack = jstack + 2 

If (jstack > NSTACK) Then MsgBox (''NSTACK too small in indexx.") 

If (it - i + 1 >= j - i) Then 

istack(jstack) = ir 

istack(jstack - i) = i 

ir = j - 1 

Else 

istack (j stack) = j - 1 

istack (j stack - i) = 1 

1 = i 

End If 

End If 

Loop 

End Sub 
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