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Modeling Loss Emergence and Settlement Processes 
CAS Loss Simulation Model Working Party Summary Report 

              
Abstract: The CAS Loss Simulation Model Working Party (LSMWP) has been charged by the Committee on 
Dynamic Risk Modeling Committee with creating a simulation model of the processes of loss emergence and 
settlement, commonly known as loss development, that underlie the loss “triangles” and other statistics used to 
estimate loss reserves.  The goal was to create a tool that researchers could use to generate claims that would be 
summarized into loss development triangles and complete rectangles which could then be used to test loss 
reserving methods and models. 
Motivation. Actuaries need tools that will enable them to better understand the underlying loss development 
process and will aid them in determining what methods and models work best in different reserving situations. 
Method. The LSMWP first developed a prototype model that met its basic objectives.  It then engaged a 
consultant to develop an open-source model that could be applied and further developed by the CAS 
membership. 
Results. The open-source model developed by the consultant is documented in this paper, along with the testing 
which validated the model.   
Conclusions. A valuable tool has been created for use by the actuarial community in its research work on 
reserving methods and models.  We encourage actuaries to perform additional validation tests of the model and 
contribute model enhancements. 
Availability. This report and the associated model are available by clicking on the LSMWP link on the 
Committee on Dynamic Risk Modeling (DRM) page on the CAS Web Site (www.casact.org/research/drm). 
Keywords:  loss reserving; simulation model; reserve variability; reporting pattern; payment pattern; open-source 
model. 
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1. INTRODUCTION 

The work of the LSMWP evolved in the following stages: 
 

• Survey of existing literature and preparation of an appropriate bibliography. This 
bibliography includes papers that provide guidance concerning how alternative reserving 
methods and models may be tested.  

 
• Develop methods of testing simulated data to assure the data generated represent “real” 

results that could be produced by a company and, therefore, used in testing the relative 
worth of various reserve models. 
 

• Develop prototype model that has key features desired in final open-source model. 
 

• Develop and document open-source model through work with a consultant. 
 

• Test open-source model by evaluating output to determine if it could be distinguished from 
real data and if it is consistent with actuarial assumptions. 

 
• Develop procedures to enable users to develop model parameters that fit their own data. 

 
The model testing and the procedures for fitting the model to a user’s own data are contained in 

two sections.  The model generates both detailed claim transaction data and aggregate data in the 
form of “triangles.”  Section 3 discusses testing of the aggregate data features.  Section 6 tests the 
detailed data and also describes procedures for fitting the model to actual detailed data. 

The sections below elaborate on the above developmental stages. 

1.1 Research Context 
Actuaries need tools that will enable them to better understand the underlying loss development 

process and will aid them in determining what methods and models work best in different reserving 
situations. 

1.2 Objective 
Our objective is to make a valuable tool available for use by the actuarial community in its 

research work on reserving methods and models.  We encourage actuaries to perform additional 
validation tests of the model and contribute model enhancements. 
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1.3 Disclaimer  
While this paper is the product of a CAS Working Party, its findings do not represent the official 

view of the Casualty Actuarial Society. Moreover, while we believe the approaches we describe are 
very good examples of how to address the issue of loss development, we do not claim they are the 
only acceptable ones. 

While we made a reasonable effort to test and validate the new open-source model, users should 
do their own independent testing and validation.  We cannot assure users that the model is 
completely valid or free from error.  We look forward to working with users to correct any errors 
and enhance it so that it is more useful to the actuarial community. 

1.4 Outline 
The remainder of the paper proceeds as follows. Section 2 will discuss our survey of existing 

literature and present our bibliography.  Section 3 will discuss our recommended method of testing 
simulated data to assure the data generated represent “real” results that could be produced by a 
company and, therefore, used in testing the relative worth of various reserve models.  Section 4 will 
present the model features that were developed in the prototype model and ultimately programmed 
in the new open-source model.  Section 5 will present summary features and documentation of the 
new open-source model.  Finally, Section 6 will present test results of the new open-source model, 
both evaluating output to determine if it is consistent with actuarial assumptions and fitting data to 
common distributions.  Section 7 will present a list of potential applications of the model as well as 
model enhancements that we hope the actuarial community will undertake, and Section 8 will 
present our conclusions. 

2. SURVEY OF EXISTING LITERATURE 

As we began our survey work, we decided to associate our findings with four basic categories of 
articles that might prove of value to those who ultimately use the model developed from the 
LSMWP efforts: 

General Interest 

Building Models 

Testing Simulated Data 

Testing Reserve Methods 

Our final list of readings for consideration is provided as the bibliography at the end of this 
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paper. While we do not represent this to be an exhaustive list, we think we have a good balance of 
the four areas. 

In most cases, the articles suggested reference additional publications for consideration of the 
interested reader as she or he delves deeper into one or more aspects of the issues associated with 
development of a model generating loss data and testing the simulated output from that model. 

3. STATISTICAL TESTS OF SIMULATED MODEL OUTPUT 

We began by asking questions that one would ask when inspecting the output from any model 
supposedly representing potential loss results for a line of business: 

 
• Do aggregate results appear reasonable in terms of losses (loss ratios) generated in a given 

year and the distribution of losses (loss ratios) over multiple years? 
 

• Do incremental changes appear “logical” with respect to the line of business being modeled? 
 

• Do the distributions (claim count, severity, etc.) produced appear “reasonable?” 
 

While these questions would properly be asked by someone with reserving experience when 
presented with real data by line of business, this type of review lacks the level of objective analysis 
required to use data generated from a model for the purpose of evaluating the value of different 
reserving models (methods). 

Depending on the amount of real data available, many modelers suggest holding back data for 
use in testing a model. In this approach, a model is parameterized based on a subset of the total 
actual data, then tested against the unused portion of data. This “control” data is compared with 
what comes out of the model to determine if the model “accurately” represents the real world. 

The ability to apply the “control data” approach depends on the amount and granularity of data 
being modeled. Unfortunately, it is often difficult to amass enough data to apply this approach. 
Therefore, modelers have on occasion “created” more control data. Fundamentally, this is done by 
building a set of data or supplementing it with randomly selected data elements from the initial set 
of data available to the modeler. There are a host of potential pitfalls with this approach, not the 
least of which is making certain you have, in fact, generated a randomly selected set of data, but it 
does have its merits. 

After reviewing the discussion of statistical testing methods in our bibliography, we chose to 
recommend a testing approach brought to our attention by Glenn Meyers.  Previously, we had 
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received input from experts in model building suggesting we test the simulated data against actual 
data by comparing the differences at various incremental points of development. If these differences 
were randomly distributed with a mean of zero, then one could conclude the simulated data would 
serve as a good proxy for real data. 

Mr. Meyers has authored two papers documented in the literature search results that provide 
detailed explanation of a way to assess the ability of data from a model to represent “real” data: 
“Estimating Predictive Distributions for Loss Reserve Models” and “Thinking Outside the 
Triangle.” 

In the following, we will provide both general and specific insights gained while working with the 
Meyers approach, along with some more general thoughts related to testing of data. 

3.1 PP-Plots  
A commonly used approach to testing data output from a model is to use the Kolmogorov-

Smirnov (K-S) test. This test is described in the book, Loss Models: From Data to Decisions, by 
Klugman, Panjer, and Willmot1

An approach that is similar to graphically analyzing a sample of data output from the model is to 
construct PP-Plots.  The points

 and in Wikipedia. 

( )i
n iF+1 ,  are plotted for i=1,…,n.  One evaluates whether these 

points are within a fixed percentage of the 45° line.  This is the approach recommended and 
documented by Meyers in his papers and subsequently adopted by the LSMWP in its tests of the 
open-source loss simulation model developed for the CAS.  We recommend the Meyers papers cited 
above for the insights shared on interpreting PP-Plots. 

3.2 The Meyers Approach 
The approach taken by Meyers was as follows: 

• Starting with a real set of data, a model is constructed which can be used to generate 
accident year payments by settlement lags. It is used to construct “typical” accident year 
(AY) triangles and rectangles (all AYs fully developed) we face during normal reserve 
reviews. 

• Using the model, generate a significant set of simulated AY rectangles (500 in this example) 
for use in testing output from the model and how well it represents real data. 

• Produce as additional output a set of simulated triangles (nine for this example) and 
randomly insert a real triangle to be tested with the others. 

                                                           
1 [11] in bibliography. 
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• For this example, parameters for the model were selected to purposely NOT fit the real data. 
Therefore, we’d expect the real triangle to not pass a goodness-of-fit test, while the 
simulated triangles would do so. 

The PP-Plot tests were performed as follows: 

• A set of 500 simulated rectangles was generated with each simulation including 10 AYs. For 
each AY, premium and incremental paid losses for each of 10 settlement lags were 
calculated. (While the premium is not needed for our example, it was an integral part of the 
model, as it used an expected loss ratio to determine the total losses ultimately paid for an 
AY.) 

• We used Excel commands to reformat the output into a summary of paid losses by 
settlement lag for the 5000 AYs provided. 

• We are given the 10 candidates triangles (nine simulated and one real triangle) to test. 
• Candidate data was reformatted, percentiles determined and then sorted for ease of output 

as PP-Plot graphs. (Note: For a given candidate, the percentile of the accident year 
emergence for each lag is calculated from the distribution of simulated loss emergences for 
the same accident year and lag. Also, for data points outside the percentile range determined 
by the 500 simulations, a value of zero is substituted.) 

• Appendix C, Sheet 1-10: Candidate PP-Plots are provided.  We think it’s fairly obvious 
which of the candidate triangles represents the real data. 

3.3 Additional Comments 
An underlying tenet of the highlighted approach to testing the ability of a model to represent real 

data is: If real data passes the PP-Plot with the Kolmogorov-Smirnov (KS) test using data simulated 
by the model, then we can infer that a formula/method that works well (passes appropriate tests) for 
data from the loss simulation model will work well on real data. We are comfortable with this 
assumption but it should not be accepted without some reflection. 

4. BASIC FEATURES IN THE PROTOTYPE MODEL 

The prototype model contained the following basic features that were ultimately programmed in 
the new open-source model: 

• (1) Observation period:  We assume that the relevant loss process involves accidents or 
occurrences between dates t0 and t1.  The simulator tracks transactions until accidents are 
settled. 

• (2) Time intervals:  We assume that parameters are constant throughout calendar months but 
may change from one month to next.  Lags are measured in days. 

• (3) Exposures:  The user may specify a measure of exposure for each month.  By default, the 
system assumes constant unit exposure.  The purpose of the exposure parameter is to allow 
the user to account for a principal source of variation in monthly frequencies. 
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• (4) Events:  Each claim may be described by the dates and amounts of the events it triggers: 
the accident date, the report date and an initial case reserve, zero or more subsequent 
valuation dates and case reserves changes, zero or one payment date and amount, and zero 
or one recovery date and amount. 

• (5) Distributions:  For most variables, the user may specify a distribution and associated 
parameters.  

• (6) Frequency:  The user may specify monthly claim frequency as a Poisson distribution with 
mean proportional to earned exposure, or as a Negative Binomial distribution with mean 
proportional to earned exposure and variance proportional to the mean frequency (which 
implies that the variance is also proportional to the earned exposure. 

• (7) Report lag:  The lag between occurrence and reporting is assumed to be distributed 
Exponential, Lognormal, Weibull, or Multinomial.   The Multinomial distribution allows the 
user to define proportions of claims reporting within one month, two months, and so on. 

• (8) The lags between reporting and payment, between one valuation date and the next, and 
between payment and recovery or adjustment, are also assumed to be distributed 
Exponential, Lognormal, Weibull, or Multinomial.  

• (9) Size of loss:  The actual size of the loss to the insured, independent of responsibility for 
payment, is distributed Lognormal, Pareto, or Weibull.  

• (10) Case reserve factor:  Case reserves are assumed to equal the actual size of loss, adjusted 
for the minimum, the maximum, the deductible, and the probability of closure without 
payment, all multiplied by an adequacy factor.  This factor is assumed to be distributed 
Lognormal.  The user may specify the mean factor at four points in time between the report 
and payment dates. 

• (11) Fast-track reserve:  A value may be assigned to each loss at first valuation, independent 
of regular case reserves and case reserve factor. 

• (12) Initial payment factor:  The initial payment of each loss not closed without payment is 
assumed to equal the actual size of loss, adjusted for the minimum, the maximum, the 
deductible, multiplied by a payment adequacy factor (PAF).  The PAF determines the size of 
any subsequent adjustment or recovery. 

• (13) Second-level distributions:  The LSMWP models the drift in parameter values that may 
take place for many reasons but chiefly because of business turnover.  It has developed an 
autoregressive model to reflect parameter drift. 

• (14) Monthly vectors of parameters:  For nearly all distributional parameters, the user may 
specify a single value or a vector of values. 

• (15) Frequency Trend and Seasonality:  The user may specify monthly trend and seasonality 
factors for frequency that are applied to means. 

• (16) Severity Trend:  The user may specify monthly trend factors for severity. 
o The “main” trend is allowed to operate up to the accident date and a fraction of this 

trend, defined by Butsic’s “alpha” parameter, is allowed to operate between accident 
and payment dates. 

o Case reserves before the adequacy factor are centered on the severity trended to the 
payment date. 

• (17) Lines and Loss Types:  The prototype model recognizes that loss data often involves a 
mixture of coverages or loss types or both with quite different frequencies, lags, and 
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severities.  Therefore, it allows the user to specify a two-level nested hierarchy of simulation 
specifications, with one or more “Lines” each containing one or more “Types.” 

o A typical Line might be “Auto”; typical Types within that Line might be “APD,” 
“AL-BI,” and “AL-PD.” 

o This hierarchy allows the user to set up any reasonable one- or two-level 
classification scheme. 

o Accident frequencies are modeled at the Line level and loss counts per accident are 
distributed among Types using a discrete distribution. 

• (18) Lines and Loss Types Example:  An Automobile occurrence might give rise to a single 
Auto Physical Damage (APD) claim with probability 0.4, to a single Auto Property Damage 
Liability (AL-PD) claim with probability 0.2, to a single APD and a single AL-PD claim with 
probability 0.2, to a single Auto Bodily Injury Liability (AL-BI) claim with probability 0.1, to 
two AL-BI claims with probability 0.05, etc. 

• (19) Correlations:  The prototype model makes it possible to request correlated samples of 
certain variables without fully specifying their joint distribution.  These variables are (a) the 
mean frequencies across Lines and (b) the size of loss and report lag within a Type.  To 
specify correlated frequencies among lines, the user specifies the marginal frequency 
distribution for each Line and then specifies a correlation matrix and copula to determine 
the joint distribution.    

• (20) Clustering:  The prototype simulator allows a selectable fraction of loss sizes and a 
selectable fraction of case reserves to be rounded to two significant digits, imitating 
clustering around round numbers frequently observed. 

• (21) Output:  The prototype simulator produces output as comma-delimited (csv) text files 
or by launching an instance of Excel and populating it with worksheets.  In both cases, the 
possible output tables include claim and transaction files (together displaying the complete 
loss history), all the usual triangles, a table of large losses, a summary of the simulation 
specifications, and a summary of the frequency derivation by month. 

5. DOCUMENTATION OF OPEN-SOURCE MODEL 

The help files in the new open-source model fully document the implementation of all of the 
features that were included in the prototype model.   These help files are organized into 
comprehensive model documentation on the CAS Web Site at 
http://www.casact.org/research/lsmwp/losshelp/index.cfm?fa=main.  The documentation within 
the model and on the CAS Web Site will be kept up to date as this open-source software is 
enhanced. 

Comprehensive program instructions are provided in Appendix A, and are also included within 
the model and in the CAS Web Site model documentation. 

http://www.casact.org/research/lsmwp/losshelp/index.cfm?fa=main�
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6. TESTING DETAILED OUTPUT AND FITTING THE MODEL  

This section describes tests performed on the Simulator’s output.  The basic procedure for these 
tests was to run the Simulator with parameters that generate random claims with their transactions, 
from distributions whose densities or distribution functions or both functions are easily computed.  
Then we test the output files to see how closely the empirical distributions match the theoretical 
distributions. 

An important point is that properly designed and documented statistical tests on simulator output 
also enable the user to fit models to real data.  The user would transform the real data into the same 
format as the “claims” and “transactions” files output from the simulator.  Then the user can run 
the same tests that we have developed for testing simulator output.  Many of these tests include 
maximum likelihood estimates of the parameters.  The users can generate the same maximum 
likelihood estimates on their own data.  To enable this, we are including much of the source code 
used to perform the tests. 

This section deals with the claims at their ultimate values, not with age-to-age loss development.  
Chapter 3 discusses the aggregate reserve triangles generated by summarizing the reserve 
transactions as of specific accident periods and development dates. 

6.1 Data Formats 
The simulator generates a Claims file and a Transaction file.  The Claims file contains one record 

per claim.  A sample of the format follows: 
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Simulation 
No 

Occurrence 
No Claim No Accident Date Report Date Line Type 

1 1 1 20000104 20000227 1 1 
1 2 1 20000105 20000818 1 1 

……….       
1000 324 1 20001222 20010120 3 3 
1000 325 1 20001215 20010224 3 3 

 
The Transaction file may have multiple transactions per claim, and has format: 
 
Simulation No Occurrence No Claim No Date Transaction Case Reserve Payment 

1 1 1 20000227 REP 2000 0 
1 1 1 20000413 RES 89412 0 
1 1 1 20000417 CLS -91412 141531 
1 2 1 20000818 REP 2000 0 

…….. ………. …….. ………    
 
In this case, the first three records in the Transaction file correspond to the first record in the 

Claims file.  The amounts in the “Case Reserve” column are incremental reserve changes, while the 
“Payment” column shows the payment made on each date.  Thus, on 4/17/2000, Occurrence 1 – 
Claim No 1 closed, had zero case reserve (i.e., the sum of the Case Reserve column) and a 
cumulative paid amount of $141,531. 

For purposes of testing ultimate severity and number of claims, the two files were merged into an 
“Ultimate Loss” file whose fields are listed: 

 
Simulation. 

No 
Occurrence. 

No 
Claim. 

No 
Accident. 

Date 
Report. 

Date Line Type Case. 
Reserve Payment 

 
This file has the same number of records as the Claims file.  For each 

Simulation/Occurrence/Claim combination, the Case Reserve is zero, since all records are at 
ultimate value, and the Payment is the sum of all the Payment amounts from the Transaction file. 

Many of the tests were performed on this “Ultimate Loss” file.  If the Modelers can format 
their own data into this format, then they can use the LSMWP source code to parameterize 
the Simulator.  

6.2 Description of Testing 
The LSMWP Testing Group ran tests on the model as it was being developed.  One reason for 

doing this is that these tests helped debug the model’s calculations.  The model simulates claims and 
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transactions using the “R” language.  Part of the “debugging” consisted of making sure the R 
commands work the way the LSMWP members think they work..  The subsections of section 6.2 
each describe specific groups of tests that were performed.   

6.2.1 Test of Elementary Frequencies, Trend, and Zero-modification 

The model allows the user to input annual frequency by line and year, to specify the probability 
distribution for the types of claims within a line, and to specify “P(0),” the probability that a claim 
closes without payment.  This section describes the final test among a series of tests of these 
parameters.  The size of loss distribution was not used in this test except that a status indicator was 
generated for each claim, with “CNP” (resp. CWP) meaning that the claim was closed without (resp. 
with) payment. 

A partial description of this test follows.  The full list of parameters is in the Appendix B. 

Test was run 10/27/2009.   Project name:  Frequency Test 

Purpose:  Test frequency with trend.  Two types within one line. 

• One Line with annual frequency distributed Poisson with mean 120  
• Set claim/acc distribution matrix as follows: 

Prob =75% that one Type 1 claim is generated. 
Prob =25% that one Type 2 claim is generated. 

• Freq Trend:  1.02 constant throughout 
• P(0) = 0.4,  EstP(0) = 0.4 for each Type. 
• Accident Years:  2000-2002 
• Random Seed:  16807 
• Frequency correlation copula: normal Correlation=c( )  Dim = 1 
Run:  1,000 simulations. 

What would we expect from this run?  If we think of the months k in the three accident years as 
numbered 1 through 36, the Poisson λk for each month2

λk = 10 (1.02)k/12, where 10 = 120/12. 

 fits the formula: 

The total number of expected claims in each simulation isλ = =
=

10 102 3712144835
1

36
12Σ

k

k( . ) ./ .  

With 1,000 simulations, the total expected claim count equals EN = 371,214.  The actual number 
generated was N = 371,198.  The closeness of the actual and expected counts indicates that the 
Poisson frequency and trend parameters are operating in the manner expected.  

                                                           
2 The simulator converts annual frequency to monthly frequency when performing the simulations. 
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The parameters were chosen so that a claim has probability of 0.75 (0.25) of being Type 1 (Type 
2) and probability 0.60 (0.40) of having status CWP (CNP).  A very important property of Poisson 
distributions states that the number of claims in 1,000 simulations for each Type(x) x Status(y) 
category are mutually independent Poisson random variables with mean EN * 
Pr[Type=x]*Pr[Status=y].3

Chi-Square test for independence of Type and Status on claim counts. 

     

To use the Chi-square test, we must construct data with both expected and actual claim counts. 
From the input parameters, there is only one Line, with a claim for this line being Type 1 (Type 2) 
75% (25%) of the time.  Also, the probability of the claim being Status CWP (CNP) is 60% (40%).  
Generally we wish to compare the actual and expected claims by unique “cells.”  Here the cells are 
defined by unique combination of all the predictors.  Here are some S-PLUS4

temp1a <- unique(datacc$Simulation.No) 

 statements that 
produce all possible combinations:    

temp1b <- unique(datacc$Accident.Year) 
temp1b2 <- unique(datacc$Accident.Month) 
temp1c <- unique(datacc$Line) 
temp1d <- unique(datacc$Type) 
temp1e <- unique(datacc$Status) 
temp1 <- list( 

Simulation.No=temp1a, Accident.Year =temp1b, Accident.Month=temp1b2, 
Line=temp1c,Type=temp1d,Status=temp1e) 

temp2 <- expand.grid(temp1) 
for ( j in 1:length(temp2)) { 
if(is.factor(temp2[,j]))  

temp2[,j] <- as.character( temp2[,j]) 
} 

temp7 <- order(temp2$Simulation.No,temp2$Accident.Year,temp2$Accident.Month, 
                         temp2$Line,temp2$Type,temp2$Status) 
temp3 <- temp2[temp7,] 
temp3$timeyear <-  

timeyear(base.year,temp3$Accident.Year,temp3$Accident.Month) 

 

The “expand.grid” statement creates a data frame5

                                                           
3 [11]  pp. 103-104 

 with all possible combinations of the 
individual variables.  It is important to note that the expand.grid statement produces more unique 
combinations of the individual variables than are found in the actual data.  For this run, there are 
144,000 combinations (1000 x 3 x 12 x 1 x 2 x 2).  The last statement calls a user-defined function 

4 SPlus and R are implementations of the statistical language S. 
5 Think of a data frame in R or SPlus as a matrix, with each column representing either a predictor or a value and each 
row representing a combination of predictors or an observation.    
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“timeyear,” which converts accident year and month to a numeric variable that corresponds to the 
length of the trend period over which the simulator’s “trend” parameter operates. 

To apply Chi-square testing, we want to calculate the expected number of claims for each record 
in the data frame and to tabulate the actual number of claims.  The total claims for each simulation 
and accident year/month equals 10 * (1.02)timeyear.  Then the expected count for each type and status 
combination is just this number multiplied by the probabilities mentioned earlier.  After this 
“expected count” dataframe is built, it can be merged with the actual counts to produce a dataframe, 
which we will call “ccstacked,” with both actual and expected counts.  Here is the image of the first 
few records: 

Data frame “ccstacked” 

Simulation. 
No 

Accident. 
Year 

Accident. 
Month Line Type Status timeyear expec.count count 

1 2000 1 1 1 CNP 0.083333 3.004955 2 
1 2000 1 1 1 CWP 0.083333 4.507432 6 
1 2000 1 1 2 CNP 0.083333 1.001652 0 
1 2000 1 1 2 CWP 0.083333 1.502477 3 
1 2000 2 1 1 CNP 0.166667 3.009918 2 
1 2000 2 1 1 CWP 0.166667 4.514877 4 
1 2000 2 1 2 CNP 0.166667 1.003306 1 

Proper application of the Chi-Square test requires that the expected counts from the theoretical 
distribution be modified so that the total number of claims and the marginal probabilities match the 
actual data. 

 
 Actual Counts   Expected Counts 
 Type 1 Type 2 Margin   Type 1 Type 2 Margin 
CNP 111,066 37,007 0.398906  CNP 111,029.0 37,044.0 0.398906 
CWP 167,268 55,857 0.601094  CWP 167,305.0 55,820.0 0.601094 
Margin 0.749826 0.250174 371,198   0.749826 0.250174 371,198 

2χ  = 
2( )ij ij

i j

Actual Expected
Expected
−

∑∑  =  0.0819.        

   Pr [ 2χ  > 0.0819 ] = 0.775.     

The independence of Type and Status on counts is supported. 
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If we instead use the crosstabs command in S-PLUS, we obtain the output: 
> temp1 <- crosstabs( count  ~  Status + Type , 
+   data=datacc.stack, 
+   na.action=na.fail,                     ##### No missing data should exist 
+   drop.unused.levels=F 
+  ) 
> temp1 
Call: 
crosstabs(formula = count ~ Status + Type, data = datacc.stack, na.action =  
 na.fail, drop.unused.levels = FALSE) 
371198 cases in table 
+-----------+ 
|N          | 
|N/RowTotal | 
|N/ColTotal | 
|N/Total    | 
+-----------+ 
Status     |Type 
           |1          |2          |RowTotal   | 
-----------+-----------+-----------+-----------+ 
CNP        |1.11066e5  |3.7007e4   |148073     | 
           |0.75       |0.25       |0.4        | 
           |0.4        |0.4        |           | 
           |0.3        |0.1        |           | 
-----------+-----------+-----------+-----------+ 
CWP        |1.67268e5  |5.5857e4   |223125     | 
           |0.75       |0.25       |0.6        | 
           |0.6        |0.6        |           | 
           |0.45       |0.15       |           | 
-----------+-----------+-----------+-----------+ 
ColTotal   |278334     |92864      |371198     | 
           |0.75       |0.25       |           | 
-----------+-----------+-----------+-----------+ 
Test for independence of all factors 
 Chi^2 = 0.081902898185 d.f.= 1 (p=0.77473503489) 
 Yates’ correction was not used 

Thus, we can see that the “crosstabs” command produces the Chi-square analysis. 

Use of Poisson Generalized Linear Model (GLM) for testing. 

The hypotheses underlying the model parameterization imply that covariates such as Type and 
Status have multiplicative effects on the number of claims.  Such situations are conveniently 
modeled using a log-linear model such as a Poisson GLM with either categorical or numeric or both 
predictor variables.  This model is more flexible than just relying on cross-tabulations.  Since this is a 
powerful predictive modeling technique, I will describe its use here in some detail.  In particular, we 
will discuss how the Type and Status variables affect the claim counts and whether there is an 
interactive effect.  

In the Poisson GLM, the dependence of μi = E(Yi), the variable of interest, is related to the 

covariates through the relationship: 
1

log
p

i j i j
j

xµ β
=

=∑ for i =1, 2, …n..  Here p is the number of 
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covariates, n is the number of observations for which the fitting takes place, and β is the vector of 
coefficients determined by the model.6

To model the effects of Type and Status, we can use the data frame “ccstacked” described earlier.  
We run a “full” model, using Type, Status, and their interaction as predictors, and a “reduced 
model” without the interactive effect.  If our model parameters work the way we think they should, 
then the interactive term should add very little predictive power and the reduced model should fit 
very well.  The details of the actual runs are contained in Appendix B.  We outline the results here. 

  

The S-PLUS statement for the reduced model is  

 
model5x<- glm(count ~   + Type + Status, 
     data = temp.datacc.stack, 
     family = poisson,  
     x=T) 
summary(model5x,correlation=F) 
 

The predicted value for this fitted model is 

log µ̂  = 1.126272675 − 1.097685774*Type + 0.410026757*Status (6.2.1) 

How do we interpret these equations?  Type and Status in the “ccstacked” file each take two 
possible values.  When converted to the indicator variables, the translations are that Type = 0 (1) 
when the original variable Type = 1 (2), and that Status = 0 (1) when the original variable Status = 
CNP (CWP).  There are 36,000 combinations of simulation number, accident year, and accident 
month in the data.   

Equation (6.2.1) gives the log of the predicted number of claims by Type and Status for each of 
these combinations.  The sum of the predicted values for the four combinations of Type and Status 
equals 10.31.  Multiplying this by 36,000 produces the total number of claims 371,198.  This is 
almost exactly equal to the a priori expected number of claims. 

The coefficient of − 1.097685774 for Type implies that 

 Pr[Type 2] exp(  1.097685774) 0.3336
Pr[Type 1]

=
= − ≈

=
.  Indeed, this ratio is 1/3 from the input 

parameters.    

The coefficient of 0.410026757 for Status implies that  

Pr[Status= ] exp(0.410026757) 1.507
Pr[Status= ]

CWP
CNP

= ≈ .  The ratio of the input values is 1.500. 

                                                           
6 Generalized Linear Models by McCullagh and Nelder [15] is an excellent reference on GLMs and Poisson GLMs. 



Modeling Loss Emergence and Settlement Processes 

Casualty Actuarial Society E-Forum, Winter 2011 18 

Thus, we have good idea that the model fits the data well. 

Can the model be improved by including the interactive variable Type*Status ? 

To check this, we run the model statement 
model6x<- glm(count ~  Type + Status + Type*Status                       , 
     data = temp.datacc.stack, 
     family = poisson,  
     x=T) 

To test the additional value of the interactive variable we compare the deviations: 
> anova(model5x,model6x,test=“Chi”) 
Analysis of Deviance Table 
 
Response: count 
 
                          Terms Resid. Df   Resid. Dev         Test Df  
1               + Type + Status    143997   160969.366                 
2 Type + Status + Type * Status    143996   160969.284 +Type:Status  1 
 
      Deviance     Pr(Chi)  
1                          
2 0.0819088429 0.774727081 

 

The “Resid.dev” is the residual deviance as defined for GLMs and will not be discussed further 
here.  What is interesting is that the reduction in deviance from introducing the interactive variable 
and the corresponding probability exactly matches those from the earlier “crosstabs” calculation.  
Thus we cannot reject the null hypothesis that there is no interactive term.  

In the actual frequency testing, we ran GLMs that include the trend period as a numeric 
predictor, since we are assuming 2% annual frequency trend.  These models provided better 
predictions, as we would expect.  Even in the presence of a numeric time variable, the type*status 
interaction is not indicated.   

6.2.2 Testing Size of Loss Distributions 

The simulator was run May 12, 2010, to produce output on which one can test the distribution of 
claim severities (i.e., size of loss).  The simulator produced claims from three different lines, with the 
severity distributions by line set as lognormal, Pareto, and Weibull.  The frequency parameters assure 
that the number and size of claims by lines are mutually independent. 

Description of Run and Parameters 

Set up a test for univariate severity distributions and some time distributions.   
Project name:  Test severities 20100512 
Purpose:  Test univariate ultimate severities.  Set up three lines of business with no correlation 
in frequency among the three lines.  For each simulation, the number of occurrences by line by 
accident year is as described in the frequency parameters below. 
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• 3 Lines.  For each line, every occurrence generates one claim of one type.  
• Zero trend for frequency, zero trend for severity. 

 
Accident Years:  2000-2001 
Random Seed:  16807 
Frequency correlation -- uncorrelated 
 
Each line has same frequency parameters 

Annual Frequency: Poisson(600) 
Monthly exposure: (1), zero trend, no seasonality 
Set claim/acc distribution matrix as follows: 

each occurrence generates 1 claim of one type  
P(0) = 0.0,  EstP(0) = 0.0 

 
Lags:  Irrelevant for this run except for report lag.  We are not testing the reserve change 
process. 

Report lag: Exponential with Rate = 1/365. Mean=365 days.  Max=3650. 
Payment lag: Maximum one day  
Inter-valuation lag:  Maximum one day 

 
Correlation of Amount with lag:   normal Correlation=c( ) Dim=2 
Reserve adequacy:  Irrelevant, leave at default values. 
 
Run:  100 simulations. 
 
Severity parameters – these vary by Line. 
 

• Line 1 Type 1:  Lognormal, mean=100,000, stnd. dev.  100,000, max 10,000,000.  
This means that the input lognormal parameters are μ = meanlog = 11.16636357, σ 
= sdmean = 0.832549779. 

 
• Line 2, Type 2:  Pareto with α (shape) =6, θ (scale) = 500,000.  This results in a 

mean of 100,000 and standard deviation 122,474.5. 
 

• Line 3, Type 3:  Weibull with θ (scale) = 95,000, τ  (shape) = 0.9.  This results in 
mean of 99,957 and standard deviation of 111,256. 

 
Expected total # claims = 600 (freq) x 100 (# sims) x 3 (lines) x 2 (years) = 360,000. 
Actual # claims:  359,819. 
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Results of simulation 

The output of the simulation was summarized to the “Ultimate Loss” file format described above 
in section 6.1.7

The work in the test was divided up between two people.  Joe Marker ran the simulator, created 
the summary file, and wrote the main body of this section.  Yuting Yang did the testing work 
described below, wrote the R code, and produced the graphs. 

  This file contains one record for each claim, with the ultimate value of the claim in 
the “payment” field and the case reserve equal to zero, since all claims are at ultimate value.   

The R project included four libraries that can be added using the statements. 
library(stats4) 
library(MASS) 
library(actuar) 
library(graphics) 

Three separate vectors, named ultloss1, ultloss2, and ultloss3, were created using R.  For k = 1 to 
3, ultlossk is the vector of loss sizes for the claims from line k.  To test whether the simulator 
actually generates claims sizes according to the parameters input, we fit each of the vectors to the 
lognormal, Pareto, and Weibull distributions, and then conducted goodness-of-fit tests.  

First, exploratory data analysis was performed on the three data sets.  This included:  

• Calculating the standard statistics 

• Generating histograms, empirical densities, empirical log densities, and empirical cdfs.   

Appendix B contains all the graphs.   

The following illustrates how the R commands produced the graphs for Line 1. 
hist(ultloss1,main=“Histogram of observed data of Line 1,”  
 freq=FALSE,breaks=10000,xlim=c(0,1050000)) 
plot(density(ultloss1),main=“Density estimate of Line 1,”xlim=c(-1000,600000)) 
plot(density(log(ultloss1)),main=“LogDensity estimate of Line 1,”xlim=c(0,20)) 
plot(ecdf(ultloss1),main=“Empirical cdf of Line 1,”xlim=c(0,1e+06))   

 

This analysis of the graphs suggests that Line 1 has a lognormal density.  Lines 2 and 3 have 
similar shapes, but Line 2 has more data in the tail, which suggests a heavier-tailed distribution.   

The initial guess for the severity distributions is: 

Line 1 – Lognormal, Line 2 – Pareto, Line 3 – Weibull. 

The remaining steps in fitting the data consisted of: 

1. Calculating the maximum likelihood estimates for the three distributions. 
                                                           
7  The name of this file is “ultloss20100520.csv”. 
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2. Informally looking at the fits by constructing and examining the Q-Q Plots for the candidate 
distributions. 

3. Producing a more formal goodness-of-fit test by binning both the expected and empirical 
distributions and then performing chi-square tests.  

Calculate the maximum likelihood estimates of the parameters. 

The next step was to use maximum likelihood estimation (m.l.e.) to determine the optimal 
parameters for each line.  We used the R command “fitdistr” for the calculations.  However, prior to 
using this command, we calculated the negative loglikelihoods (n.l.l.) using the density functions.  
For each observed value x, let’s review the both the p.d.f. f(x) and the corresponding negative 
loglikelihood – ln f(x).8

a) If X has the lognormal distribution with parameters μ and σ, then Y = ln X has the normal 
distribution with parameters μ and σ.  For the m.l.e., it is more convenient to fit observations y = ln 
x than it is to fit x.  We have 

 

fY(y) = 
2

21
2

z

e
σ π

−
, where z = 

y µ
σ
−

, and n.l.l. = ln(σ 2π ) +
2

2
z .  

b) For X-distributed Pareto9

f(x) = 

 with shape α and scale θ, we have 
( 1)( )xα αα θ θ − ++ ,   and n.l.l. = − (ln α + α lnθ) + (α+1) ln (x+θ) 

c) For X-distributed Weibull with shape τ and scale θ, we have 

f(x) = 
1

exp ( / )x x
τ

τ
τ

τ θ
θ

−

 −  ,   and n.l.l. = – ln τ + τ ln θ – (τ–1) ln x + ( / )x τθ  

The parameter values are then determined by finding the parameter values that maximize the 
total n.l.l.  

For Line 1, the R code below illustrates the use of the “fitdistr” command to fit ln X to a normal 
distribution: 

fit1.ln <- fitdistr(log(ultloss1),”normal”) 
 
fit1.ln$estimate  #   mean         sd  
                  #11.1659376  0.8361509  
 
–fit1.ln$loglik   #148761.9 

 

                                                           
8 The parameterizations here follow those from Appendix A of [11]. 
9 Pareto refers to Pareto Type II, Lomax. 
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The output of any R command is an “object” with “properties.”  The first line above gives this 
object the name “fit1.ln”.  The vector fit1.ln$estimate of length 2 contains the optimal parameter 
values μ= 11.1659376 and σ = 0.8361509.  The number −fit1.ln$loglik is the minimized negative 
loglikelihood. 

The same command was applied to the Line 2 data for both the Pareto and Weibull distributions. 
## 2.1-Pareto ## 
 
fit.p2<-fitdistr(ultloss2.0,dpareto,list(shape=6,scale=500000))  
 ## list() provides initial values for optimization 
 
fit.p2$estimate #  shape       scale  
                #5.97635e+00 5.00000e+05 
 
-fit.p2$loglik  #1500363 
 
## 2.2-Weibull (second method slightly better) ## 
 
fit2.w <- fitdistr(ultloss2.0,”weibull”) 
 
fit2.w$estimate  #   shape         scale  
                 # 9.056193e-01 9.750673e+04  
 
fit2.w$loglik    # -1500950 
 
fit.w2<- fitdistr(ultloss2.0,dweibull,list(shape=.9097626,scale=95000)) 
 
fit.w2$estimate #    shape        scale  
                # 9.009281e-01 9.500000e+04  
 
-fit.w2$loglik  # 1500926 
 

The Line 3 results are shown: 
  
## 3.1-Pareto ## 
 
fit.p3<-fitdistr(ultloss3.0,dpareto,list(shape=7,scale=6.026793e+05)) 
 
fit.p3$estimate #   shape        scale  
                #6.966806e+00 6.026793e+05  
 
-fit.p3$loglik  #1499343 
 
## 3.2-Weibull (first method slightly better) ## 
 
fit.w3 <- fitdistr(ultloss3.0,”weibull”)  
 
fit.w3$estimate  #    shape        scale  
                 # 9.052532e-01 9.907429e+04  
 
-fit.w3$loglik   # 1498920 

 

For a set of observations, it is tempting to compare the n.l.l. from different models to label one 
of them as best.  There is some logic in doing this for the Pareto and Weibull distributions, since 
they each have two parameters.  However, there are better methods to differentiate them, which we 
discuss below.   
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It would be wrong to compare an n.l.l. from fitting the lognormal to either the n.l.l. for the 
Weibull or Pareto.  This is because the observed variable ln X for fitting the lognormal is on a totally 
different scale than the variable X used for the Weibull and Pareto. 

QQ Plots 

The QQ plot provides one of the best ways to visually compare two distributions.  If one of the 
distributions is the empirical distribution of the observed values and the other is a c.d.f. of a random 
sample of the same size from the fitted distribution, then the closer the plot is to a 45 degree line, 
the better the fit.   

The following R statements create a QQ-plot for the Line 2 data and the fitted Weibull 
distribution.10

thqua.w2 <- rweibull(n2,shape=fit.w2$estimate[1],scale=fit.w2$estimate[2]) 

 

 
qqplot(ultloss2,thqua.w2,xlab=“Sample Quantiles,” ylab=“Theoretical Quantiles,” 
main=“Line 2, Weibull”) 
 
abline(0,1,col=“red”) 
 
 

The QQ-plots for the fitted distributions for each line follow.   
 

                                                           
10 These plots show quantiles of the observed values versus quantiles of a random sample from the fitted distribution.  
More commonly, the corresponding quantiles of the fitted distribution are used rather than a sample.  See Section 5.1 of 
Venables and Ripley. [30] 
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For Line 2, the Pareto fits the data much better over a longer range than the Weibull distribution. 
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For Line 3, the Weibull distribution is best. 

 

The good fits for each of the three Lines indicates that the chosen models fit the ultimate loss 
size well.  We can go further to test more formally the hypotheses that these models fit the data. 
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Goodness-of-Fit tests 

We discuss the use of the Chi-square test for the Pareto fit to Line 2.  First, define the break 
points and set up the bins according to these break points.   

#2.3.1 Pareto Chi-Square # 
m = mean(ultloss2) 
s = sqrt(var(ultloss2)) 
 
ult2.cut <- cut(ultloss2.0, 
 breaks = c(0,m-s/2,m,m+s/4,m+s/2,m+s,m+2*s,2*max(ultloss2))) ##binning data 
table.ult2 <- table(ult2.cut)                   ## binned data table 
ult2.os <- c(as.vector(table.ult2))             ## vectorization 
 
b = length(ult2.os) 
 
labs.2 <- levels(ult2.cut)                      ## extract the breakpoints 
break.2 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs.2)), 
 upper = as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.2))) 
 
as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.2))) 

 

See the R code in Appendix B for an illustration of the previous two R statements. 

To calculate the expected number of claims in each bin, use ppareto to generate the c.d.f. values 
at the break points.  Note that we need to define an “excess” interval to contain the expected 
number of claims larger than the last break point.  Here we have chosen the last break point to be 
twice the maximum observed value. 

ult2.p <- ppareto(break.2,shape=fit.p2$estimate[1],scale=fit.p2$estimate[2]) ## 
 Pareto cdf values at break points  
 
ult2.prob <- (ult2.p[,2]-ult2.p[,1])[1:b-1]  ## Probabilities of each interval 
ult2.ex <- n2.0*c(ult2.prob,1-sum(ult2.prob))   
 ## Expected frequency of each interval and the “excess” interval 

The expected # claims by interval are in ult2.ex and the observed # claims are in ult.os.   
E.2 = ult2.ex 
O.2 = ult2.os 
 
x.sq.2 = (E.2-O.2)^2/E.2 
 
cbind(E.2,O.2,x.sq.2)       ## expected, observed, and chi-square of each interval 
after full adjustment 
 
##### Test Statistic Calculation ########### 
#___________________________________________ 
#          E.2   O.2     x.sq.2 
#[1,] 43993.890 44087 0.19705959 
#[2,] 35651.989 35680 0.02200752 
#[3,] 10493.758 10323 2.77864169 
#[4,]  7240.583  7269 0.11152721 
#[5,]  9277.383  9164 1.38570182 
#[6,]  8063.576  8176 1.56743997 
#[7,]  5289.820  5312 0.09299630 
Next we calculate chi-squared statistic and its critical value, which shows that the null hypothesis 

that the Pareto model fits the data cannot be rejected.  It is important to note that the degrees of 
freedom are not six as we might expect, but rather 6-2=4.  This is because the Pareto 
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distribution used for the expected values was the best fit Pareto distribution from the data, which is 
a two-parameter distribution.11

 

 

##chi-square test statistic## 
 
df=length(E.2)-1-2           ## df = 4 
 
chi.sq.2 <- sum(x.sq.2)    ## test statistic 
chi.sq.2                   ## 6.155374 
 
qchisq(.95,df)             ## critical value ## 9.487729 

1-pchisq(chi.sq.2,df)      ## p-value  ## 0.1878414  

Using the chi-squared test in R directly would produce a wrong p-value, to wit: 
## chi-square goodness-of-fit test from R ## 
 
chisq.test(O.2,p=E.2/n2.0)   
 
#####################################################  
#    Chi-squared test for given probabilities 
# data:  O.2  
# X-squared = 6.1554, df = 6, p-value = 0.406 
###################################################### 

 

Summary 

The initial motivation for the procedures in this section was to test the output of the simulator to 
see whether it fit the severity distribution specified by the input parameters.  We first used graphs to 
select candidates for fitted distributions.  For example, for Line 2, this led to selecting Weibull and 
Pareto as candidates.  Recall that the size of loss distribution for the Line 2 simulation was set as 
Pareto with α (shape) =6, and θ (scale) = 500,000.  The m.l.e. estimates for the Pareto parameters 
are ˆ 5.97635α =  and θ̂ = 500,000.  

The Q-Q plots of the observed values versus sample values from the fitted theoretical 
distribution gives a visual indication of which distribution best fits the observed values for each line.  
Appendix B contains all the graphs.  Next we used the chi-square test to decide whether the selected 
models fit the data well.  We did not calculate other appropriate tests such as Kolmogorov-Smirnov 
or Anderson-Darling.12

One can also use the procedures in this section to fit a set of actual claim size data, once 
it is converted to a format similar to the “ultloss” file from this chapter.  To help with this, we 

 

                                                           
11 See, for example, Devore [4]. 
12 See pp. 448-458 in Klugman, Panjer, and Wilmot [11], for a fuller discussion of these tests. 
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included in Appendix B all the R statements used to fit and test the various distributions we tested 
for each line.  

6.2.3 Testing Correlated Frequencies 

In order to make sure the Copula feature in the model is appropriate, we implemented statistical 
techniques to test the Gaussian Copula setting based on correlated set of frequency data simulated 
by the model.  The simulation run results files “c_20100720_1900.csv” and “bymonth.csv” are used, 
which have one-year frequency data for three lines. The number of simulation is 1,000. The 
correlation assumption is as below: 
 

Correlation Line 1 Line 2 Line 3 
Line 1 1 0 0.99 
Line 2 0 1 -0.01 
Line 3 0.99 -0.01 1 

 

Some key parameters for the simulator run that produced the dataset for this test include: 

Annual frequency for each line is Poisson with mean 96 occurrences. 

Each occurrence generates exactly one claim. 

The simulator produces claims for accident year 2000 only. 

Descriptive statistics 

The annual frequency number for each line and each simulation is extracted based on the run 
results file. In addition, the first month frequency number is also extracted for a parallel test run. 
The two sets do not show too much difference regarding testing results. The test results below are 
based on annual frequency only.  See Appendix B for the layout of the data set used for this test. 

A scatter-plot of the empirical cumulative distribution function for each pair of lines is displayed 
below, showing a high positive correlation between line 1 and line 3. This is in line with our 
assumption for the correlation between Line 1 and Line 3: 0.99. Other pairs’ correlations cannot be 
identified, which is also consistent with our parameter assumption. 
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Test of Correlation 

(1) Fit simulated data set (data pair) to normal copulas.  

Two methods have been used for the copula fitting. We can see that Rho 1, Rho 2, and Rho 3 
MLE are very close to our assumption (0, 0.99, -0.01). 

Using maximum likelihood method 

The estimation is based on the maximum likelihood and a sample of size 1000. 
          Estimate  Std. Error       z value  Pr(>|z|) 
rho.1 -0.002112605 0.031977597   -0.06606516 0.9473259 
rho.2  0.979258746 0.000921392 1062.80366235 0.0000000 
rho.3 -0.010486832 0.031974114   -0.32797880 0.7429277 
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The maximized loglikelihood is  1591.565  

The convergence code is 0. 

Using Inversion of Kendall’s tau 

The estimation is based on the inversion of Kendall’s tau and a sample of size 1000. 
         Estimate  Std. Error     z value  Pr(>|z|) 
rho.1 -0.01420116 0.033302051  -0.4264349 0.6697910 
rho.2  0.97843954 0.001595654 613.1904797 0.0000000 
rho.3 -0.01938295 0.033034985  -0.5867400 0.5573783 

 
(2) Apply goodness-of-fit test.  

 
a) The empirical copula (from simulation model) and hypothesized copula are compared 

under the null hypothesis that they are from the same copula. Cramér-von-Mises (CvM) 
statistic S is used and the p-value is estimated using parametric bootstrapping method 
(simulated p value) 

 

 
This test can be realized by using function “gofCopula”. Please note that, due to the 
simulation number chosen to do parametric bootstrapping, the run takes a while to finish.  
 
The goodness-of-fit test using CvM statistics was intended to be applied at dimension 3. 
However, the run speed is very slow and impractical. Only 100 simulations for calculating 
the p value take more than 20 minutes to finish. Therefore, I used two dimension tests three 
times to accomplish it. Only 100 simulations for parametric bootstrapping will take around 
10 minutes for two dimensions. Ties will produce an incorrect p value calculation. We used 
pseudo observations to randomly break the ties as suggested in the article “Modeling 
Multivariate Distributions with Continuous Margins Using the copula R Package” by Ivan 
Kojadinovic and Jun Yan (published in Journal of Statistical Software, May 2010, Vol. 34, Issue 
9). 
 
The results below show that the simulated correlated frequencies can fit to normal copula 
very well. 
 
Line 1&2 
 
Parameter estimate(s): -0.002100962  
Cramér-von Mises statistic: 0.0203318 with p-value 0.4009901 
 
Line 1&3 
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Parameter estimate(s): 0.97926  
Cramer-von Mises statistic: 0.007494245 with p-value 0.3811881 
 
Line 2&3 
 
Parameter estimate(s): -0.01049841  
Cramér-von Mises statistic: 0.01614539 with p-value 0.5891089 
 

b) Kolmogorov-Smirnov (K-S) test. Only two dimensions are currently the maximum number 
allowable in R. Based on fitted copula, a random data set is generated and the empirical data 
and generated data are used to do two-2-sample K-S test. The null hypothesis is that the 
two data sets are from the same continuous distribution. The statistic is 

)()(max iHiEiSK xFxFD −=− . The p value will be calculated exactly if the sample size is 

less than 10,000. 
 

Line 1&2 (Null hypothesis: correlation coefficient = 0) 
 
        Two-sample Kolmogorov-Smirnov test 
 
data:  x12 and y12  
D = 0.016, p-value = 0.96 
alternative hypothesis: two-sided  
 
Line 1&3 (Null hypothesis: correlation coefficient = 0.99) 
 
        Two-sample Kolmogorov-Smirnov test 
 
data:  x13 and y13  
D = 0.014, p-value = 0.9895 
alternative hypothesis: two-sided  
 
Line 2&3 (Null hypothesis: correlation coefficient = -0.01) 
 
        Two-sample Kolmogorov-Smirnov test 
 
data:  x23 and y23  
D = 0.0135, p-value = 0.9933 
alternative hypothesis: two-sided  
 
The P value of the K-S test shows that we cannot reject the null hypothesis. This is also quite 
consistent with what we can spot from the scatter plots. 
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(3) Conclusion 
 

Based on the scatter plots, normal copula fitting parameters, and also the goodness-of-fit test 
using CvM statistics, we can conclude that the correlation in simulated frequency data is consistent 
with our assumption. 

7. POTENTIAL APPLICATIONS AND MODEL ENHANCEMENTS 

The CAS Committee on Dynamic Risk Modeling plans to hold a 2011 Call Paper Program soliciting 
enhancements to the model, additional testing as well as papers applying the model to test 
alternative loss reserving methods and models.  The following model enhancements would be 
welcome: 

1. Include covariates as categorical or numeric variables in setting the parameters for the 
distributions.  For example, in the modeling for claim size, if “state” is a categorical variable 
that affects the parameter of the distribution, we can include this information as input for 
the model, rather than setting up a separate “type” for each state.  The covariate should be 
passed to the output detailed claim file. 

2. Additional pairs (or groups) of variables whose sample values are correlated. 
3. Input and output to and from standard database programs. 

 
The following additional tests of the Loss Simulation Model would be welcome, and could be 
performed while testing alternative loss reserving methods and models: 

1. Poisson frequencies have been tested, while negative binomial frequencies have not been 
tested. 

2. Correlations of mean frequencies across lines of business have been tested, while 
correlations between size of loss and report lag within a Type have not been tested.   

3. Ultimate claim values have been tested, while the sequence of loss reserve changes has not 
been tested.   

4. The Single Payment Model has been tested, while the Periodic Payments Model and the 
Multiple Random Payments Model have not been tested. 

5. The mechanics of certain parameters such as alpha, severity trend, inertia, etc. have been 
verified by examining the code.  However, output from runs using these parameters has not 
been verified. 

6. Apply the testing approach described in Section 3.2 above to assess the ability of simulated 
data from the Loss Simulation Model to represent “real” data. 
 

Other tests, enhancements or topics not on these lists are also welcome as long as they address 
something specific to the Loss Simulation Model or its intended uses. 
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8. CONCLUSIONS 

The LSMWP has developed a model that we hope will become a valuable tool in researching 
reserving methods and models.  We hope that actuaries will use this model to: 

• Better understand the underlying loss development process. 

• Determine which methods and models work best in different reserving situations. 

• Reflect this knowledge in evolving loss reserving practices. 
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APPENDIX A 

1) How to install the Public Loss Simulation Model 
 

a. To install the Loss Simulator Model to your computer, please download and run the 
windows installation package LossSimulatorSetup.msi from the following link  
http://www.casact.org/Research/LSMWP/. 

 
b. Following the initial screen instructions, the installation package will ask you two questions, 

as shown in Picture (1). The model runs R as the background calculation engine, and 
requires R (D) COM as a bridge component between R and the front end application. If you 
have not installed these two services before, please check them and continue. If you have 
earlier version of R installed, please exit and uninstall that version first, then come back and 
check the “Install R (version 2.11.1).” Ignore the “Install R” option if you have higher 
version of R installed already. 

 

 
 Picture (1). Installation Options 
 

c. Then provide an installation location, as shown in Picture (2). 
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Picture (2). Choose installation directory. 

 
 

d. Click the next button to continue the installation. If you choose to install R 2.11.1 and R 
(D)COM, the following two screens will start automatically. 

 
Picture (3). Install R 2.11.1.  
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Picture (4). Install R (D) COM. 

 
e. There is one more thing to be aware: besides the CAS online help at 

http://www.casact.org/research/lsmwp/losshelp/index.cfm?fa=main, Loss Simulator also 
contains a windows html help file as an attached help system. But due to Windows security 
restriction (http://support.microsoft.com/kb/902225), you may not be able to see the help 
content when launching help from the Simulator, and get the following error page instead: 

 

 
 Picture (5). Possible error when trying to open help file from Loss Simulator help 
menu. 

  
In this case, you can just simply go to the model installation folder and right click the help 
file named LossSimulator.chm, and then select Properties, click Unblock. After this 

http://support.microsoft.com/kb/902225�
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action, you will be able to see the help content. 
 

2) How to run the Public Loss Simulation Model 
 

 
After installation, you will find the Public Simulator icon on both your desktop and Start Menu. You 
can just double click it to launch the application. 
 
 

2.1 System Overview 
Initial screen will be like Picture (6). The application is developed within Windows UI 
standard, so that it contains menus and tool bar buttons associated with each menu items. 

 
 Picture (6). Public Loss Simulator main window 
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Picture (7) shows a brief explanation of each menu item and the later chapters will explain each of 
them in detail.  

 
Picture (7). System Tool Bars and Menus 
 
 
 

 
File, New Project: Initialize a brand new simulation project, which contains default settings 
for one line, with one Single Payment type. You can save it later. 
 
File, Load Project: Open a previously saved simulation project from the database. 
 

 
Picture (8). Load previous saved project from database. 
 
File, Close Project: Close the current opened project. If system detects any change to the 
project properties, it will first ask for saving the project.  
 
File, Save Project: Save the current opened project into database. When saving a simulation 
project, all the simulation properties will be saved into database. If it is initialized from a new 
project menu, system will ask you for a project description, as shown in Picture (9). System 
has a default MS Access database attached; you can configure the simulator to connect to 
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any kind of database server also. 

 
Picture (9). Project Save Window will pop up asking for project description. 
 
File, Drop Project: Permanently delete a project previously saved in the database. This 
menu item is enabled when a project is open. 
 
File, Import… :  
File, Export… :  
These two menus enable project sharing among users. You can export a project into a XML 
file and e-mail it to another person. That person can import it and run simulation from his 
workstation, with all the project properties set by you. Or you can export the project and 
later import it again for different testing stage purpose. In that case, it is pretty similar to 
saving project to the database and loading project back. 
 
This is the help menu. 
 

 
 
Help, CAS Web Help Contents: This will lead users to the help contents from CAS Loss 
Simulator Working Party Web Site. 
 
Help, Contents: This will open the attached simulator help system, as shown in Picture 
(10). If you cannot see any help contents from right side panel, please refer to section 
7.1 (e) in this paper for proper configuration. 
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 Picture (10). Loss Simulator Help system 
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Tools, Run Simulation: This menu will let you start to run the simulation. As shown in 
Picture (11), you need to provide a claim file name, a transaction file name, and depending 
upon your needs, choose how many iterations you prefer. For a full-scale simulation, you 
may try 1000 iterations. That could take hours to finish, generating hundred thousands of 
claims and millions of transactions. We will explain the simulation result in detail from later 
chapter. 

 
Picture (11). Run Simulation window 

 

2.2 Simulation Project  
A simulation project is one where modeler enters properties for line of businesses and types 
and initializes the simulation. A typical project can contain multiple lines of business (LOB), 
with each line of business consisting of one or more types of claims. Type can be treated as 
coverage in real case. A tree structure is the best way to describe the relationships among 
them, as shown in Picture (12). 
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Picture (12). A simulation project is constructed by tree structure. 
 
The left panel in the project window uses popup menus to allow user to add, drop, 
update, copy, and paste nodes to build up a company business model; while the right panel 
of the project displays properties of the selected node from left side. It could be a project 
properties, line level properties, or type level properties. This section of the paper won’t give 
a detailed explanation of each property listed, most of which are explained in the help file or 
the CAS Web Site online help for this model. 

 

2.3 Overall Simulation Properties 
According to the tree relationship described in previous section, the simulation project will 
have properties that control line level correlations, as well as main simulation features such 
as the earliest accident date and the latest accident date.  
 
As seen in Picture (13) below, when you double click the Simulation Project node, you will 
see the screen on the right side panel. You can define a 10-year accident date range, starting 
from 01/01/2000 to 12/31/2009, as shown in the sample. This is a common time frame for 
most loss reserve analysis. In the later simulation stage, system will loop through each year 
and apply the line level properties, such as frequencies, etc., to generate synthetic claims and 
transactions.  

 
Picture (13). Overall Simulation Properties 
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The Initial Random Seed (or seed state, or just seed) is a number used to initialize a 
pseudorandom number generator. The choice of a good random seed is crucial in the field 
of computer security. However, in our simulator it is mainly used for testing the simulated 
result. By fixing the seed, we ensure that users can generate the same result with the same 
seed number when the simulation is run under the same assumptions. Please note that the 
simulation results are still truly randomly generated when we permit the seed to be randomly 
selected. 
 
The correlation among line level frequencies is defined by Copula. Please go to the help 
system to read more about how the copula is applied in the simulator on a multivariate 
distribution. Or you can read more copula applications from R help. 
 
You can ignore copula correlation with the default value set, as seen in Picture (13). The 
green button shows property of a two-dimension Normal Copula, but correlation is c(0).  
The button is enabled only for multiple lines of businesses. In our example, it has two 
dimensions because the sample created two lines of businesses under the simulation project, 
and so there are two marginal frequency distributions to be correlated. The c(0) correlation 
means there is no correlation between the variants. Thus when simulating, system will 
instead bypass the copula calculation and run the typical distribution individually defined by 
those variants. 
 
When you are confident enough to apply Copula for correlations, you can click the green 
button above, and see the Picture (14) for a typical copula screen. You will notice a two-
dimensional copula scatter plot on the right side of the screen. In this sample, it is a normal 
copula. Please pay attention to the shape of the plot. The simulator will show copula plot up 
to three dimensions. The plot will be refreshed once you change any property. Correlation 
Matrix can be entered by clicking the button of “Frequency Correlation Matrix”. It is actually 
the Spearman’s Rank matrix for normal copula, as sampled. The matrix is symmetrical, so 
that you can just give upper-left values, and the system will fill in the lower-right corner 
values automatically. 
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Picture (14). Define a Copula between LOB frequencies. 
 
The marginal distributions of this copula will be the line level Frequencies. 
 

 

2.4 Line Level Properties 
The Simulator defines most of frequency related properties at the line of business level, as 
shown in Picture (15). They are Annual Frequency, Monthly Exposure, Trend, Seasonality, 
and Multinomial Claim Distribution among types. The help system has provided very 
detailed explanations on each property topic and how monthly frequency is generated from 
an Annual Frequency by these properties. The help system also illustrates the detail 
workflow of: monthly frequency ->occurrences->claims->claims for each type. So, in this 
section of the paper, we won’t go through them in detail again, but instead, will focus on 
how to enter those values. 
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Picture (15). Line level properties 

 
 2.4.1) How to define distribution in simulator 

Annual Frequency is a distribution value. The button on the right side will show the little 
 icon, and lists out the distribution property, such as, it is a Poisson distribution with 

lambda = 12. This is a very small sample. You can change it by clicking the button, and you 
will see the screen as Picture (16). 
 
In fact, all the distributions, either continuous or discrete, are defined with screens similar to 
Picture (16). Any distribution defined in the simulator will have properties such as name, 
parameters, and min/max value. The upper-left corner contains a button that shows the 
currently selected distribution. You can change the distribution by clicking it and picking 
from a dropdown list. Then you can change the parameter(s) for the selected distribution. 
Every time you make a change, you will notice that distribution graphs such as Density, 
CDF, and a Histogram are refreshed on the right side of the panel.  
 
The min/max values are applied when sampling from the defined distribution, so that any 
generated random number will be limited to the [min, max] range. With this said, when the 
associated distribution is the severity distribution, the max value also physically represents 
the coverage limit. 
 
The Histogram shown in the picture is a visual representation, between the [min, max] 
values, of the possible random numbers sampled in the future simulation run. 
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Picture (16). A Poisson distribution  
All the distributions in the simulator are defined in the same manner as is done in the R 
language. For example, the user enters the meanlog (µ) and sdlog (sigma) parameters for all 
lognormal distributions in the model. Thus, if you want to define the size of loss to be 
lognormal with mean $100,000 and standard deviation $100,000, you need to perform a 
conversion calculation first. 
To achieve the given size of loss distribution above, you can set the parameters: 
 
 sigma = sdlog = {ln(1+CV^2)}^.5, where CV = mean/(standard deviation).  

 Since CV = 100,000/100,000 = 1 in our example, sigma = {ln(2)}^.5 = .833 and 
µ = meanlog = ln(mean) – (sigma^2)/2 = ln(100,000) - .693/2 = 11.166 . 

 
Please recall that ln(x) represents the natural logarithm of x, while exp(x) = e^x, the constant 
e raised to the power x. 
 
This will produce a size of loss X with mean 

 
This results in Var(X) =2 x 1010 −  1010  and Standard Deviation(X) = 100,000. 
 

  2.4.2) How to define simulation property by month 
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Most of the properties defined in simulator are monthly values. That means their value will 
change by month and detail calculations are also carried out at monthly level. For instance, 
trend, exposure, seasonality, most of the severity distributions and lags, case reserves, etc., 
are all defined by month. Line level frequency is defined annually for simplicity, but it is still 
divided into monthly frequency in the initial simulation calculations. 
 
This may cause some confusion, especially if you define severity distribution or lags by 
month. By default, the Simulator will set those values to all be the same value.  When you 
change a value for one particular month, that value is automatically carried through to all 
subsequent months. This feature gives user a flexibility to treat all kinds of probabilities in 
their business, and provides a powerful ability to change the distribution for a certain variant. 
Please see Picture (18) for a Payment Lag Distribution example defined in next chapter. 
 
At the line level, an example of frequency trend defined by each month in 2001 is illustrated 
by Picture (17). You can navigate to a different year using the blue arrows. Please be aware 
that every time you make a change to one cell, the values after that month will be changed 
automatically, and will remain changed across years. So, if you just want to change only one 
month’s value, you should be sure to change the value for later months to the previous 
value. 
 

        
      
Picture (17). Example of 
monthly frequency trend 

Picture (18). Example of Payment 
Lag for each month 
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2.4.3) How to define claim/acc value  

The number of claims of each Type arising from an occurrence is modeled via a multinomial 
distribution. This allows for the possibility of multiple claims from the same occurrence, 
either of the same Type or of multiple Types. It typically introduces correlations between 
frequencies across pairs of Types within the same Line. 
 
Picture (19) demonstrates a screen example of the multinomial distribution parameters 
entered for a line with three types defined.  
 

 
Picture (19). Example of defining multinomial claim distribution among types 
 
In this case, the multinomial matrix is marked with blue in the following table. For example, 
if you have 600 occurrences generated in some month for this line, then the Simulator will 
run this R command at backend to allocate the 600 occurrences to each possible 
combination of claim types. 
 
> rmultinom(1, 600, c(1,1,1,2,2)) 
     [,1] 
[1,]   95 
[2,]   85 
[3,]   80 
[4,]  178 
[5,]  162   
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Type1 Type2  Type3 Proportion Normalized 
Probability 

Occurrence 

1 0 0 1 0.1429 95 
0 1 0 1 0.1429 85 
0 0 1 1 0.1429 80 
1 1 1 2 0.2857 178 
2 0 2 2 0.2857 162 

 
To interpret the above table, imagine that we have a die that is loaded so that the normalized 
probabilities in the above table represent the probability of landing on each of five sides of 
the die, while the probability of landing on the sixth side is 0.  The Occurrence column 
summarizes the results of tossing the die 600 times.  If we repeated this process 1,000 times 
and summed the resulting Occurrence columns from these simulations, we would expect 
that approximately 14.29% of the total occurrences generated would have one Type 1 claim 
and no Type 2 or Type 3 claims, 14.29% of the total occurrences generated would have one 
Type 2 claim and no Type 1 or Type 3 claims, 14.29% of the total occurrences generated 
would have one Type 3 claim and no Type 1 or Type 2 claims, 28.57% of the total 
occurrences generated would have one claim of each Type, and 28.57% of the total 
occurrences generated would have two Type 1 claims, no Type 2 claims and two Type 3 
claims.  Claims generated from same occurrence will have the same accident date. 
 
The user can enter more combinations in the cells marked with * on the left, as shown in the 
Picture (19). They can also just highlight a row and hit delete to remove a proportion. 
However, please note that if you add another row of data such as (1, 0, 0, 3), since the 
allocation of “1, 0, 0” already exists, the Simulator will combine them into one allocation as 
(1, 0, 0, 4).  

 
Please refer to the Loss Simulator Help section 5.4 - Multinomial Claim Distribution among 
Types for more technical model details on this topic. 
 

2.5 Type Level Properties 
The Type object defined in the Simulator can be used to define coverage for a line. It will 
contain most of the required coverage properties such as payment pattern, lags, severity, case 
reserve activities, and recovery adjustment properties. 
 
2.5.1) Three Payment Patterns 
 
This version of simulator contains three payment patterns defined in the first tab of each 
Type object, as sampled in Picture (20). Loss Simulator contains another set of help 
system that, when you put your mouse over a property (most of them are property 
labels), you will see a popup tool tip help window for that property, explaining the 
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physical meaning of that property. Each payment pattern option has its own completely 
different simulation algorithm. Please refer to the help section online at: 
http://www.casact.org/research/lsmwp/losshelp/index.cfm?fa=main for a detailed 
discussion of each payment pattern option.  

 
Picture (20). Three payment patterns defined for each Type object 
 

Once you click one of the payment pattern radio buttons, you will notice that the remaining 
two tabs of the Type object will also be changed associated with the selected payment 
pattern. We will explain them one by one, associating each property with each simulation 
algorithm. 

 
2.5.2) Single Payment Pattern 

A Type object of Single Payment Pattern will have the following two screens, as seen in 
Picture (21) and Picture (22), to define lags, severity properties, and recoveries. 
 
2.5.2.1) Single Payment Pattern Lags 
 

 
 Picture (21). Lags defined for single Payment Type object 
 

http://www.casact.org/research/lsmwp/losshelp/index.cfm?fa=main�
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Report Lag, a monthly defined continuous distribution, helps to generate Report Date of a 
claim from the accident date. 
 
Payment Lag, a monthly defined continuous distribution, helps to generate Payment Date 
of the claim from the Report Date. 
 
Inter-Valuation Waiting Times, a monthly defined continuous distribution, will define 
each Valuation Date (Case Reserve Date) between the Report Date and the final Payment 
Date. 
 
Recovery Lag, a monthly defined continuous distribution, will define the Recovery Date 
after the Payment Date if the checkbox is selected. 
 

 The following picture illustrates the above four properties. 

 
Picture (22). Illustration of Single Payment Pattern option in simulation 
 

(1) Report Lag  
 
(2) Payment Lag 
 
(3) Recovery Lag 
 
(4) Inter Valuation Time Lag 
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2.5.2.2) Single Payment Pattern Severity Properties 

Picture (23) shows the properties to define severity, case reserve, and recovery (if selected). 
We will explain each property in detail. 
 

 
Picture (23). Severity and recovery (if enabled) for single Payment Type object 

 
Size of Entire Loss is a monthly defined continuous distribution that defines the severity 
distribution of the Type. It will determine the final claim payment. This variable can be 
correlated using a Copula object with the payment lag defined in the Type. However, NO 
correlation is selected in Picture (23). 
 
P(0), a monthly defined value, defines the constant probability of closure without payment, 
for reasons other than failure to exceed the deductible. 
 
The cumulative trend factors (cum) are calculated to the accident and payment dates, and 
then the trend multiplier is calculated as follows: 
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We are applying the full trend factor from the average accident date underlying the assumed 
loss distribution to the accident date of the occurrence, and a portion “alpha” of the trend 
from the accident date to the payment date.  This is an application of Butsic’s alpha 
parameter concept from his May 1981 CAS Discussion Paper Program titled, “The Effect of 
Inflation on Losses and Premiums for Property-Liability Insurers.” 

 
Then the final payment of the claim is calculated by multiplying the trend factor and the 
simulated claim from the Size of Loss property and then applying the policy limit and 
deductible.  
 
Case Reserve Adequacy 

Case Reserve Adequacy at valuation time t is a lognormal random variable with 

µ = (meanlog at time t ) and s = (sdlog at time t ).  Here t is the fraction:  

t = valuation time minus report date
payment date minus report date

= Valuation lag
Payment lag

 

The user enters the meanlog for times t = 0%, 40%, 70%, and 90% (the time 0 value is labeled 
“case reserve adequacy” in the model). The meanlog for time 1.0 is set at 0.0. For other values 
of t, the Simulator applies linear interpolation to calculate values of meanlog. The modeler also 
input sdlogs for times 0%, 40%, 70%, and 90%, which provides flexibility in controlling the 
variance of the reserve adequacy factor.  

On the Simulator screen, the user determines the case reserve adequacy parameters by 
selecting four lognormal distributions labeled as Case Reserve Adequacy, 40% Case Reserve 
Adequacy, 70% Case Reserve Adequacy, and 90% Case Reserve Adequacy, as displayed in 
Picture (23). 

  
Threshold and EstP(0) 

The Simulator introduces a non-negative threshold value that is associated with EstP(0) and 
is used when case reserves are set at each valuation time.  If the claim’s ultimate size of loss 
value is strictly below this threshold, we would not apply the EstP(0) adjustment in setting 
the case reserve. If the user enters a zero value for threshold, then the model will apply the 
“EstP(0),” adjustment to all claims. 
 
The algorithm for estimating the case reserve value of a claim is as follows: 
 

(1) If threshold <= 0 OrElse payment > threshold Then 
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value = (1 - EstP0 at ValuationDate)* payment * multiplier(apply policy limit and 
deductible) 

       (2)  If (threshold > 0 AndAlso payment <= threshold) Then 
        value = payment * multiplier - deductible 

 
(Multiplier is the value simulated from the interpolated case reserve adequacy lognormal 
distribution.) 

  
 
 Recovery. Recovery is optional.  

By checking the Recovery Lag Checkbox, as shown in Picture (21), you enable the recovery 
calculation. P(1) is the probability that the claim closes with the initial payment amount, and 
is constant for all claims. The default value is 1, which means the initial payment covers the 
full payment amount and there is no recovery (even if you selected the checkbox). 
 
InitialPaymentAdequacy is a monthly defined distribution that is used when P(1) is not 1.  
It represents the ratio of the ultimate payment after recoveries to the initial payment, and so 
defines the recovery amount as Recovery= Initial Payment * (1- ratio).  

 
  

2.5.3) Multiple Random Payment Pattern 

The multiple random payments model approximates the development pattern of coverage 
such as Medical Payments, where each occurrence is followed by a random number of 
reimbursable incurred expenses. Each expense is followed by one reporting and one 
payment. The final expense payment (which may or may not be the final expense incurred) is 
followed by zero or one recovery or other adjustment to the total of all previous payments. 
 
The following pictures will show the screen of defining lags and severities properties of a 
multiple random payment type. 

 
 Picture (24). Lags defined for Multiple Random Payment Type object 
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 Picture (25). Size of Loss properties defined for Multiple Random Payment Type 
 

The multiple-random-payments model approximates the development pattern of coverages 
such as Medical Payments, where each occurrence is followed by a random number of 
reimbursable incurred expenses. Each expense is followed by one reporting and one 
payment. The final expense payment (which may or may not be the final expense incurred) is 
followed by zero or one recovery or other adjustment to the total of all previous payments.  

The number of reimbursable expenses per claim is assumed to follow a geometric 
distribution or a multinomial distribution specified by the user.  

The severity parameters describe the distribution of severities for each individual expense, 
except that the deductible and maximum apply to all expenses in aggregate. There is a single 
trend factor (actually annual trend rate) applied to each expense through its incurral date, and 
there is decay factor allowing the user to specify a declining mean from one expense to the 
next expense arising from the same claim.  

Case reserves are assumed to be revalued at each payment date. Their adequacy is measured 
relative to all expenses that have been or will be incurred but have not yet been paid, subject 
to a minimum that allows a reserve to be carried between the last payment and the recovery 
date. The “P(2 sig dig)” entry represents the probability that a case reserve will be estimated 
to a nearby “round” number—in this case rounding to two significant digits—rather than its 
exact value.  

Recoveries are modeled as one-time adjustments to correct errors in the original amounts 
paid. For this purpose each amount paid is treated as an adequacy factor times the actual 
severity after application of the deductible and the maximum. Payment errors are reflected in 
the distribution of this factor less 1.00. In particular, if the adequacy factor is greater than 
1.00, the initial payment will be too great and will produce a future recovery, represented as a 
negative payment. The simulator generates both the original overpayment and 
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underpayment, spread uniformly across all payment dates, and the later recovery or 
adjustment.  

2.5.4) Periodic Multiple Payment Pattern 

The periodic payments model approximates the development patterns of coverage such as 
Group Long-Term Disability or the wage-replacement provisions of Workers 
Compensation, where each occurrence is followed by a random number of regular periodic 
payments of equal amounts or of equal amounts subject to periodic inflation adjustments. 
The final payment is followed by zero or one recovery of any payments that were 
inadvertently made beyond the termination of disability.  

 
 Picture (26). Lags defined for Multiple Periodic Payment Type 
  

  
 Picture (27). Severity and case reserve defined for Multiple Periodic Payment Type 
  

Size of Loss is typically related to salaries and may be approximated by a suitable 
distribution with a minimum and maximum.  There is a provision for trend which affects the 
payment size at time of occurrence, and for COLA factors which affects individual claims at 
annual intervals following commencement of payments. 
 
Trend is the change in mean payment size for newly incurred claims. It is expressed as an 
annual factor but applied monthly. 
 
COLA is the change in payment size, at the end of the first and each subsequent year, for a 
given claim already in payment status. 
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CP factor is the ratio of the periodic continuance probabilities assumed in the tabular 
reserves to the same probabilities implicit in the payment duration distribution. 

 

2.6 Run Simulation 
You can only start the simulation with an open project; otherwise, the simulation menu and 
the toolbar buttons are all disabled. Once you feel comfortable enough for the model 

configuration, you can go to Tools->Run Simulation, or simply click the  button from 
toolbar. The “Run Simulation” window pops up as shown in Picture (28) 
 

 
Picture (28). Run simulation 
 
2.6.1) Provide Claim and Transaction Output File 

 
The Simulator will need a claim and a transaction output file. So from the above screen, you 
can click the two buttons individually and provide the CSV file name from the Windows File 
Save Dialog. The Simulator will then generate two CSV files after the simulation is done.  
 

Here is an example of how the claim CSV file looks like (if opened with Excel):  
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Simulation 6/9/2010 11:51:33 AM    
Simulation 
No 

Occurrence 
No 

Claim 
No 

Accident 
Date 

Report 
Date Line Type 

1 1 1 20000117 20001103 1 1 
1 2 1 20000112 20000418 1 1 
1 3 1 20000108 20000320 1 1 
1 4 1 20000129 20000201 1 1 

 
And here is a sample transaction file: 
 

Transactions 6/9/2010 11:51:33 AM 
Simulation 
No 

Occurrence 
No 

Claim 
No Date Transaction Case Reserve Payment 

1 1 1 20001103 REP 2000 0 
1 1 1 20010313 RES 15439 0 
1 1 1 20010425 RES 1330 0 
1 1 1 20010915 RES 2938 0 
1 1 1 20020429 RES -3870 0 
1 1 1 20020501 RES -650 0 
1 1 1 20020524 RES -484 0 
1 1 1 20020602 RES -198 0 
1 1 1 20020706 RES -632 0 
1 1 1 20020821 RES -920 0 
1 1 1 20020906 RES -542 0 
1 1 1 20021004 CLS -14411 1233 
1 2 1 20000418 REP 2000 0 
1 2 1 20000918 RES 13113 0 
1 2 1 20010405 RES 3830 0 
1 2 1 20010913 RES -1334 0 
1 2 1 20020101 RES -2803 0 
1 2 1 20020205 RES -950 0 
1 2 1 20020319 CLS -13856 0 
1 3 1 20000320 REP 2000 0 
1 3 1 20000408 RES 29554 0 
1 3 1 20000511 RES 5778 0 
1 3 1 20000624 RES 7127 0 
1 3 1 20001004 RES -984 0 
1 3 1 20010108 CLS -43475 10866 

 
2.6.2) Number of Iterations 

This controls how many iterations the Simulator will run. To get a feel for the simulator, you 
can simply choose 1 from the dropdown selection, and the simulation will finish after 1 
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iteration.  
 
For real simulation, you can choose up to 1000 iterations. This could require many hours of 
CPU time, depending upon the complexity of your parameterization of the model and your 
computer speed. The final result may contain hundreds of thousands of claims and millions 
of transactions. In this case, you can let the program run overnight. However, you can cancel 
the process at any time by clicking the “Stop” button. 
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2.6.3) On Screen Simulation Output 

The Run Simulation window will show the calculation progress and, at regular intervals, 
displays the simulation summary text. For a large simulation, the summary text will be 
refreshed after each 100 iterations of the simulation process, so it may not give you the full 
picture in this case. 

 
Picture (29). Simulation progress screen with summary text 
 
If you select “The Number of Iteration” to be 1, at the end, the Simulator will 
automatically present results similar to Picture (30). There you can scroll down and browse 
any occurrence, then browse the claims within that occurrence, and finally the transactions 
inside that claim. 
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Picture (30). Occurrence, Claim, and Transactions (if only 1iteration is executed) 
 
If you run the Simulator with one iteration, the program will also generate a variety of 
loss triangles as shown in Picture (31).  The user may export the triangles to an Excel file.  
Please note that the “triangles” are presented in “rectangle” format, and that the user may 
also reconfigure the triangles by choosing different properties on this screen. 
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Picture (31). Loss Triangles from the output (if only 1iteration is executed) 
 
 
2.6.4) Reserve Percentile Output 

If the simulation has more than 100 iterations, the Simulator will generate a Reserve 
Percentile table from the simulation results. 
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Picture (32). Reserve Percentiles from the output (if 100+ iterations are executed) 

 
 

3) Simulation Example 
The CAS Loss Simulator Working Party Testing Group, led by Professor Joe Marker, has conducted 
several testing scenarios to evaluate the simulation parameterization and simulation results. One 
scenario tests the severity distributions (i.e., size of loss). We select this test in order to illustrate how 
to set up the parameters to simulate a company’s business. 
 
The simulated results contain the following: 

File Name File Description 

c.csv claims output by the simulator 
t.csv transactions output by the simulator 
ultloss 20100512.csv the file containing ultimate loss for each claim 
Test severities 20100512.xml XML file containing the parameters used to run the model (This 

file can be imported into your Simulator directly to see the 
following parameter definitions, and will produce the same results 
as displayed in the above c.csv and t.csv files.) 

 
These files can be downloaded from the following link: 
http://www.goouon.com/loss_simulator/file/simulation20100520 
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3.1 Simulation Project Level Parameters Setup  
 
Set up three lines of business with no correlation in frequency among the three lines. If you import 
the “Test severities 20100512.xml” file, you will see the exact same screens illustrated below, starting 
from Picture (33). 
  

Project Name Test Severity 20100512 
Accident Years 2000-2001 
Initial Random Seed 16807 
Frequency correlation copula (None) normal Correlation=c( )  Dim = 1 
Line of Business (3) Liability Line 1 

Liability Line 2 
Liability Line 3 

Coverage One BI Coverage (for each line), single payment model 
 
  

 
Picture (33). Severity Test with Project Level Parameters Setup 
 

3.2 Line Level Parameters Setup 
For each line, an occurrence generates one claim of one unique type for each line. 
Zero trend for frequency; zero trend for severity. Most parameters are the same for all lines. We use 
Line 1 as representative of all three lines in the table below (please also refer to Picture (34)): 
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Annual Frequency Poisson(600) 
Monthly Exposure (1)—None 
Trend  (1)—None 
Seasonality (1)—None 
Claim/acc matrix  
 

each occurrence generates 1 claim of one type  

 
Expected # claims  = 600 (freq) x 100 (# sims) x 3 (lines) x 2 (years) = 360,000. 
Actual # claims from the 
simulation result 

359,819 

  

 
Picture (34). Line Level Parameters 
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3.3 Coverage Level Parameters Setup 
Lags are irrelevant for this run except for report lag.  We are not testing the reserve change process. 
 
Report lag Exponential with Rate = 1/365,   mean=365 days.  

Max=3650. 
Payment lag Maximum one day (irrelevant) 
Inter-valuation lag Maximum one day (irrelevant) 
Recovery lag box Not checked (irrelevant) 
 
Correlation of Amount with lag  (None):   normal Correlation=c( ) Dim=2 
Alpha 0 
Inertia 0 
P(0) 0 
EstP(0) 0 
 
Case Reserve adequacy Irrelevant, leave at default values. 
Case Reserve Interpolation  Irrelevant, leave with default 
Minimum change 0 
Min Rel Chg 0 
 
P(1) Not set because recovery lag was not checked. 
Initial payment adequacy Not set because recovery lag was not checked. 

 
 

 
Picture (35). Coverage Level Lag Parameters 
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Picture (36). Coverage Level Amounts Parameters 
 

3.4 Coverage Level Severity Distributions 
Size of Loss (severity) Parameters varies by Line. 
BI 1 for Liability Line 1 
Picture (37) 

Lognormal  
mean=100,000  
standard. dev.=100,000 
max =10,000,000 

This means that the input 
lognormal parameters are  
μ = meanlog =11.16636357,   
σ = sdmean = 0.832549779. 

BI 2 for Liability Line 2 
Picture (38) 

Pareto  
α (shape) =6 
θ (scale) = 500,000 
max =10,000,000 

This results in a mean of 
100,000 and stnd deviation 
of 122,474.5. 

BI 3 for Liability Line 3 
Picture (39) 

Weibull 
θ (scale) = 95,000 
τ  (shape) = 0.9 
max =10,000,000 

This results in mean of 
99,957 and stnd.dev. of 
111,256. 
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Picture (37). BI 1 for Line 1, Lognormal, mean=100,000 standard. dev.=100,000, max 
=10,000,000 
 

 
Picture (38). BI 2 for Line 2, Pareto , α (shape) =6, θ (scale) = 500,000, max =10,000,000 

 
Picture (39). BI 3 for Line 3, Weibull, θ (scale) = 95,000, τ  (shape) = 0.9, max =10,000,000 
 

3.5 Number of Iterations: 100. 
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4) Distributions Used in the Public Loss Simulator and Their 
Parameterizations 
Name R Representation and Explanation B

eta 

Density dbeta(x, shape1, shape2, ncp = 0, log = FALSE) 

Probability Function pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE) 

Random Generation rbeta(n, shape1, shape2, ncp = 0) 

Details Before defining the Beta distribution, it is convenient to define the Beta function by: 

 B(a, b) =
1 1 1

0
(1 )a bt t dt− −−∫ for a>0, b>0. It turns out that B(a, b) =  

( ) ( )

( )

a b

a b

Γ Γ

Γ +
. 

Then  f(x) = 1 11

( , )
(1 )a b

B a b
x x− −− for a > 0, b > 0 and 0 ≤ x ≤ 1 , is the density for 

the Beta distribution with shape1 = a and shape2 = b.  The boundary values at x=0 
and x=1 are defined by continuity (as limits).  

The mean is 
a

a b+
 and the variance is 

2( ) ( 1)

a b

a b a b+ + +
.  

 
Pbeta is the cumulative distribution function F(x) and is closely related to the 

incomplete beta function, defined by B(x; a, b) = 1 1

0
(1 )

x a bt t dt− −−∫ . 

pbeta(x, a, b) = F(x) = 
( ; , )

( , )

B x a b

B a b
  

CDF Sample:  plot(function(x) pbeta(x, 1.25,12.0 , log=FALSE), main = “Beta CDF,” col=“red”) 
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Name R Representation and Explanation E
xponential 

Density dexp(x, rate = 1, log = FALSE) 

Probability Function pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE) 

Random Generation rexp(n, rate = 1) 

Details If rate is not specified, it assumes the default value of 1.  

The exponential distribution with rate λ has density  

        f(x) = xe λλ − for x ≥ 0.  
CDF Sample:  plot(function(x) pexp(x, rate=1.2, log=FALSE), main = “Exponential CDF,” col=“red”) 
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Name R Representation and Explanation G
am

m
a 

Density dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE) 

Probability Function pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,log.p = FALSE) 

Quantile Function qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,log.p = FALSE) 

Random Generation rgamma(n, shape, rate = 1, scale = 1/rate) 

Details The Gamma distribution with parameters shape = a and scale = s has density  

f(x)= 
1 exp ( / )

( )

a

a

x x s

s a

− −

Γ
, for x ≥ 0, a > 0 and s > 0.  

(Here Γ(a) is the function implemented by R’s gamma( ) and defined in its help. Note 
that a=0 corresponds to the trivial distribution with all mass at point 0.)  

The mean and variance are E(X) = a*s and Var(X) = a*s^2.  

The cumulative hazard H(t) = − log(1 − F(t)) is -pgamma(t, ..., lower = FALSE, log = 
TRUE).  

Note that for small values of shape (and moderate scale) a large part of the mass of 
the Gamma distribution is on values of x so near zero that they will be represented as 
zero in computer arithmetic. So rgamma can well return values which will be 
represented as zero. (This will also happen for very large values of scale since the 
actual generation is done for scale=1.)  

CDF Sample:  plot(function(x) pgamma(x, shape=2.5, scale==3, log=FALSE), main = “Gamma CDF,” 
col=“red”) 
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R Representation and Explanation 

G
aussian (N

orm
al) 

Density dnorm(x, mean = 0, sd = 1, log = FALSE) 

Probability Function pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

Random Generation rnorm(n, mean = 0, sd = 1) 

Details The normal distribution has density  

f(x) = 21
exp( / 2), where 

2

x
z z

µ

σσ π

−
− =  

where μ is the mean of the distribution and σ the standard deviation.  

 
CDF Sample: plot(function(x) pnorm(x), -5, 5,main = “Normal CDF,” col=“red”) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



Modeling Loss Emergence and Settlement Processes 

Casualty Actuarial Society E-Forum, Winter 2011 87 

 
 

Name R Representation and Explanation G
eom

etric 

Density dgeom(x, prob, log = FALSE) 

Probability Function pgeom(q, prob, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qgeom(p, prob, lower.tail = TRUE, log.p = FALSE) 

Random Generation rgeom(n, prob) 

Details The geometric distribution with prob = p has density  

( ) (1 )xp x p p= −  

for x = 0, 1, 2, …, 0 < p ≤ 1.  

If an element of x is not integer, the result of pgeom is zero, with a warning.  

 
CDF Sample: x<-1:100 
                       plot(pgeom(x, prob=0.09, log=FALSE), main = “Geometric CDF,” col=“red”) 
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Name R Representation and Explanation Lognorm
al 

Density dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) 

Probability Function plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE) 

Random Generation rlnorm(n, meanlog = 0, sdlog = 1) 

Details A lognormal random variable X is one for which Y = ln(X) is normally distributed.  
The parameters μ and σ are the mean and standard deviation of ln(X).  We can think 
of X as exp(Y), where Y has the normal distribution.  X has density  

f(x) = 21 ln
exp( / 2), where 

2

x
z z

x

µ

σσ π

−
− =  

The mean is EX = exp(μ + 1/2 σ^2), the median is med(X) = exp(μ), and the variance 
Var(X) = exp(2*μ + σ^2)*(exp(σ^2) - 1) and hence the coefficient of variation is 

sqrt(exp(σ^2) - 1) which is approximately σ when that is small (e.g., σ < 1/2).  

For example, the user enters the meanlog (µ) and sdlog (s) parameters for all 
lognormal distributions in the model. Thus, if you want to define the size of loss to 
be lognormal with mean 100,000 and standard deviation 100,000, you need to do a 
conversion calculate first. 

To achieve the given size of loss distribution above, you can set the parameter  
µ = meanlog = 11.16636357 and  
s = sdlog = 0.832549779 

since this produces a size of loss X with EX = 21
exp

2
µ σ+  
 

 ≈ 100,000. 

and second moment EX2 = ( )2exp 2 2µ σ+  ≈ 2 x 1010   
This results in Var(X) ˜ 2 x 1010 -  1010  and s(X) ˜ 100,000. 

CDF Sample  plot(x, plnorm(x, meanlog = 11.16636357, sdlog=0.832549779), type=“l,” main = “Lognormal 
CDF,” col=“red”) 
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Name R Representation and Explanation N
egativeB

inom
ial 

Density dnbinom(x, size, prob, mu, log = FALSE) 

Probability Function pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE) 

Random Generation rnbinom(n, size, prob, mu) 

Details The negative binomial distribution with size = n and prob = p has density  

1

1
(1 )n xx n

n
p p

+ −

−
−

 
 
 

= 
( )

(1 )
! ( )

n xx n
p p

x n

Γ +
−

Γ
 

for x = 0, 1, 2, …, where n is a real number, n > 0 and 0 < p ≤ 1.  

If n is a positive integer, this represents the number of failures before the nth success 
in a series of independent Bernoulli trials with probability of success p.  The mean is 

(1 )n p

p

−
and the variance is 2

(1 )n p

p

−
.  A negative binomial distribution results from 

a Poisson distribution whose mean has a gamma prior distribution with scale (1 - 
p)/p and shape n. (This definition allows non-integer values of size.)  

An alternative parameterization (often used in ecology) is by the mean mu, and size, 
the dispersion parameter, where prob = size/(size+mu). The variance is mu + 
mu^2/size in this parameterization or n (1-p)/p^2 in the first one.  

CDF Sample: x<-(1:40) 
                       plot(pnbinom(x, size=50, prob=0.8, log=FALSE), main = “Negative Binomial CDF,” col=“red”) 
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Name R Representation and Explanation Pareto 

Density dpareto(x, shape, scale, log = FALSE) 

Probability Function ppareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE) 

Random Generation rpareto(n, shape, scale) 

Details The Pareto distribution with parameters shape = α and scale = θ has density:  

f(x) = ( 1)( )xα αα θ θ − ++   

for x > 0,  α > 0 and  θ > 0.  

 
CDF Sample: plot(function(x) ppareto(x, shape=5, scale=1.2), main = “Pareto CDF,” col=“red”) 
 

 
 

 
 



Modeling Loss Emergence and Settlement Processes 

Casualty Actuarial Society E-Forum, Winter 2011 91 

Name R Representation and Explanation Poisson 

Density dpois(x, lambda, log = FALSE) 

Probability Function ppois(q, lambda, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qpois(p, lambda, lower.tail = TRUE, log.p = FALSE) 

Random Generation rpois(n, lambda) 

Details The Poisson distribution with parameter λ has density  

p(x) = 
!

x

x
e λ λ−  

for x = 0, 1, 2, … . The mean and variance are E(X) = Var(X) = λ.  

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is 
computed using Loader’s algorithm. 

The quantile is right continuous: qpois(p, lambda) is the smallest integer x such that 
P(X ≤ x) ≥ p.  

Setting lower.tail = FALSE allows to get much more precise results when the default, 
lower.tail = TRUE would return 1, see the example below.  

 
CDF Sample: x<-(1:80) 
                       plot(ppois(x, lambda=120, log=FALSE), main = “Poisson CDF,” col=“red”)  
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Name R Representation and Explanation W
eibull 

Density dweibull(x, shape, scale = 1, log = FALSE) 

Probability Function pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) 

Quantile Function qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) 

Random Generation rweibull(n, shape, scale = 1) 

Details The Weibull distribution with shape parameter τ and scale parameter τ has density 
f(x) and c.d.f. F(x) given by  

       f (x) = 
1

exp ( / )
x

x
τ

τ
τ

τ
θ

θ

−

−   ,   F (x) = [ ]exp ( / )1 x τθ−− for x > 0.  

The mean is E(X) = θ Γ(1 + 1/τ), and Var(X) = θ 2 * [Γ(1 + 2/τ) − {Γ(1 + 1/τ)}2 ]  
CDF Sample:  plot(function(x) pweibull(x, shape=10, scale=2.0, log=FALSE), main = “Weibull Cumulative,” 
col=“red”) 
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5) Public Loss Simulator Customized to Your Own Needs 
 
The CAS Public Loss Simulation Model is an open-source model, which means you can use the 
available source code, containing VB.NET and embedded R language, and make modifications to fit 
your own company’s reserving needs. The source code contains sufficient coding documentation 
that would enable an experienced programmer or modeler to begin customizing the model.  
 

5.1 Pre-requirements 
  

• To compile the program, you need to have Microsoft Visual Basic IDE (Integrated 
Development Environment). This can be downloaded and installed for free from 
Microsoft Web Site from the following link:  
http://www.microsoft.com/express/windows/. 
 

• To run it with R engine, you need to have at least R 2.11.1 installed. The installation 
process mentioned at the beginning of this section will install R 2.11.1 binary for you, or 
you can download and install the R runtime from the following CRAN web link:  
http://cran.r-project.org/bin/windows/base/. 

 
• The Loss Simulator employs the Object-Oriented Programming concept, which is 

implemented in VB.NET.  
 
• Basic or advanced R programming skills are needed to implement modifications. The 

Loss Simulator uses embedded R code for all the statistical calculations. Additional R 
packages may be incorporated in future enhancements. The R (D)COM package is used 
to bridge the R engine and VB.NET. 

 

5.2 Object-Oriented Programming 
 

Object Orientation (OO) is one of the most popular programming concepts in computer 
science. It includes concepts such as class, object, instance, inheritance, abstraction, 
polymorphism, encapsulation, overriding, overloading, and the like. Visual Basic 6.0 or 
VB6.0 (VBA in Excel) is an Object-Based language, since it has introduced concepts like 
“implements,” “class,” and “encapsulation.” However, it is hard to classify it as an OO 
language. 
 
What is the benefit of an OO design? Such a design permits everybody (object) to do its 
own job. 
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• For example, if you want to design a car, you can separate the car into tires (big, 
small, wide, or narrow? Bridgestone?), engine (V8, V12?), body (shape, green, red, 
silver?), exhaust, electrical systems, etc. Each of these parts of the car is an object and 
each object has its own properties, methods, or actions. You can assembly all of 
them together to make a car. 

 
• Another benefit of OO design is that the program can easily achieve multitask jobs 

(or technically, multithreading) and object sharing. For example, when you drive a 
car, you must use at least one hand to control the steering, one foot to pedal the gas, 
two eyes to watch the road, and perhaps one hand to change the radio station. 
Object (information) sharing is at the brain level. It is very hard (although doable) to 
simulate this process in some other modular programming languages. 

 
• In addition to the simulation project (object); in the Loss Simulator you will find as 

the following: 
o The Project has locations (states) and each location has multiple LOB 

(object). 
o The LOB contains Types or Coverage (object) as its own property (it does 

not matter how many). 
o LOB or Type have all kinds of distribution objects such as severity, 

frequency, lags, etc., and numbers (like limits, deductibles, etc.) as properties. 
o When we turn the wheel, we will have actions or methods of these LOB or 

Type objects (e.g., Monte Carlo simulation and correlation). At the same 
time, the system will produce occurrences, claims, and transactions (object 
again, with dollars, days, time, description, etc., as properties).  

o Triangles or rectangles (another object) then can be assembled from these 
claim data.  The triangle object has years and ages as its basic properties and 
will handle its own output format and development process.  The triangle 
object is a good example of inheriting properties from a grid object. 

o Each object will handle its own database transaction and its own on-screen 
display, and will communicate to its peer objects. 
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5.3 System Architecture 

 

5.4 System COM Components 

Major components in the system are programmed within COM (Component Object Model), 
which will greatly benefit the future system development, component communications, 
system deployment, and customizations of each individual component object, yet leave 
others intact. COM objects can also be loaded into different machines or servers, thus you 
can assemble a distributed system in a multi-tier environment. 

Each component is organized into package in the IDE. Loss Simulator system has CASLDS 
package, Distribution Object package, Database Object package, Public Reference package, 
R Engine package, and Simulation Object package. 

The CASLDS package handles all of the system interface. It has customized controls and 
forms to load and display each simulation object. The main entrance of the program is from 
frmMain.vb, where the system will verify licenses (which are free in our case), R installation, 
R D(COM) installation, and required R packages, etc.  A simulation is also carried out from 
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this package, while the frmSimulationResult.vb form will dynamically display simulation 
progress, messages, triangles, claims, and percentile tables. 

The Distribution Object package contains all the built-in distributions and Copulas. If your 
customization project requires additional distributions, you will need to work on this package 
also. Otherwise, the system default distributions, listed in the section 4 of this Appendix A, 
should be sufficient for many applications. 

The Database Object package helps load and save the whole simulation project into any 
database servers using OleDB.NET technology. The installation comes with a default MS 
Access database, systematically handled by AccessData.vb class. You can link the system to 
any other kind of relational database server, providing a handler for each type of database by 
yourself. Besides the MS Access handler, system provides a default MySQL database 
handler, named MySQLData.vb. 

Modelers don’t need to touch the R Engine and Public Reference packages. The R Engine 
package provides wrapper objects that will utilize R D(COM) interface to run R commands, 
returning results and messages. Public Reference is a helper package which contains objects 
such as: system event handler, matrix, hash table, XML, and some globally used constants. 

Most of the major actuarial related objects and processes are built inside the Simulation 
Object package, where the user can find objects like Line, Type, Simulation, Claim, 
Transaction, and Triangle, etc. This is also where modelers will have to focus on most of 
their customization work, and so there is a need to read and understand the program in this 
package in detail, probably line-by-line. 

5.5 How is R language implemented in Loss Simulator? 

The R language is a free resource language, with many statistical packages available and ready 
to use. The other reasons the Loss Simulator uses R as a backend calculation engine include 
its speed and reliability, so that the working party members don’t have to spend a huge 
amount of resources building up the statistical utilities. 

There is a long learning curve to master the R language. R is a vector language, such that R 
programmers should have to think in a vector way, not a modular way. Please refer to 
CRAN links on how to use and program in R. 

R D(COM) service is used to bridge R Engine and VB.NET. But due to R D(COM)’s 
immaturity and limitation, e.g., limited primitive data returning ability, this phase of the Loss 
Simulator is not using a fully functional, separated, and independent R package for the 
complicated claim simulation. Even though we have provided a caslds R package, which 
contains the fully functional multiple random payment pattern claim simulation, its results 
(dataframe or matrix data type in R) cannot be simply returned back to front end. 
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Another reason for not using a fully independent R package is due to its limitation on Object 
Oriented programming. Even though people declare R is OO language, it really has less 
power to handle complicated data types and dynamic needs. R is very strong at statistical 
calculations, so we will have to use that strength wisely, by building the complicated front 
end with VB.NET.  

Let us use a simple example to illustrate the difficulty by using an independent and powerful 
R. In Loss Simulator, most of the distributions are stored as a monthly value. Let us think 
about how to build this data structure in R. And suppose we have made the following 
section of R code (it is fully functional). 

############################################ 
##This function will store dist objects or any other objects by month 
##usage: obj<-dateHash(new(“norm,” p1=1.20, p2=0.5)) 
############################################ 
dateHash<-function(x){ 
 l=480 #40 years 
 dates<-seq(simulationStartDate, by=“month,” length.out=l) 
 z<-rep(list(x), length(dates)) 
 names(z)<-dates 
 z 
} 

With any object x you passed, the function will return a vector of objects, separated monthly 
and all equal to x. Bear in mind that, you have to pass an object, probably a distribution 
object. Thus you have to wrap your own distribution object in R. Then you have to think 
about how to let the VB.NET front end handle the user distribution selection dynamically. 
You also have to make sure that the user is able to set the rest of the monthly values back to 
its original, and more and more.  

So, by comparing the pros and cons, we decided to make the solution simple as, e.g. define 
object in VB.NET, yet carry real statistical calculation in R. In reviewing the following piece 
of VB.NET code, you will see how R is incorporated: 

        ‘ This function will help to draw pictures for the user selection 
        Public Overrides Function getRPicString() As String  
            Return “par(mfrow = c(2, 2)) “ & vbLf & _ 
                    “x<-seq(0, “ & (meanlog + 50 * sdlog) & ,” length=500)” & vbCrLf & _ 
                    “plot(x, dlnorm(x, “ & “ meanlog =“ & meanlog & ,” sdlog=“ & sdlog & “), type=““l”,” main 
= ““Lognormal  Density”,” col=““blue”“)” & vbLf & _ 
                    “plot(x, plnorm(x, “ & “ meanlog =“ & meanlog & ,” sdlog=“ & sdlog & “), type=““l”,” main 
= ““Lognormal  Cumulative”,” col=““red”“) “ & vbCrLf & _ 
                    “hist(“ & getRSampleString(200) & ,” breaks=1000, xlim = c(“ & Min & ,” “ & Max & “), 
main=““Samples”,” xlab=““Value”,” ylab=““Count”,” col=‘blue1’)” 
        End Function 
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        ‘random sampling, using R’s rlnorm function 
        Public Overrides Function getRSampleString(Optional ByVal n As Integer = 1000) As String  
            Return “rlnorm(“ & n & ,” meanlog =“ & meanlog & ,” sdlog=“ & sdlog & “)” 
        End Function 

By issuing a simple call to R, you can get the same result as if you had programmed in a fully 
independent R package.  However, we believe that this approach yields a more powerful 
solution. 

Future development of the Loss Simulator will likely use more independent R packages. For 
example, during the test of the simulator, the testing group directed by Joe Marker has 
developed many R packages for curve fittings and distribution parameterizations. At the 
same time, the developers have already transformed those codes into Object Oriented R. 
There will be great benefit to reuse those packages for the next phase of development. 

5.6 Sample Flowchart to Calculate Ultimate Loss and Case Reserves for Single Payment 
Type 

The following sample chart is also in the help file. The reason we put it here is to help 
programmers understand how the simulation is carried out for the ultimate loss, case 
reserves, and adjustments, in a single payment pattern model.  
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Modeling Loss Emergence and Settlement Processes 

Casualty Actuarial Society E-Forum, Winter 2011 100 

APPENDIX B 

6.2.1 Test of Elementary Frequencies, Trend, and Zero-modification 
This is a complete description of the parameters for this run: 

Test run 10/27/2009        

Project name:  Frequency Test 

Purpose:  Test frequency with trend.  Two types within one line. 

• One Line with annual frequency Poisson(120)  
• Set claim/acc distribution matrix as follows: 

Prob =75% that one Type 1 claim is generated. 
Prob =25% that one Type 2 claim is generated. 

• Freq Trend:  1.02 constant throughout 
• P(0) = 0.4,  EstP(0) = 0.4 for each Type. 
• Accident Years:  2000-2002 
• Random Seed:  16807 
• Frequency correlation copula: normal Correlation=c( )  Dim = 1 

Other frequency parameters 
Monthly exposure: (1) 
Seasonality: 1.0 

The severity parameters were not used in this run.  They are presented here only for 
completeness. 

Type 1 and Type 2 severity are lognormal with different parameters: 
Type 1:  Lognormal, mean=100,000,  stnd. dev.  100,000, max 1,000,000. 
Type 2:  Lognormal, mean 10,000, stnd. dev. 5,000, max 1,000,000. 
Zero trend for severity. 

Lags:  Irrelevant for this run.  We are not testing. 
Report lag: Exponential with Rate = 4/365,   mean=365/4 days.  Max=365. 
Payment lag: Exponential with Rate = 1/365,   mean=365 days.    Max = 700.  
Inter-valuation lag:  Exponential with Rate = 4/365, mean = 365/4 days.   Max=365. 
 
Correlation of Amount with lag:   normal Correlation=c( ) Dim=2 
Reserve adequacy:  Irrelevant, leave at default values. 
Recovery lag box:  Not checked. 
Alpha = 0      Inertia=0.2 
 
Interpolation parameters:  irrelevant  
P(1) not set because recovery lag was not checked. 
Minimum change = Min Rel Chg = 0. 
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Initial payment adequacy not set because recovery lag was not checked. 
 
Run:  1,000 simulations. 
Actuaries need tools that will enable them to better understand the underlying loss development 

process and will aid them in determining what methods and models work best in different reserving 
situations. 

Section 6.2.1 discussed a series of GLM runs that investigated the effect of predictors on claim 
counts.  This section provides more detail on the S-PLUS statements used. 

Following is the full output from the S-PLUS “glm” command defining the “reduced” model5x: 
 
> model5x<- glm(count ~   + Type + Status, 
+      data = temp.datacc.stack, 
+      family = poisson,  
+      x=T) 
>  
>  
> summary(model5x,correlation=F) 
 
Call: glm(formula = count ~  + Type + Status, family = poisson, data =  
 temp.datacc.stack, x = TRUE) 
Deviance Residuals: 
        Min           1Q        Median          3Q        Max  
 -3.0487245 -0.817678553 -0.0481310816 0.498450005 4.53059039 
 
Coefficients: 
                   Value    Std. Error     t value  
(Intercept)  1.126272675 0.00276627012  407.144865 
       Type -1.097685774 0.00378962189 -289.655751 
     Status  0.410026757 0.00335189741  122.326762 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 273221.814 on 143999 degrees of freedom 
 
Residual Deviance: 160969.366 on 143997 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 

Following is the result of the “glm” command for the full model model6x: 
 
> #### 
> #### The only possible variable to add is Type*Status 
> ####   Just create the bigger model and compare 
> ####       No need to use stepAIC here. 
> ##### 
> model6x<- glm(count ~  Type + Status + Type*Status                       , 
+      data = temp.datacc.stack, 
+      family = poisson,  
+      x=T) 
>  
>  
> summary(model6x) 
 
Call: glm(formula = count ~ Type + Status + Type * Status, family = poisson, data =  
 temp.datacc.stack, x = TRUE) 
Deviance Residuals: 
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         Min           1Q        Median          3Q        Max  
 -3.04838755 -0.817233217 -0.0487132512 0.497838102 4.52978802 
 
Coefficients: 
                     Value    Std. Error        t value  
(Intercept)  1.12660568075 0.00300060918  375.458986266 
       Type -1.09901753526 0.00600212647 -183.104694918 
     Status  0.40947269733 0.00387066987  105.788587162 
Type:Status  0.00221507211 0.00773994871    0.286186924 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 273221.814 on 143999 degrees of freedom 
 
Residual Deviance: 160969.284 on 143996 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
Correlation of Coefficients: 
             (Intercept)         Type       Status  
       Type -0.499924351                           
     Status -0.775217024  0.387549868              
Type:Status  0.387678174 -0.775473675 -0.500089861 
>  
 

Results of the test to see whether interactive variable can be dropped: 
 
>  
> anova(model5x,model6x,test=“Chi”) 
Analysis of Deviance Table 
 
Response: count 
 
                          Terms Resid. Df Resid. Dev         Test Df  
1               + Type + Status    143997 160969.366                 
2 Type + Status + Type * Status    143996 160969.284 +Type:Status  1 
 
      Deviance     Pr(Chi)  
1                          
2 0.0819088429 0.774727081 
>  
>  
 

One way to test whether a Poisson GLM is appropriate is to see how close the dispersion 
parameter is to 1.0.  Following is an execution of this process.13

 

 

> #### 
> ####   Estimate dispersion parameter - see Faraway p 60. 
> #### 
>  temp.pearson <- residuals(model5x,type=“pearson”)  ###  (y-fitted y)/(y^0.5) 
> model5x$df.residual 
[1] 143997 
> tempdp <- sum(temp.pearson^2)/model5x$df.residual 
>  cat(“\n  Estimate of dispersion parameter using Pearson residuals.  
disp=,”tempdp,”\n”) 
 
  Estimate of dispersion parameter using Pearson residuals.  disp= 1.00653317880341  
>  
>  

                                                           
13 [5] Faraway 2006, p. 60. 
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> temp.pearson <- residuals(model6x,type=“pearson”)     ### (y-fitted y) / (y^0.5) 
> model6x$df.residual 
[1] 143996 
> tempdp <- sum(temp.pearson^2)/model6x$df.residual 
>  cat(“\n  Estimate of dispersion parameter using Pearson residuals.  
disp=,”tempdp,”\n”) 
 
  Estimate of dispersion parameter using Pearson residuals.  disp= 1.00659609377679  
>  
> #### 
> ####   Dispersion in both cases very close to 1.0, supporting Poisson model 
> #### 
>  
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Appendix to section 6.2.2 Test of Severity Distributions 
Following is the set of histograms, empirical densities and log densities, and empirical cdfs for the 

size of loss for each line. 
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Density estimates 
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Log densities 
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Empirical distribution functions 

 



Modeling Loss Emergence and Settlement Processes 

Casualty Actuarial Society E-Forum, Winter 2011 108 

We next show the histograms and density functions for each model that produced a reasonable 
fit to the observed data.   
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Following is the complete R code for the severity testing. 

 
library(stats4) 
library(MASS) 
library(actuar) 
library(graphics) 
 
############ Part I: Exploratory Data Analysis ############ 
 
ultloss1<-as.vector(scan(“line 1 ultloss.txt”)) 
ultloss2<-as.vector(scan(“line 2 ultloss.txt”)) 
ultloss3<-as.vector(scan(“line 3 ultloss.txt”)) 
 
mean1 <- mean(ultloss1) 
var1 <- var(ultloss1) 
 
mean2 <- mean(ultloss2) 
var2 <- var(ultloss2) 
 
mean3 <- mean(ultloss3) 
var3 <- var(ultloss3) 
 
n1<-length(ultloss1) 
n2<-length(ultloss2) 
n3<-length(ultloss3) 
 
############################################################################### 
#          Histograms, empirical density/log density, empirical cdf           # 
############################################################################### 
 
par(mfrow=c(3,1)) # Histograms 
hist(ultloss1,main=“Histogram of observed data of Line 
1,”freq=FALSE,breaks=10000,xlim=c(0,1050000)) 
hist(ultloss2,main=“Histogram of observed data of Line 
2,”freq=FALSE,breaks=10000,xlim=c(0,1050000)) 
hist(ultloss3,main=“Histogram of observed data of Line 
3,”freq=FALSE,breaks=10000,xlim=c(0,1050000)) 
 
par(mfrow=c(3,1)) # Density 
plot(density(ultloss1),main=“Density estimate of Line 1,”xlim=c(-1000,600000)) 
plot(density(ultloss2),main=“Density estimate of Line 2,”xlim=c(-1000,600000)) 
plot(density(ultloss3),main=“Density estimate of Line 3,”xlim=c(-1000,600000)) 
 
par(mfrow=c(3,1)) # Log Density 
plot(density(log(ultloss1)),main=“LogDensity estimate of Line 1,”xlim=c(0,20)) 
plot(density(log(ultloss2)),main=“LogDensity estimate of Line 2,”xlim=c(0,20)) 
plot(density(log(ultloss3)),main=“LogDensity estimate of Line 3,”xlim=c(0,20)) 
 
par(mfrow=c(3,1)) # Empirical Cumulative Distribution Function 
plot(ecdf(ultloss1),main=“Empirical cdf of Line 1,”xlim=c(0,1e+06))  ## lightest tail 
plot(ecdf(ultloss2),main=“Empirical cdf of Line 2,”xlim=c(0,1e+06))  ## heaviest tail 
plot(ecdf(ultloss3),main=“Empirical cdf of Line 3,”xlim=c(0,1e+06))  ## heavier tail 
 
############ Part II: Maximum Likelihood Estimates of Parameters ############# 
 
######################################################## 
#       Pareto (shape=alpha, scale=theta)              # 
#  pdf f(x) = alpha*theta^alpha/((x+theta)^(alpha+1))  # 
######################################################## 
 
##################################################################### 
#               Weibull(shape=tao, scale=lambda)                    # 
# pdf f(x) = tao*x^(tao-1)/(lambda^tao)*exp(-(x/lambda)^(tao))      # 
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# nll=-log(tao/(lambda^tao))-(tao-1)*log(x)+(x/k)^tao               # 
##################################################################### 
 
############################################################### 
#                  lognormal(miu,sigma)                       # 
#   pdf f(x)=1/(sqrt(2*pi)*sigma)*exp(-(x-miu)^2/(2*sigma^2)) # 
#   nll = log(sqrt(2*pi)*sigma)+(x-miu)^2/(2*sigma^2)         # 
###############################################################  
 
 
ultloss1.0 <- ultloss1[ultloss1!=0] 
n1.0 <- length(ultloss1.0) 
 
ultloss2.0 <- ultloss2[ultloss2!=0] 
n2.0 <- length(ultloss2.0) 
 
ultloss3.0 <- ultloss3[ultloss3!=0] 
n3.0 <- length(ultloss3.0) 
 
 
                             ########## 
                             # Line 1 # 
                             ########## 
 
## From the exploratory analysis, it is clear that Line 1 comes from lognormal. 
 
fit1.ln <- fitdistr(log(ultloss1),”normal”) 
fit1.ln$estimate  #   mean         sd  
                  #11.1659376  0.8361509  
-fit1.ln$loglik   #148761.9 
 
fit.ln1 <- fitdistr(log(ultloss1.0),dnorm,list(mean=miu1,sd=sigma1)) 
fit.ln1$estimate  #   mean         sd  
                  #11.1659362  0.8361455  
-fit.ln1$loglik   #148761.9 
 
## QQ plot ## 
qqnorm(log(ultloss1),main=“Line 1, Lognormal”) 
abline(0,1,col=“red”) 
 
 
## Chi-Square Test ## 
 
ult1.cut <- cut(log(ultloss1),breaks = seq(0,9,10,11,12,13,22)) ## binning data 
table.ult1 <- table(ult1.cut)                        ## binned data table 
ult1.os <- c(as.vector(table.ult1))                  ## vectorization 
 
b = length(ult1.os) 
 
labs <- levels(ult1.cut)                             ## extract the breakpoints 
break.1 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs)),upper = 
as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs))) 
 
ult1.ln <- pnorm(break.1,mean=fit.ln1$estimate[1],sd=fit.ln1$estimate[2]) 
 
ult1.prob <- (ult1.ln[,2]-ult1.ln[,1])[1:b-1]     ## cut off at the last bin to absorb 
all tail prob 
ult1.ex <- n1*c(ult1.prob,1-sum(ult1.prob)) 
 
#cbind(ult1.ex,ult1.os) 
 
E.1 = ult1.ex 
O.1 = ult1.os 
 
x.sq.1 = (E.1-O.1)^2/E.1 
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#cbind(E.1,O.1,x.sq.1) 
 
##chi-square test statistic## 
 
df=length(E.1)-1-2     ## df = 3 
 
chi.sq.1 <- sum(x.sq.1)          ## test statistic  
chi.sq.1                         ## 3.594133 
qchisq(.95,df)                   # 7.814728 
 
1-pchisq(chi.sq.1,df)              # 0.308757 
 
## Chi-Square Test in R ## 
chisq.test(O.1,p=E.1/n1) 
 
## Chi-squared test for given probabilities  
## X-squared = 3.5941, df = 5, p-value = 0.6092 
 
############################################## 
# Calculation for the test statistic 
#____________________________________________ 
#           E.1   O.1     x.sq.1 
#[1,]   575.073   531 3.377707e+00 
#[2,]  9213.966  9254 1.739471e-01 
#[3,] 40759.725 40740 9.545298e-03 
#[4,] 50315.005 50316 1.969319e-05 
#[5,] 17410.264 17434 3.236081e-02 
#[6,]  1695.968  1695 5.528125e-04 
############################################## 
 
                            ########## 
                            # Line 2 # 
                            ########## 
 
## 2.1-Pareto ## 
 
fit.p2<-fitdistr(ultloss2.0,dpareto,list(shape=6,scale=500000)) ## list() provides 
initial values for optimization 
fit.p2$estimate #  shape       scale  
                #5.97635e+00 5.00000e+05 
-fit.p2$loglik  #1500363 
 
## 2.2-Weibull (second method slightly better) ## 
 
fit2.w <- fitdistr(ultloss2.0,”weibull”) 
fit2.w$estimate  #   shape         scale  
                 # 9.056193e-01 9.750673e+04  
fit2.w$loglik    # -1500950 
 
fit.w2 <- fitdistr(ultloss2.0,dweibull,list(shape=.9097626,scale=95000)) 
fit.w2$estimate #    shape        scale  
                # 9.009281e-01 9.500000e+04  
-fit.w2$loglik  # 1500926  
 
## QQ plot ## 
par(mfrow=c(2,1)) 
thqua.p2 <- rpareto(n2,shape=fit.p2$estimate[1],scale=fit.p2$estimate[2]) 
qqplot(ultloss2,thqua.p2,xlab=“Sample Quantiles,” ylab=“Theoretical 
Quantiles,”main=“Line 2, Pareto”) 
abline(0,1,col=“red”) 
 
thqua.w2 <- rweibull(n2,shape=fit.w2$estimate[1],scale=fit.w2$estimate[2]) 
qqplot(ultloss2,thqua.w2,xlab=“Sample Quantiles,” ylab=“Theoretical Quantiles,” 
main=“Line 2, Weibull”) 
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abline(0,1,col=“red”) 
 
## 2.3 Chi-Square Test ## 
 
#2.3.1 Pareto Chi-Square # 
m = mean(ultloss2) 
s = sqrt(var(ultloss2)) 
 
ult2.cut <- cut(ultloss2.0,breaks = c(0,m-
s/2,m,m+s/4,m+s/2,m+s,m+2*s,2*max(ultloss2))) ##binning data 
table.ult2 <- table(ult2.cut)                   ## binned data table 
ult2.os <- c(as.vector(table.ult2))           ## vectorization 
 
b = length(ult2.os) 
 
labs.2 <- levels(ult2.cut)                      ## extract the breakpoints 
break.2 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs.2)),upper = 

as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.2)))   See note below14

 
 

ult2.p <- ppareto(break.2,shape=fit.p2$estimate[1],scale=fit.p2$estimate[2]) ## Pareto 
cdf values at break points  
 
ult2.prob <- (ult2.p[,2]-ult2.p[,1])[1:b-1]  ## Probabilities of each interval 
ult2.ex <- n2.0*c(ult2.prob,1-sum(ult2.prob))  ## Expected frequency of each interval 
and the “excess” interval 
 
#cbind(ult2.ex,ult2.os)         ## expected and observed frequencies 
 
E.2 = ult2.ex 
O.2 = ult2.os 
 
x.sq.2 = (E.2-O.2)^2/E.2 
 
#cbind(E.2,O.2,x.sq.2)       ## expected, observed, and chi-square of each interval 
after full adjustment 
 
##chi-square test statistic## 
 
df=length(E.2)-1-2           ## df = 4 
 
chi.sq.2 <- sum(x.sq.2)    ## test statistic 

                                                           
14 For example, suppose that labs.2 consists of seven intervals: 

“(0,3.97e+04]”         
“(3.97e+04,1e+05]”     
“(1e+05,1.31e+05]”    
“(1.31e+05,1.61e+05]”  
“(1.61e+05,2.22e+05]”  
“(2.22e+05,3.43e+05]” 
“(3.43e+05,5.75e+06]” 

   Then break.2 looks like:   
      lower           upper 
[1,]      0           39700 
[2,]  39700          100000 
[3,] 100000          131000 
[4,] 131000          161000 
[5,] 161000          222000 
[6,] 222000          343000 
[7,] 343000         5750000 
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chi.sq.2                   ## 6.155374 
 
qchisq(.95,df)             ## critical value ## 9.487729 
 
1-pchisq(chi.sq.2,df)      ## p-value  ## 0.1878414 
 
## chi-square goodness-of-fit test from R ## 
 
chisq.test(O.2,p=E.2/n2.0)   
 
#####################################################  
#    Chi-squared test for given probabilities 
# data:  O.2  
# X-squared = 6.1554, df = 6, p-value = 0.406 
###################################################### 
 
 
##### Test Statistic Calculation ########### 
#___________________________________________ 
#          E.2   O.2     x.sq.2 
#[1,] 43993.890 44087 0.19705959 
#[2,] 35651.989 35680 0.02200752 
#[3,] 10493.758 10323 2.77864169 
#[4,]  7240.583  7269 0.11152721 
#[5,]  9277.383  9164 1.38570182 
#[6,]  8063.576  8176 1.56743997 
#[7,]  5289.820  5312 0.09299630 
########################################### 
 
### 2.3.2 Weibull ### 
m = mean(ultloss2) 
s = sqrt(var(ultloss2)) 
 
ult2.cut <- cut(ultloss2.0,breaks = c(0,m-
s/2,m,m+s/4,m+s/2,m+s,m+2*s,2*max(ultloss2))) ##binning data 
table.ult2 <- table(ult2.cut)                   ## binned data table 
ult2.os <- c(as.vector(table.ult2))           ## vectorization 
 
b = length(ult2.os) 
 
labs.2 <- levels(ult2.cut)                      ## extract the breakpoints 
break.2 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs.2)),upper = 
as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.2))) 
 
ult2.w <- pweibull(break.2,shape=fit.w2$estimate[1],scale=fit.w2$estimate[2]) 
##Weibull cdf values at break points  
 
ult2.prob <- (ult2.w[,2]-ult2.w[,1])[1:b-1]  ## Probabilities of each interval 
ult2.ex <- n2.0*c(ult2.prob,1-sum(ult2.prob))  ## Expected frequency of each interval 
and the “excess” interval 
 
#cbind(ult2.ex,ult2.os)         ## expected and observed frequencies before adjustment 
 
E.2 = ult2.ex 
O.2 = ult2.os 
 
x.sq.2 = (E.2-O.2)^2/E.2 
 
#cbind(E.2,O.2,x.sq.2)       ## expected, observed, and chi-square of each interval 
after full adjustment 
 
##chi-square test statistic## 
 
df=length(E.2)-1-2           ## df = 4 
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chi.sq.2 <- sum(x.sq.2)    ## test statistic 
chi.sq.2                   ## 270.3838 
 
qchisq(.95,df)             ## critical value  ##  9.487729 
 
1-pchisq(chi.sq.2,df)      ## p-value  ## 0 
 
# chi-square goodness-of-fit test from R # 
chisq.test(O.2,p=E.2/n2.0) 
 
#####################################################  
#  Chi-squared test for given probabilities 
#data:  O.2  
#X-squared = 270.3838, df = 6, p-value < 2.2e-16 
################################################## 
 
## Test Statistic Calculation ############# 
#__________________________________________ 
#         E.2     O.2     x.sq.2 
#[1,] 43917.914 44087  0.6509914 
#[2,] 33982.992 35680 84.7434487 
#[3,] 10551.628 10323  4.9538155 
#[4,]  7532.284  7269  9.2028627 
#[5,] 10023.960  9164 73.7763860 
#[6,]  9007.970  8176 76.8402384 
#[7,]  4994.251  5312 20.2160763 
########################################### 
 
 
                            ########## 
                            # Line 3 # 
                            ########## 
 
## 3.1-Pareto ## 
 
fit.p3<-fitdistr(ultloss3.0,dpareto,list(shape=7,scale=6.026793e+05)) 
fit.p3$estimate #   shape        scale  
                #6.966806e+00 6.026793e+05  
-fit.p3$loglik  #1499343 
 
## 3.2-Weibull (first method slightly better) ## 
 
fit.w3 <- fitdistr(ultloss3.0,”weibull”)  
fit.w3$estimate  #    shape        scale  
                 # 9.052532e-01 9.907429e+04  
-fit.w3$loglik   # 1498920 
 
fit3.w <- fitdistr(ultloss3.0,dweibull,list(shape=0.9,scale=100000)) 
fit3.w$estimate #   shape        scale  
                #9.067305e-01 9.999992e+04  
-fit3.w$loglik  #1498955 
 
## QQ plot ## 
par(mfrow=c(2,1)) 
thqua.p3 <- rpareto(n3,shape=fit.p3$estimate[1],scale=fit.p3$estimate[2]) 
qqplot(ultloss3,thqua.p3,xlab=“Sample Quantiles,” ylab=“Theoretical 
Quantiles,”main=“Line 3, Pareto”) 
abline(0,1,col=“red”) 
 
thqua.w3 <- rweibull(n3,shape=fit.w3$estimate[1],scale=fit.w3$estimate[2]) 
qqplot(ultloss3,thqua.w3,xlab=“Sample Quantiles,” ylab=“Theoretical Quantiles,” 
main=“Line 3, Weibull”) 
abline(0,1,col=“red”) 
 
## 3.3 Chi-Square Test ## 
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# 3.3.1 Pareto # 
m = mean(ultloss3) 
s = sqrt(var(ultloss3)) 
M=max(ultloss3) 
 
ult3.cut <- cut(ultloss3,breaks = c(seq(0,1000000,200000),2000000)) ##binning data 
table.ult3 <- table(ult3.cut)                   ## binned data table 
ult3.os <- c(as.vector(table.ult3))           ## vectorization 
 
b=length(ult3.os) 
 
labs.3 <- levels(ult3.cut)                      ## extract the breakpoints 
break.3 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs.3)),upper = 
as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.3))) 
 
ult3.p <- ppareto(break.3,shape=fit.p3$estimate[1],scale=fit.p3$estimate[2]) 
 
ult3.prob <- (ult3.p[,2]-ult3.p[,1])[1:b-1] 
ult3.ex <- n3*c(ult3.prob,1-sum(ult3.prob)) 
 
#cbind(ult3.ex,ult3.os) 
 
E.3 = ult3.ex 
O.3 = ult3.os 
 
x.sq.3 = (E.3-O.3)^2/E.3 
 
#cbind(E.3,O.3,x.sq.3) 
 
# Chi-Square Test Statistic # 
 
df=length(E.3)-1-2  # df = 3 
    
chi.sq.3 <- sum(x.sq.3)    ## chi-square test statistic 
chi.sq.3                   ## 275.7469 
 
qchisq(.95,df)             ##critical value 7.814728 
 
1-pchisq(chi.sq.3,df)      ##p-value  ## 0 
 
# chi square test in R # 
 
chisq.test(O.3,p=E.3/n3) 
 
######################################################## 
#     Chi-squared test for given probabilities 
#  data:  O.3  
# X-squared = 275.7469, df = 5, p-value < 2.2e-16 
######################################################## 
 
####### Test Statistic Calculation ####### 
#_________________________________________ 
#            E.3    O.3     x.sq.3 
#[1,] 103561.6008 102680   7.504906 
#[2,]  12820.7894  13997 107.908432 
#[3,]   2481.6241   2535   1.148034 
#[4,]    639.8169    491  34.613767 
#[5,]    201.5347    102  49.158580 
#[6,]    131.6340     32  75.413160 
########################################## 
 
 
# 3.3.2 Weibull  
m = mean(ultloss3) 
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s = sqrt(var(ultloss3)) 
M=max(ultloss3) 
 
ult3.cut <- cut(ultloss3,breaks = c(seq(0,1000000,200000),2000000)) ##binning data 
table.ult3 <- table(ult3.cut)                   ## binned data table 
ult3.os <- c(as.vector(table.ult3))           ## vectorization 
 
b=length(ult3.os) 
 
labs.3 <- levels(ult3.cut)                      ## extract the breakpoints 
break.3 <- cbind(lower = as.numeric(sub(“\\((.+),.*,” “\\1,” labs.3)),upper = 
as.numeric(sub(“[^,]*,([^]]*)\\],” “\\1,” labs.3))) 
 
ult3.w <- pweibull(break.3,shape=fit.w3$estimate[1],scale=fit.w3$estimate[2]) 
 
ult3.prob <- (ult3.w[,2]-ult3.w[,1])[1:b-1] 
ult3.ex <- n3*c(ult3.prob,1-sum(ult3.prob)) 
 
#cbind(ult3.ex,ult3.os) 
 
E.3 = ult3.ex 
O.3 = ult3.os 
 
x.sq.3 = (E.3-O.3)^2/E.3 
 
#cbind(E.3,O.3,x.sq.3) 
 
# Chi-Square Test Statistic # 
 
df=length(E.3)-1-2  
    
chi.sq.3 <- sum(x.sq.3)    ## chi-square test statistic 
chi.sq.3                   ## 70.21185 
 
qchisq(.95,df)             ##critical value  ## 7.814728 
 
1-pchisq(chi.sq.3,df)      ##p-value 3.885781e-15 
 
# chi square test in R # 
 
chisq.test(O.3,p=E.3/n3) 
##################################################### 
#      Chi-squared test for given probabilities 
# data:  O.3  
# X-squared = 70.2119, df = 5, p-value = 9.259e-14 
###################################################### 
 
### Test Statistic Calculation ################# 
#_______________________________________________ 
#           E.3      O.3     x.sq.3 
#[1,] 101709.59203 102680  9.2586314 
#[2,]  14641.17032  13997 28.3416822 
#[3,]   2759.98729   2535 18.3404039 
#[4,]    567.24209    491 10.2475765 
#[5,]    122.92003    102  3.5604243 
#[6,]     36.08824     32  0.4631346 
################################################# 
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Appendix to section 6.2.3—Testing Correlated Frequencies 
 
The following material is the “R Code” used to produce the results in 6.2.3. 
 
library(MASS) 
library(methods) 
library(mvtnorm) 
library(scatterplot3d) 
library(mnormt) 
library(sn) 
library(pspline) 
library(copula) 
 
# import data 
#annual frequency for each line and each simulation 
datar<-read.csv(“D:/LSMWP/byyear.csv”) 
summary(datar) 
n<-length(datar$Line.1) 
set.seed(123) 
x<- sapply(datar, rank, ties.method = “random”) / (n + 1) 
x12<-subset(x,select=-Line.3) 
x13<-subset(x,select=-Line.2) 
x23<-subset(x,select=-Line.1) 
plot(x12) 
plot(x13) 
plot(x23) 
write.csv(x12,”D:/LSMWP/x12ry.csv”) 
write.csv(x23,”D:/LSMWP/x23ry.csv”) 
write.csv(x13,”D:/LSMWP/x13ry.csv”) 
 
#Set up copula object for copula distribution and goodness-of-fit test later 
normal.cop <- normalCopula(c(0,0,0),dim=3,dispstr=“un”) 
 
#Copula fit with prespecified type. 
 
date() 
fit.normal<-fitCopula(normal.cop,x,method=“ml”) 
fit.normal 
 
fit.normal<-fitCopula(normal.cop,x,method=“itau”) 
fit.normal 
 
date() 
 
#Copula Goodness-of-fit test 
 
date() 
 
normal2.cop <- normalCopula(c(0),dim=2,dispstr=“un”) 
gofCopula(normal2.cop, x12, N=100, method = “mpl”) 
gofCopula(normal2.cop, x13, N=100, method = “mpl”) 
gofCopula(normal2.cop, x23, N=100, method = “mpl”) 
 
 
#gofCopula(normal.cop, x, N=100, method = “mpl”) 
#gofCopula(normal.cop, x, N=100, method = “itau”) 
date() 
 
#K-S test.  
normal.fit12<-normalCopula(0, dim=2) 
normal.fit13<-normalCopula(0.99,dim=2) 
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normal.fit23<-normalCopula(-0.01,dim=2) 
 
y12<-rcopula(normal.fit12,n) 
y23<-rcopula(normal.fit23,n) 
y13<-rcopula(normal.fit13,n) 
ks.test(x12,y12) 
ks.test(x13,y13) 
ks.test(x23,y23) 

 

The following table shows the first three records and last two records from 
“D:/LSMWP/byyear.csv,” the dataset used in the R code above. 

Line 1 Line 2 Line 3 

114 95 117 

89 85 90 

94 119 99 

…. …. …. 

94 113 94 

105 97 105 

 

Each row represents the number of claims by line for one simulation. 
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