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Testing the Assumptions of  Assumptions Testing 
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 ____________________________________________________________________________________________  
Abstract 

Motivation. The growing availability and advocacy of stochastic reserving methods is outpacing their critical 
evaluation, testing, and indeed acceptance. I believe there has not yet been sufficient critical attention given to 
claims made in favor of stochastic models, and I’ll focus here on the particular claims that assumptions can be 
tested and the models validated.  
Method. We’ll review some of the statistical background, especially hypothesis testing, needed to understand the 
issues and see how it applies to reserve modeling with aggregate loss triangles. We’ll make use of the concept of 
statistical power, associated with Type II error, which has been previously absent from reserve modeling 
discussions. This concept can be used to question the reliability of modeling results and certain common 
modeling recommendations. A few simplified reserving models and results of simulations that help illuminate the 
issues are described and reported.  
Results. We’ll see that significance tests, and testing more generally, might have little power and 
recommendations based on these tests can be unwise. We’ll also see the benefits of a deeper understanding of the 
claims process and the dangers of relying on statistical methods without that understanding. 
Conclusions. This particular argument for stochastic modeling in reserving with aggregate triangles is almost 
certainly unsound. If this were the only reason to resort to modeling, there are more productive uses of an 
actuary’s time. With or without modeling, better approaches probably rely on simpler methods, hard work, a 
skeptical and inquisitive attitude, and a deeper knowledge and understanding of the claims generation, reserving 
and settlement processes.  
 
Keywords Reserving methods; reserve variability; statistical models and methods. 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

Recent technical actuarial literature has been dominated by advocates of advanced quantitative 

techniques. This is perhaps unavoidable, but it has led to a one-sided discussion of stochastic reserve 

modeling.  

Two particularly exaggerated claims are that modeling allows for “assumptions to be tested and 

models validated.” I will show that this is true in only a very limited sense which is often without 

much practical consequence.  

There is a risk that by focusing too narrowly on this one argument, which is perhaps one of the 

worst arguments made on behalf of modeling, I will fall into the opposite error of the advocates and 

be unfairly branding the whole stochastic program because of some poorly thought-out claims from 

its advocates: that I’ll be impeding the progress of science by throwing the proverbial baby out with 

the bath-water while stochastic reserving is still in its infancy. All I can say is that I wish to bring 

greater clarity to the discussion of the merits of modeling versus traditional actuarial methods. 

 A fuller discussion would touch on a number of issues of which reasonable people can and 



Testing the Assumptions of Assumptions Testing 
 

Casualty Actuarial Society E-Forum, Fall 2013 2 

probably always will disagree. All that I ask of a reader is that he or she critically evaluate my 

arguments and evidence and do the same whenever claims in favor of modeling are encountered.  

1.1 Research Context 

It is a common, though not universal, modeling practice to screen variables for inclusion within a 

model by means of significance testing. A number of papers in the actuarial literature have also 

advocated this practice when selecting variables to model yearly aggregate loss triangles. Though not 

a necessarily exhaustive list, in this context the usual variables considered are: yearly exposure 

measures, accident year trends, calendar year trends, and development year trends, which are also 

called loss development factors when they are a multiplicative factor of the prior development year’s 

losses. 

For illustrative purposes and because of limitations of space, we will focus in this paper on loss 

development factors, but I hope it will be clear that many of the concepts explored here apply 

equally to significance testing for any variable. 

Some authors have reported that the loss development factor is often not found to be significant 

in their modeling experience. According to some of the authors, in this case, such a factor should 

then be dropped from a final loss reserve model.   

In addition to significance testing, it is common practice, especially among the more thorough 

modelers, to run a series of additional tests and diagnostics to check that the model assumptions are 

probabilistically consistent with the data. The possibility of doing such tests is often offered as a 

distinct advantage of the modeling framework which traditional actuarial methods do not provide. 

Many modeling advocates make recommendations for how to develop statistical models and 

methods to project reserves and study reserve variability that lean very heavily on testing results. 

Sometimes even bolder claims are made on behalf of the possibility, the advisability, and the 

effectiveness of assumption and model testing and some have tried to draw implications for which 

traditional reserving methods to use because of the results of this testing.  

1.2 Objective 

The CAS Working Party on Quantifying Variability in Reserve Estimates (“CAS Working Party”), 

“The Analysis and Estimation of Loss & ALAE Variability: A Summary Report,” [1] correctly state 

under the topic of “Model or Specification Uncertainty” (page 35): “In nearly every stochastic 

model, the modeling begins by making the assumption that the underlying process follows the 
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model.”  

Inspired by some of the bold claims in Section 1.1, let me elaborate on the comment immediately 

above and add a few bold claims of my own: 

1. Not only do statistical models rely on various assumptions, it is important to always keep 

in mind that they are in fact theories about the world. These theories have implications for 

how the world must actually be in order for the assumptions to hold true. If the theories 

are true, they allow one to predict the future, at least probabilistically. If they are false, they 

might be a waste of time or even seriously misleading.  

2. Although there exist various tests and diagnostics of the assumptions, it’s unlikely that they 

will be effective--meaning that they would allow one, with a high probability of success, to 

correctly draw any conclusion about loss development or to pursue any action, such as 

using one loss development method rather than another. 

3. The strongest and least plausible of modeling assumptions in insurance is 

that insurance data are observations of random variables that are independent and 

identically distributed. This is the main statistical assumption with modeling and if false all 

of the modeling results are compromised.  

Although my claims are predominantly negative, we will also see along the way that any real 

information, which an actuary can discover about losses and how they are generated or develop, can 

be highly useful in the reserving process. I believe that traditional actuarial methods, in addition to 

having adequate statistical properties, bring the actuary in closer contact with the data, without the 

possibly distorting effects of false assumptions and without time spent on unnecessary tests. 

I stake no particular claims to originality here. One can find scattered throughout the actuarial 

literature1, comments from actuaries questioning whether standard statistical assumptions apply to 

insurance data. But in those papers it is usually a caveat which receives little attention while here it’s 

the centerpiece of the paper. So I believe the emphasis and arrangement of ideas in this paper is 

somewhat unique.  

The particular technical issue of statistical power which I’ll discuss and which severely qualifies 

any claims for testing and validation effectiveness, although part of the Actuarial Exam Syllabus2, has 

                                                           
1 See, for instance, the discussion of “i.i.d.” by David Clark in “LDF Curve-fitting and Stochastic Reserving: A 
Maximum Likelihood Approach” [2] page 56. 
2 See Stuart Klugman’s Study Note Estimation, Evaluation, and Selection of Actuarial Models [8] 
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not been as far as I can tell applied to this issue before. 

I owe debts to many previous actuaries, that are too numerous to name or reference here. But I 

owe a particular debt to the thinking of the late UC Berkeley Statistician David Freedman. The two 

textbooks, which I reference in this paper, and the numerous papers he has written over the years, 

are models of clear and careful statistical reasoning and how it can be applied to answer real world 

questions.3 

1.3 Outline 

This discussion will require a review of some basic concepts from statistics, but they are all ideas 

to which every actuary will have been exposed at one time or another. In particular we will review 

the meanings of methods and models, and the assumptions the latter usually rely on. 

 Unfortunately, we will have to go into some detail about statistical hypothesis testing, and this 

material is routinely misunderstood by both students and professionals throughout the social 

sciences. Apparently it is difficult for many to understand. It’s possible that I might not do a great 

job of explaining it either. Here we discuss the importance of the statistical power of a test, and the 

consequential costs, or loss, associated with following the results of a test. 

All I can ask is that you bear with me and be willing to think a bit. If this material is unfamiliar, I 

think you’ll find that it’s well worth learning it, and you may never look at another statistical analysis 

the same way again.  

We will then apply these ideas to insurance reserving to see whether any claims for diagnostic 

effectiveness are likely to be true. 

It’s common in the technical actuarial literature to briefly present a model and then to elaborate 

at length the mathematical implications of that model. I’m not so interested in the math, but in the 

validity of the very first step. So we will largely travel in the other direction, and starting with models 

and modeling assumptions we’re going to interpret them as assertions about the world and study 

whether those assertions are true.  

We might not be able to reach any absolutely definitive conclusions, but regardless there should 

be some value in trying to think clearly about the relation of models to our world and the role of 

                                                           
3 James M. Robins, professor of epidemiology at the Harvard School of Public Health, once wrote about David, that he 
was  “one of the world’s leading mathematical statisticians, but he has also assumed the mantle as the skeptical 
conscience of statistics as it is applied to important scientific, policy and legal issues.” See the obituary at:  
http://berkeley.edu/news/media/releases/2008/10/20_freedman.shtml 
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those models in our work. 

2. BACKGROUND AND METHODS 

2.1 Statistical Models and Methods 

The Working Party draws a distinction between a “Method” and a “Model.” Methods are (page 

38) “algorithms or series of steps followed to determine an estimate,” with some examples being the 

“chain-ladder (development factors) method or the Bornhuetter-Ferguson method.”  They then add 

that Methods “do not involve the use of any statistical assumptions that could be used to validate 

reasonableness or to calculate standard error.” 

 On the other hand, a “Model” (page 67) “specifies statistical assumptions about the loss process, 

usually leaving some parameters to be estimated.” They also add: “There are various methods that 

could be used for estimating the parameters, such as maximum likelihood and various robust 

estimators, but unless otherwise noted, ‘methods’ here will refer to algorithms for calculating loss 

future payments, not methods for estimating model parameters.” 

In this paper, I will not follow that convention about methods only applying to reserving 

algorithms and not parameter estimation. In the statistical context, both are functions of random 

variables and hence estimators—random variables themselves, which one hopes will take on values 

close to what one is estimating. Reserving methods might not explicitly rely on stochastic 

assumptions, but once those assumptions are introduced into the discussion, those methods become 

estimators. 

2.1.1 An Illuminating Example of a Method and a Model  

Because there is often much confusion on this score and because it will be useful throughout the 

paper, we should compare the ordinary least squares (OLS) method to the ordinary least squares 

(OLS) regression model.  

The OLS method is merely a way of solving a system of linear equations where there are more 

equations than unknowns, say n equations in p unknowns with n>p. In this situation, such a system 

is usually inconsistent and has no solution. But by taking weighted averages of all the equations with 

weights given by the unknowns’ coefficients in the equations, one reduces the number of equations 

to just p equations in p unknowns, and this usually has a unique solution. The method is just linear 
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algebra.4 

The OLS model is a set of statistical assumptions, for which the OLS method becomes a well-suited 

estimator of the unknowns. We will only need two unknowns in our discussion, in which case the 

OLS model assumes that (adapted from David Freedman’s, Statistical Models: Theory and Practice [5])5: 

1. There are two observable random variables X and Y; they are 	

݊ ൈ 1 random vectors; there is also an ݊ ൈ 1 random vector ε that is not observed and is 

called the random error or disturbance term; Y is a linear function of ε and X via unknowns a and 

b, which usually have to be estimated from the data. 

2. The vector relationship above unpacks into n ordinary equations: 

ܻ ൌ ܽ  ܾ ܺ   ߝ
 

(2.1)

3. A fundamental assumption is that “the data on ܻ are observed values ofܽ  ܾ ܺ  ߝ .” 
As David Freedman points out “[w]e have observed values for X and Y, not the random 
variables themselves. We do not know [a and b] and do not observe ε.” Recall: random variables 
have distributions, means, standard deviations6, etc.; observed values of random variables, aka 
data, are just numbers. 
 

4. “The εi are independent and identically distributed, with mean 0 and variance σ2.” 
 

5. “If X is random, we assume that ε is independent of X.” 
 

Warning: Many applications of regression and many of the standard theorems assume that X 
is fixed, as it could be, for instance, in an experiment where the experimenter is able to 
control the value of X. For us, since we will be using X to represent losses during exposure 
periods, X is random, not fixed, and many of the standard theorems do not apply or apply 
only “conditionally on X being given.”7 
 

As mentioned previously the OLS method with 2 unknowns will reduce a system of n equations to 

just 2 equations, by taking a weighted average of all the equations with weights equal to the 

coefficients of the unknowns in the model. So let’s suppose that we have n pairs of observed values 

(y1,x1), (y2,x2),…, (yn,xn). 

 This gives us n linear equations: 
                                                           
4 See, for instance, Gilbert Strang, Linear Algebra and Its Applications, 3rd Edition. 
5 Since we’re focusing on only two unknowns we don’t present the whole matrix formulation; and we leave out mention 
of certain niceties like the rank of our system of equations being at least 2 which will almost always be the case for us. 
6 Theoretically not all random variables have moments; but any which appear in insurance probably will.  
7 The parameter estimators tend to be unconditionally unbiased as well, but not necessarily the standard error estimators. 
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ଵݕ ൌ ܽ   ଵݔܾ
ଶݕ ൌ ܽ   ଶݔܾ

… 
ݕ ൌ ܽ  ݔܾ

(2.2)

The coefficient of the first unknown a is always 1, so the first reduced equation will simply be an 

average of all n equations, where we now also employ the hat “^” over a and b, to represent that they 

are not the same a and b as above (in fact they cannot be the same because the above is 

inconsistent):  

തݕ ൌ ොܽ  ܾ̅ݔ, 
Barred variables, for instance, ݕത and  .will just indicate the averages of the data series ,ݔ̅

(2.3)

 
We get our second equation by multiplying through on both sides of the ith equation by xi and 
averaging those equations: 

ଵݕଵݔ ൌ ଵݔܽ   ଵݔଵݔܾ
ଶݕଶݔ ൌ ଶݔܽ   ଶݔଶݔܾ

… 
ݕݔ ൌ ݔܽ   ݔݔܾ

 

(2.4)

തതതݕݔ ൌ ොܽ̅ݔ  ܾݔଶതതത (2.5)

Now (2.3) and (2.5) gives us two equations in two unknowns, ොܽ and	 ܾ, and those equations 

almost always have unique solutions: 

ොܽ ൌ
തݕଶതതതݔ െ തതതݕݔݔ̅

ଶതതതݔ െ ଶݔ̅
 

 

(2.6)

ܾ ൌ
തതതݕݔ െ തݕݔ̅

ଶതതതݔ െ ଶݔ̅
 

 

(2.7)

If we’re going to use our estimate to, for instance, project the n+1-th observation, a little creative 

algebra and we can write: 

ାଵݕ ൌ ොܽ  ܾݔାଵ 
As: 

(2.8) 

ାଵݕ ൌ ሺ1 െ ܼሻݕത  ܼ
തݕ
ݔ̅
 ,ାଵݔ

 

	where	ܼ ൌ
ݔ̅
തݕ
തതതݕݔ െ തݕݔ̅

ଶതതതݔ െ ଶݔ̅
,	 

 
which can also be rewritten as

(2.9) 
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ܼ ൌ ߩ
ܥ ܸ࢟

ܥ ܸ࢞
,  

 
where	ߩ	is	the	correlation	between the two data series ݔ and ,ݕ and	the	CV′s are 
	their	coefϐicients	of	variation, i. e. , their standard deviations over	their	means.

 

Or, in words, as many actuaries before have noticed: if xi represents losses from the ith exposure 

period, say accident year, at some evaluation age, and yi represents the incremental losses at the next 

evaluation age, then the OLS projection ݕାଵ for the losses from the latest diagonal ݔାଵ, is just a 

weighted average of the standard chain ladder estimate, and the overall mean ݕത. One might replace 

incremental loss with cumulative loss or ultimate loss. But, regardless, actuarial methods which are 

now standard, such as Bornhuetter-Ferguson, Stanard-Bühlmann, and Benktander, can be viewed as 

methods for estimating the various parameters such as Z and ݕത	which appear in equation 2.9. 

Now, in order to connect this OLS method with the OLS model, we have to invoke assumption 3, 

which was that “the data on ܻ are observed values ofܽ  ܾ ܺ   ,.” If we make this connectionߝ

replacing our equations in x and y above with equations in X and Y, then ොܽ and ܾ are now estimators, 

i.e. functions of random variables, and hence random variables themselves with their own 

distributions. 

If all the other assumptions on page 6 are true as well, then we are allowed to conclude that  ොܽ 

and ܾ are conditionally unbiased estimators, meaning their expected values, conditional on a given X, 

are equal to the unknown parameters a and b. We can also calculate their variances and correlations 

with each other, conditional on a given X, if we know the variance of the error term σ2; and if that’s 

unknown we have a conditionally unbiased estimator available for it as well. Finally, conditional on 

X, we can show that the squared difference between Y and the linear combination of X  is 

minimized when ܽ ൌ ොܽ and ܾ ൌ ܾ, which is of course the origin of the ordinary least squares method 

and model’s name. 

I apologize if all of the above is old “hat,” but I think it’s important that we keep in mind the 

difference between a method which can be applied regardless of whether any statistical assumptions 

are true, and a model for which that method might have some nice properties when regarded as an 

estimator. 

For instance, if in the equations (2.2) we had dropped the a’s and only considered y as a function 
of x, i.e., taken only: 
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ݕ ൌ ݔܾ (2.10)

Then there are many ways we might estimate b. We can simply average all the equations and 

divide, which would give us the standard chain-ladder over all the years, or we can take the last m 

equations for any 1≤m and average them, as we might do in practice if those were more 

representative years.8 More generally, we could apply any weighted average whatsoever to the n 

equations to reduce them to 1 equation in order to estimate b.  

And referring back to the model assumptions, where now there is no a: 

ܻ ൌ ܾ ܺ   (2.11)ߝ

 As long as the ߝ have mean 0 and the weights in combination with the Xi are independent of ߝ 

then the resulting estimator will be an unbiased estimator of b.9  

2.2 Models and Their Assumptions 

If one reviews any application of statistical models, such as the example we give above, one sees 

that model assumptions come in five flavors10: 

1. There is always the assumption, though usually implicit, connecting the mathematical 

formulation to the world: that data are observed values of random variables. 

2. There are functional assumptions such as Y is a linear function of X.  

3. There are parameter assumptions, such as that the εi’s have means of 0 and variances of σ2, or 

that there are non-zero a and b, even if they usually have to be estimated from the data. 

4. There are independence (and identically distributed) assumptions, such as that the εi are independent 

(and identically distributed) and that if X is random, ε is independent of X. 

5. Though not an OLS model assumption, in practice there are usually more specific 

distributional assumptions as well. For instance, in OLS one often assumes that the εi are 

normally distributed; this allows one to calculate t-tests, p-values, F tests, etc. and draw 

inferences about how well the model fits the data. Full distributional assumptions allow one to 

discuss a reserve distribution as well.  

                                                           
8 See Stigler, History of Statistics [13]. Before the advent of least squares, the Method of Averages was to use simple un-
weighted averages of subsets of equations to reduce a system to solvable form.  
9 One minor caveat is to avoid dividing by anything with a non-zero probability of being zero.  
10 There is some regrettable but inconsequential overlap in my classification system: with for instance functional 
relationships creating dependency relationships. Also, it can be very hard conceptually to separate the two i’s in i.i.d.. 
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I fear that, through over-use, most of us have become deadened to the true force and meaning of 

assumptions.  

Assumptions are theories about the world.  

In pure mathematics, the fundamental concepts are undefined, since one has to start the chain of 

definitions somewhere; and all concepts are un-interpreted, meaning no particular meaning in the real 

world is ascribed to them.11 One merely studies how statements (axioms) postulated about these 

concepts in terms of each other imply other statements (theorems) made up of them or of concepts 

freshly defined in terms of them.12  

In applied mathematics, on the other hand, one must first interpret some of these undefined and 

un-interpreted terms, so that they refer to something in the world. The hardest term to interpret in 

our context is probability itself, and I will not attempt to do so here.13 

But once some interpretation is given for that term, we can connect the assumptions and results of 

our statistical modeling to the real world. Assumptions, which were just conditions of theorems in 

pure mathematics, become in this way declarative statements about the world and how it functions. 

That is, they are theories. 

In addition to probability itself, the hardest modeling assumption to comprehend is the assumption 

of independent and identically distributed (i.i.d.) random variables. We will not make much use of this, but 

I think an extremely useful tool in trying to understand the real meaning of i.i.d. is given by a 

conceptual model of the loss generation process as a box model  and presented, for instance, in the 

textbook Statistics, by Freedman, Pisani, Purves ([6] page 389.) The idea is that the situation to be 

described by a statistical model must generate data like draws of lottery tickets from a box with fixed 

numbers of different tickets, where each ticket is equally likely to be drawn. There can be multiple 

levels of boxes and selections required, and there need not literally be a box, of course, but one has 

to be able to conceptualize the process in such a manner.  

In insurance we have a ready-made box model for us in the form of Collective Risk Theory. 

Recall, in this model, there is a box for the claim count during a period, and a box for the claim 

                                                           
11 This is not to say that most mathematicians don’t have some interpretation in mind, merely that there is no official 
interpretation for a fundamental undefined concept such as set membership. 
12 This is the source of mathematical logician (later philosopher) Bertrand Russell’s popular definition of mathematics as: 
“the science in which we do not know what we are talking about, and do not care whether what we say about it is true.” 
13 See Don Gillies, Philosophical Interpretations of Probability [7], for a highly readable and sympathetic account of the main 
interpretations of probability, from a philosopher who has also done applied work in statistics. 
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severities. For a single period, one selects a ticket from the claim count box. Then, based on the 

number shown, one selects that many tickets from the severity box, making sure to replace each 

severity ticket after recording its value, and shaking the box thoroughly before selecting the next 

severity ticket. Finally, after one has drawn the requisite number of severity tickets for that period, 

one vigorously shakes the claim count box, selects from it for the next year, and draws again from 

the severity box.  

We will return to the assumption of i.i.d. draws in the results section and examine a little more 

how well it fits to insurance. For now note that rather than establishing by means of facts, theory, or 

argument that their data is really from i.i.d. random variables, most modelers merely assume it, for 

among other things the enormous computational convenience it provides. Then, if they have any 

doubts about these assumptions and the other modeling assumptions, they rely on tests and 

diagnostics to indicate if they might possibly be in error. So, we had better discuss now, tests and 

diagnostics. 

2.3 Statistical Hypothesis Testing 

Tests, diagnostics, validation, reasonability checks, goodness-of-fit—they all mean roughly the same and can 

all be treated in the same general framework, which is Statistical Hypothesis Testing.14   

The CAS Working Party says (page 47) “[b]y overall model reasonability checks, we mean ‘what 

measures can we use to judge the overall quality of the model?’” and then on page 49 “[b]y 

goodness-of-fit and prediction error evaluation, we mean ‘what measures can we use to judge 

whether a model is capturing the statistical features in the data?’” They go on to list various tests, 

such as, “Coefficient of Variation by Year,” “Validity of Link Ratios,” and specific “Goodness-of-Fit 

Measures”...in all over a dozen criteria.  

In all of these tests, the same abstract framework pertains: a measure is a function of the data being 

modeled and the model specification (all the various assumptions and specific parameter values,) 

and the measure is used to reach some decision about whether the current model specification is 

adequate or not. Sometimes it won’t be the result of a single test, but a combination of tests will be 

examined, but in this case as well the final outcome is usually the same: a yes or no decision is reached 

                                                           
14 A fairly clear and concise treatment of the elements of hypothesis testing is available in Klugman’s exam study note 
[8]. A classic graduate-level text is Lehmann and Romano’s Testing Statistical Hypotheses [12]. As of this writing in 2013, the 
Wikipedia article for Statistical Hypothesis Testing is an informative introduction.  
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about the whole model or some features in the model.15 

So, we can represent our measure (or combination of measures) as a function φ which takes on 

the value 1, whenever we would reach a yes decision and the value 0, whenever we would reach a no 

decision.  

Two essential concepts in hypothesis testing are: power and loss. Power gives us the probability that 

φ=1, that a yes decision is made, as a function of the models under consideration.  Loss is a function 

of both the decision we make and the models under consideration, and measures the consequences to 

us of making some decision when a particular model is true. 

This is all very abstract, so we will look in detail at the example which most concerns us, which is 

significance testing of a variable. In this type of testing we assume that, except for the parameter 

assumptions, all other assumptions are known and fixed: the functional assumptions (such as 

linearity,) the distributional assumptions (such as normality,) the independence assumptions (such as i.i.d. 

errors.) 

2.3.1 A Fully Worked Example 

Consider the following simple model: 

ܻ ൌ ܾ ܺ   ߝ
Where, 
 Xi are i.i.d. lognormal with mean 1 and standard deviation of 1 
 are i.i.d. normal with mean of 0 and standard deviation of 1	ߝ 
All Xi’s and  ߝ ’s are independent of each other 
 b = .5 

(2.12)

Xi might represent the cumulative losses for accident year i at a certain development age; b is an 

incremental multiplicative loss development factor that applies between that development age and 

the next; εi is random variation in the development; and Yi is the resulting incremental losses for 

accident year i at that next development age. 

Say we had nine full observations of Xi and Yi, and 1 more of just X10; i.e., assume X10 is on the 

latest diagonal of a triangle. 

                                                           
15 I said “usually” because occasionally one will stop with just a probability, such as a p-value, and draw no particular 
decision or action as a result. That need not concern us. Note also: Standard Bayesian methods do not usually rely much 
on classical hypothesis testing for parameters, but rather rely on prior knowledge encapsulated within a prior 
distribution(s) which is updated with data. Nonetheless, if a Bayesian modeling exercise ever needs to reach a yes/no 
decision about variable inclusion or whether any assumptions are true or not, all of the comments in this section apply; in 
a Bayesian analysis one has to of course include the prior distribution(s) in all such calculations. 
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In order to test our model specification we consider whether the model isn’t really  

ܻ ൌ ܽ  ܾ ܺ  ,  where a≠0 (2.13)ߝ

 

To test this we calculate the OLS parameter estimates for that model from our data. 

What we are testing in particular is called a simple null hypothesis that a=0. We also state an 

alternative hypothesis which is that a≠0. In a significance test, if we find that our estimate of a is 

“significantly different” from 0, then we have some possible evidence that our null hypothesis, 

which corresponds to model 2.12, is incorrect. And this is possibly some evidence in favor of the 

alternative which corresponds to 2.13. 

The significance test itself is often a t-test via a t-stat16 which is the ratio of the parameter estimate 

for a divided by the estimate for the standard error of our estimator for a. Recall ොܽ is an estimator for 

a and a random variable, so it has a mean, standard deviation etc. When we have data we are 

modeling, we end up calculating one particular estimate which we assume is an observed value for 

that estimator. We also have an estimator for the standard deviation (aka standard error) of that 

random variable, which when applied to our data gives us an estimate of ොܽ′ݏ	standard error.   

In order to use the t-stat for any inferences, we must decide a critical region of values which we will 

regard as significant. Any cut-off is arbitrary, but many modelers suggest using the value of 2 for the t-

stat to judge significance as an easy rule-of-thumb. If another critical region were chosen, our 

numbers below would of course change, but the issues would remain the same. 

So, now we have our full test function φ: it will equal 1 whenever the t-stat has an absolute value 

of 2 or more, which corresponds to finding the parameter estimate significant, and otherwise it will 

equal 0. Our power will give us the probability of φ equaling 1, which is also the expected value of φ, 

which we can calculate because we have specified our model in (2.12.) 

Estimator  Mean Mean Standard Error Power

ොܽ  (0.00) 0.58  0.08 

ܾ  0.50  0.54  0.28 

With respect to ොܽ, our significance test worked exactly the way it’s supposed to: our estimate for a 

was only found to be “significantly different from 0” 8% of the time, which is good, because it is 

                                                           
16 So called because when X is fixed and ε normally distributed, the t-stat will follow Student’s t distribution. Because our 
X is random and not fixed, and lognormal besides, we chose to simulate the results here rather than try to find any 
closed-form solutions. 
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actually 0. But keep in mind that this is a probabilistic result: in 8% of the cases, one would conclude 

that a was not 0 when in fact it was. This is the un-memorably named Type I Error rate.  

But notice also that for ܾ, it was only found to be significant, 28% of the time. This despite the 

fact that b is not 0, it is .5.  So, if anyone were to try to conclude whether b was 0, because of its 

significance test, he or she would be right only 28% of the time and wrong 72% of the time. The 

latter is the un-memorably named Type II Error rate. So, before one can really judge if a non-

significant finding is very good evidence that a parameter is 0, one should attend to the power of the 

test to judge whether the test can even tell with much probability whether the parameter is 

“significantly different from 0.” 

But all the tests in the world are for naught unless one takes some action as a result of the test. 

The authors cited at the start of the paper suggested that one should drop a variable if its parameter 

estimate is found insignificant. In order to see whether this is a wise decision, we must specify some 

loss function that will measure the costs to us of taking an action: our action will be choosing one 

estimator over another and our loss will be a reduction in accuracy. There is infinite freedom 

available in choosing loss functions, but we will simply take a common measure of predictive 

accuracy for our loss. The one we will take is the squared difference between an estimator’s 

prediction and the variable it is trying to predict. We will also look at just the (un-squared) difference 

between the two.17 The expected value of the former is the mean square error of prediction (MSEP) and 

of the latter is the bias. We take the square root of the latter, which we call the root mean square error of 

prediction (RMSEP), to have the same units as the variable we are trying to predict. 

What we are trying to predict is the incremental loss Y10 based on the previous 9 accident years 

and X10.  

As mentioned in section 2.1 we have infinite flexibility about what estimators and resulting 

predictors to use. But let’s look at just the following:  

  

                                                           
17 In the standard theory, loss functions are non-negative; so un-squared difference would not usually be considered a 
loss function. 
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1. The Full OLS18 estimator, where we estimate both a and b by OLS and predict Y10 as  

ොܽ  ܾ
ଵܺ. 

2. The Average of the Yi ‘s over the 9 accident years. 

3. The OLS estimator for b only, with only a single variable in the regression; the LDF Only 

predictor,  ܾ ଵܺ. 

4. The Modeler recommendation that we use predictor 2, the Average, unless the estimate of b 

is significant, in which case predictor 3, the LDF Only, is used. One should note that this is 

in defiance of standard actuarial practice, which would be to down-weight any unusually high 

LDFs. 

5. So we can look at the Anti-Modeler (or Actuary), which does the exact opposite of the 

Modeler estimator, and uses predictor 3, the LDF Only, unless it’s found to be significant, 

in which case it uses 2, the Average. 

 

Estimators 

Loss Criteria  Full OLS Average LDF Only Modeler Anti‐Modeler 

Bias  (0.00)  0.00  (0.00)  (0.01)  0.01 

RMSEP  1.25  1.18  1.10  1.15  1.13 

 

The negative signs in the Bias row mean the estimator is biased high; positive that it’s biased low. 

It’s not too difficult to understand this table. The Full OLS, Average, and LDF Only are all 

unbiased estimators of the mean of Y10. The Modeler predictor randomly switches between the 

Average and the LDF Only, based on the significance test of b. Since b is positive, including it in 

the model only when it’s high relative to its standard error, means that the expected value of ܾ, 

conditional on finding it significant, will be biased high. So, the Modeler predictor is biased high. 

The Anti-Modeler predictor does the opposite, so is biased low. 

The RMSEP of LDF Only is the lowest, which is nice because that reflects the true model of the 

data. The MSEP (before the square root) of the Modeler is basically the power-weighted MSEPs of 

                                                           
18 A reviewer of parts of an earlier draft of this paper asked whether it wouldn’t be more appropriate to use weighted 
regressions in some contexts. It might be, but would introduce many technical complications which would take us too 
far afield to address. See note 9 for instance. Suffice to say, certain numbers would change in that case, but the 
conceptual issues would remain the same. 
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the LDF Only and the Average. The MSEP of the Anti-Modeler has just the converse weights. 

Since b is found significant only 28% of the time the Modeler estimator spends only 28% of its time 

as the LDF Only, which has the lower RMSEP,  and spends 72% of its time as the Average, which 

has the higher RMSEP.  

Since the biases are the same, but the RMSEP of the Anti-Modeler is lower, in this case we 

would say that sometimes it is better to do the exact opposite of what the modelers recommend.  

To generalize this example, if one knows the correct model form, one should design an estimator 

and predictor for it; significance testing has nothing to do with it. If one does not know the correct 

model form, it’s at least possible, as this example shows, that significance testing will lead one to 

make a suboptimal choice. If b had been a little larger, its estimate would have been found to be 

significant more often; but including the variable in the model only then, would still bias the result 

high.  As b grows larger, the bias due to truncating the estimator via significance testing would go to 

0 as the probability of finding significance goes to 100%. But we’ll see in the results section that this 

special case is unlikely to occur.  

I bring this up as an illustration of the dangers of relying blindly on significance testing, but I will 

leave it as an area of future research to delineate precisely the situations where one should or 

shouldn’t run significance tests and what actions should be taken as a result. I have seen no such 

delineation in any of the actuarial literature which takes into account the above issues.  

2.3.2 Estimator Selection 

The issue of variable selection for an estimator, as far as I can tell, is far more complicated than 

simply running significance tests, and may have nothing really to do with it.19 An optimal estimator, 

by whatever loss criteria, is likely to depend on the precise distributional and parameter assumptions 

underlying the true model; an estimator might be optimal in some regions of the parameter space and 

less optimal in others, optimal for some distributions and not for others. Since the true model in any 

real application is more or less unknown, it’s unclear what relevance such results would have unless 

the estimators are very robust to a wide range of potential models and parameter combinations. 

Many of the theorems available to help find estimators are restricted to unbiased estimators, and 

when biased estimators are included, the problem becomes so much more extensive. Finally, many of 

those theorems are restricted to fixed variables, and in insurance our potential variables are mostly 

                                                           
19 See Lehmann, Theory of Point Estimation [11], for a graduate-level treatment of estimator theory. 
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random variables.20  

2.3.3 Statistical Power More Generally 

We mentioned previously that power is a function, but then only gave the single values of power for 

our regression estimators. We now complete the discussion.  

So, consider a simple test function φ. φ will take on the value of 1 when the criteria we’re testing 

for is met (or conversely not met,) or 0 if it is not (or the converse.) Given all the other model 

assumptions as fixed, let’s let only the parameter assumptions vary. We can describe our model of 

the data as some joint distribution ఏܲ of the random variables, while ߠ is a possible parameter 

assumption. 

The power function21, often denoted ߚሺΘሻ, is then a function of ߠ as ߠ varies over its possible 

values, and equals the probability that φ=1, calculated on the assumption that ఏܲ is the true model 

for the data. One can write this 

ߠ → ሺΘሻߚ ൌ ܲሺ߮ሺܯሻ ൌ 1ሻ,  

where	ܯ	potentially	encompasses all of the random variables of the model. 

(2.14)

This is all a little abstract again, but the general formulation is useful to keep in mind, whenever 

one comes across any statistical analysis whatsoever:  

1. One should ask what the model assumptions are and why; in other words what is ఏܲ the joint 

probability distribution of the random variables which correspond to the data; and then why: 

a useful heuristic might be, rather than contemplating “reasonableness” of assumptions, to 

start from the premise that the assumptions are false and see what reason there is to believe 

otherwise;  

2. Even granting the model assumptions, if drawing any conclusion from the analysis, one 

should ask what the power of the analysis was to come to an opposite conclusion. If the test 

had low power to detect an alternative, there might be little reason to believe the results. 

                                                           
20 For those who wish to pursue the topic further, the correct topic heading here appears to be errors-in-variables models 
and also latent variable models. Please note the early pioneering work that James Stanard did on estimator properties for 
certain types of loss development, and I understand Hans Bühlmann and others have continued some of that work as 
well.  
21 This definition is adapted from Lucien LeCam’s useful comparison of frequentist and subjectivist approaches to 
statistics [10]. According to Wikipedia, he “was the major figure during the period 1950 – 1990 in the development of 
abstract general asymptotic theory in mathematical statistics.” 
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Returning to the specific test we’re most interested in, significance, we can easily find the power 

function for any OLS regression as a function of the correlation	ߩ of two variables X and Y, where 

they are both normally distributed with means of 0 and SDs of 1. One can then generalize this result 

by adding constants for their means and scaling by different standard deviations. (Recall from 

formula 2.9 that the OLS coefficient in front of xn+1 is the product of the chain ladder estimate, the 

ratio of the y’s mean to the x’s, and the correlation and CV’s, ߩ
࢟
࢞

.)  

Using the t-test, with the critical value of 2 discussed in the earlier example, the power function 

of the significance test for small sample sizes which might be relevant for yearly reserving triangles is 

the following:  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Even with a sample of size 10, real correlations between X and Y that are between about (-55% 

and 55%) have a 50-50 chance or less of being detected. Whether in a particular modeling exercise a 

relationship of this size between two variables (such as the cumulative losses in one development 

age and the incremental losses in the next) will be declared significant is just a coin-flip. For a sample 

of size 5, a correlation of more than +/-70% is needed to have a better than even chance of 

detecting it. 

Another way of looking at the same issue is to consider the number of years needed in order to 
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have, say, a 50-50 chance of detecting a correlation of a given size. This could be an involved 

simulation exercise, so we will make the simplifying assumption that the sample correlation 

coefficient ߩො is symmetric around its mean value ߩ. This is probably ok unless  ߩ is close to +/-1, 

but then power isn’t much of an issue anyway. There is a standard formula available for this22: 

2 ൌ ඨ
ଶሺ݊ߩ െ 2ሻ
ሺ1 െ ଶሻߩ

 

where	the	ϐirst	2	is	our	critical	value	for	the	signiϐicance	test, 

the	second	2	is	for	the	number of variables, and ݊ is the number	of	years. 

(2.15)

We easily rearrange this to express n as a function of ߩ. 

݊ ൌ
4
ଶߩ

െ 2 
(2.16)

See Graph 2.1 on next page. I don’t show the number of years needed for correlations of size .15, 

.10, or .05 because those are 176, 398, and 1598 respectively. 

Keep in mind also that a finding of significance for an effect in a real-world modeling application 

is a function of: the model specification, the size of the effect, the size of the sample, and random 

chance. One can’t in practice conclude from a significant or an insignificant finding alone which of 

those causes are responsible for the finding.  

The most natural question to ask at this point is, what correlations would we expect to find in 

insurance? And we will address that issue in the next section, but first it might be worthwhile to 

discuss an amazing paper by David Freedman and generalize our discussion a little to other tests 

besides significance. 

                                                           
22 See the Wikipedia article on “Statistical Hypothesis Testing,” for instance. 
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Graph 2.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.4 Diagnostic Power or the Lack Thereof 

Statistical diagnostics, checks, tests, etc. usually address themselves to limited breakdowns of 

model assumptions. As we saw with significance, one fixes all of the distributional, independence, 

and functional assumptions and looks at whether or not the data is consistent with some parameters 

being 0. That’s all the t-test is used for.  

So, diagnostics are not usually direct tests of all of the assumptions of a model, but continue to 

assume some parts of that model. One should always keep in mind that a diagnostic outcome might 

be the result of some other model breakdown than what one is explicitly testing; this is too often 

forgotten in rushes to find some result, such as significance for instance.  

All diagnostics have probabilistic results and all the issues with chance occurrence and power 

highlighted above apply. Even with non-parametric tests or robust inference procedures, once one 

has a probability model to work with, one can calculate the probabilities of passing or failing any test 

and the issue of power comes into play. 

It’s a common practice among modelers to also “teach to the test,” meaning if they know that 
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they’ll be running some test, they will include additional features in their model, so that it will pass 

that particular test. A common such addition is to include some sort of time-series model in order to 

pass an autocorrelation test of the residuals. The residuals are the differences between the observed 

data and model estimates for that data. An autocorrelation (or serial correlation) test looks at the 

sample correlation between residuals in near-by years.  

 In some sense this is perfectly legitimate: if the residuals would otherwise show autocorrelation, 

there is trend within the data, and the model should perhaps be adjusted. It will definitely improve 

the model fit to the data. But the question is whether it will improve the model’s predictions as well. 

The big--usually unasked--question is whether the particular model that is used to adjust for this 

trend is really true and why. Including such a sub-model within a model makes it harder to analyze 

the whole model, and may just be sweeping model misspecification issues under the rug.  

If one opens up one’s imagination to more general statistical assumptions than usually 

contemplated, then there is even more reason to question modeling results. David Freedman in a 

paper entitled “Diagnostics Can Not Have Much Power Against General Alternatives” [3] took one-

by-one the standard assumptions underlying most statistical models, and showed that given any test, 

diagnostic or combination of them, which the standard assumptions would pass with a certain 

probability, there are alternative assumptions that are very different from the standard ones, but 

which would pass with the same or greater probability.  

Although Freedman advises that all diagnostics should be viewed with a healthy dose of 

skepticism, he does not conclude that diagnostics should be ignored, quite the opposite, and he 

recommends they be employed and published more often. This is because diagnostics can still 

occasionally detect gross violations of model assumptions. But his results also clearly imply that one 

cannot simply rely on diagnostics to determine whether a model is true. One needs prior theory and 

experience to convincingly narrow down the model possibilities before diagnostics can be of much 

use. 

Even then, as we saw above, with small samples or volatile processes, we need to be realistic 

about what we can and cannot accomplish from statistical analyses and only the data at hand.  
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3. RESULTS AND DISCUSSION 

3.1 Some Examples of Loss Development Correlation in Insurance 

3.1.1 Claim Count Development on Claims-Made Business 

Consider a claims-made book of business. Suppose that Xi are the claims still open at the end of 

the first development period for accident year i and Yi are the incremental changes in open claims 

during the next development period. Let’s assume, as is often done, that Xi is Poisson distributed 

with mean μ. Now suppose that for each of the Xi claims, independently of the other claims, there is 

a certain probability p that it will close during the development period. Then Yi is -1 times a 

Binomial random variable with parameters Xi and p.  

Then it is possible to show that the correlation between X and Y is:  

െඥ(3.1) 

So, for instance, referring to Table 2.1 for a quick approximation, for a |p| below .25 (ඥ5.>), 

we are unlikely to find the correlation significant with less than about 14 years. For p’s over .5 

however, we need only about 6 years or less. 

3.1.2 Completely Dependent Development on Claims-Made Business 

The above is a special case of a more general situation where the development on each claim 

during the next period is a multiple of the claim itself (in the above case, either -1 or 0.) We can 

generalize this example, by means of Collective Risk Theory, to include reported claims simply, 

rather than just open claims, reported severity distributions in the first period and then a distribution 

of incremental reported development factors which will be multiplied to each claim severity for the 

next. Let’s call the development random variable λ and say it has a coefficient of variation (its 

standard deviation over its mean) of CVλ. 

 Then the correlation is (where the -1 is if there is expected negative development):   

േ1
ሺ1  ሺܥ ఒܸሻଶሻଵ/ଶ

 
(3.2)

Intuitively, if λ were a constant, X and Y would be perfectly correlated; but there is random 

variation in the development (CVλ) which is clouding the relationship. If the expected development 

were 0 the CV would be infinite and there would be no correlation, though there would still be 
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dependence via the claim count.23 

Now, the question is what magnitudes of CV’s should we expect in insurance? Well, that’s going 

to vary by line-of-business, the specifics of a company’s reserving practice and the details of the 

claims.  

On one extreme, one could imagine that the claims-adjusters were nearly always right, at least on 

average, about the ultimate values of the claims they adjusted during the first period. In this case, the 

mean of λ would be close to 0, in which case, because the mean is in the denominator, CVλ could be 

enormous. One would then have very low correlation and find it almost impossible to detect it, even 

though the development was still dependent on the losses from the prior period. 

On another extreme, one could imagine that the claims department is stair-stepping their 

reserves, using claims signals for instance, or some other reserving practice which doesn’t match 

averages, and the average development might be quite large in the next period. Then it would 

depend on the spread of that development, which might still be quite wide if there’s a diverse set of 

claims.  

I certainly don’t know what ranges this parameter might take for different books, but the one 

book I did look at, which was a not too volatile professional liability account, had CV’s in the 

second period of about 15, which means a correlation around 7%, and very little chance whatsoever 

of detecting that in a significance test (one would need 800 years.)  

3.1.3 Completely Independent Development on Claims-Made Business 

At another extreme, we can continue with our model for reported losses, but this time we assume 

that the development in the next period is completely independent of the severities in the prior period: 

they are just additive amounts that emerge for each claim independently of what the severity on the 

claim was previously. Because the claim count is common to both periods, the losses are still 

correlated however. Let’s still call the development random variable λ and with a CVλ. But now we 

must include the reported severity in the first period, which we’ll assume has CVS. 

Then the correlation is:   

േ1
ሺ1  ሺܥ ௌܸሻଶሻଵ/ଶሺ1  ሺܥ ఒܸሻଶሻଵ/ଶ

 
(3.3)

                                                           
23 Zero correlation does not imply independence except with normally distributed variables for instance.   
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Intuitively, X and Y are correlated only by having the same claim count in common, but there is 

random variation in the development (CVλ) and random variation in the severity (CVS) which do 

nothing but weaken the relationship.  

Again, any CV’s will depend upon the particulars of a book of business, but for my one account 

above, I found CV’s of about 3 for the reported severity in the first period and about 8 for the 

incremental development in the second. (Note this is the CV of λ viewed as an additive amount 

rather than the multiplicative amount from before.) I find a correlation here of about 4%, again 

undetectable for all practical purposes. 

So far, I’ve only considered the first two development periods. As we move along the triangle, 

taking X as the cumulative development and Y as the incremental development, I might expect the 

CV’s associated with X to grow as more information became available to precisely determine claim 

values. We might also expect the CVλ to perhaps explode while the prior estimates are getting more 

and more accurate so the incremental development averages are close to 0, while whatever 

development there is might be highly volatile, and perhaps volatile enough to overcome the large 

number of claims undergoing no more development. But this is just speculation, and there could be 

all sorts of patterns of CV development. It might not even make much sense to think of these CV’s 

as immutable parameters that could be meaningfully estimated, though the one account I looked at 

had much more stable CV’s by report and development year than I would have expected.  

3.1.4 Adding Independent IBNR 

If we generalize to occurrence business and add pure IBNR claims going into the second period, 

which are completely independent of the claims and losses from the first period, then one can show 

that the correlation gets scaled down by a factor which includes the ratio of the additional variance 

of the new losses to the original variance.  

3.1.5 Adding Dependent IBNR 

If one adds pure IBNR claims going into the second period, which are dependent in any way on 

the claims and losses from the first period, as they would be if they were the result of common 

exposure for instance, then one can show that once again the correlation gets scaled down by the 

additional variance of the new losses, but a new additive term enters into the equation as well for 

correlation as a result of the common exposure.  

3.1.6 Discussion 

So, in all of the above cases, except where there is 0 expected development, there is non-zero 
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correlation between the aggregate losses in one period and the incremental losses in the next. So if 

modelers have failed to find the loss development factor significant, it might very likely be due to the 

lack of statistical power of their analyses. 

3.2 So What Development Methods Should We Use? 

As I mentioned even with the simple example of 2.3.1, that is actually a very involved question. 

For what it’s worth, based on a few tests with even tamer parameters than the ones I found for the 

account discussed above, I could not find much practical difference between using an average 

incremental development, chain-ladder, an average of the two, or the modeler or anti-modeler 

estimators. OLS seemed to perform slightly worse than those, but a 5-10% difference in RMSEP 

hardly seems to matter much. 

There is a certain amount of irreducible uncertainty24 to development that cannot be decreased by 

any estimator no matter how clever. I suspect almost any standard estimators or actuarial methods 

would be about as good (or bad) as any other, and as long as a number of methods are applied, there 

is just no practical benefit from worrying about estimator optimality. 

What does have a real practical benefit is if an actuary can determine the parameters themselves 

independently of this data. Or, barring a definitive determination, a Bayesian method, as long as the 

prior concentrated close to the true answer, could make a practical difference as well.    

3.2.1 Example of Meaningful Estimation Improvement 

The real advantage of traditional actuarial methods is not their optimality properties, but that they 

bring the actuary quickly into close contact with the data. If there is any information the actuary can 

discover which will reduce uncertainty, then that could have a large effect on estimation accuracy. 

 Let’s suppose we’re at a primary medical malpractice writer. Fortunately we only write claims-

made policies so except for the occasional DD&R policy, which we can always reserve separately, 

there’s no pure IBNR, and all loss development is from claims reported in the first period. We buy 

reinsurance to put a cap on our maximum loss as well.  

For our model let’s assume that we have 10 years of data and we’re trying to project the 11th. For 

each report year,  

                                                           
24 There is an unfortunate ambiguity is many uses of the term uncertainty. Sometimes it refers to a psychological state, 
something akin to doubt. And it sometimes refers to random, or apparently random, variation in the world which is 
merely one potential cause of that psychological state. 
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1. There’s a fixed number of “nuisance” claims, let’s say 10, of negligible value (like 

clearly illegitimate claims.) 

2. One in every 10 years there a “catastrophic” claim (like a fetal brain injury with 

negligence from the OB) that will hit the reinsurance. This is a Bernoulli variable 

with p=0.1 

3. Otherwise there are “regular” claims each year that are Poisson distributed with a 

mean of 10.  

4. During the first development period the claims department assigns them all 1 unit 

(think $100,000 maybe) until it can complete an initial investigation which won’t 

finish till at least the next year. 

5. During the next incremental development period, they will discover that the 10 

nuisance claims were just that, and drop all their reserves to 0, for an incremental 

change of -10. 

6. Any catastrophic claim will be discovered and its reserve increased by 10 ($1M.) 

7. Of the remaining regular claims, there’s a 30% chance that each can have its 

reserve increased by 2 ($200K.) The others will remain as is. 

Since we’ve specified the model we can calculate explicitly anything we can imagine.  

For instance, from the above the expected losses in the first year are 20.1: 10 nuisance claims of 

1, .1 catastrophic claims, and 10 regular claims.  

The expected incremental losses reported in the next year are: 10 decline by 1 each, so -10; .1 

increase by 10, for 1 on average; and 30% of 10, or 3, increase by 2, for 6. So the expected 

incremental development is -3.25  

We can explicitly derive a number of other values such as conditional expectations based on 

various levels of knowledge and detail known or knowable to an actuary. But for now, let’s simulate 

our model with 10 report years of data and apply our methods, starting with OLS regression.  

  

                                                           
25 Negative development is not uncommon in medical malpractice. 
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     Mean     

  Mean  Standard  Mean  Power 

  Value  Error  +/‐2 SE  (β) 

ොܽ  (16.56)  8.93  (‐34.43,1.31)  0.51 
ܾ  0.67  0.44  (‐0.21,1.55)  0.39 

So, despite the effect of the number of claims from the prior period going into the next, and even 
ܾ’s relatively high expected value, it’s only found significant 39% of the time. 

 One of the first things we should perhaps have done as actuaries is of course look at the age-to-

age (ATA) factors in a triangle. Here is a single iteration, which represents for us something like the 

position we’re actually in when trying to reserve: we don’t have the possibility of simulating 200,000 

separate draws, nor do we know the full distributions of potential outcomes with certainty. Here’s 

one iteration where the LDF was found to be insignificant: 

Cumulative Reported Loss 
Report By Development Age 
Year 1 2 ATA LDF 

1 21 15 0.71 
2 22 16 0.73 
3 21 33 1.57 
4 22 26 1.18 
5 22 14 0.64 
6 29 29 1.00 
7 18 14 0.78 
8 21 21 1.00 
9 16 12 0.75 

10 24 30 1.25 

Average: 21.60 21.00 0.96 

Incremental Development: (0.60)

 

It’s a fairly typical sample year: the average of the losses at Age 1 is close to the mean of 20.1, and 

the incremental development is a little low compared to the mean, but nothing shocking. The one 

ATA LDF which stands out is the 1.57 for Report Year 3, maybe we should investigate? It turns out 

that is the one year that had a catastrophic claim. Maybe we should reserve that separately? 

 But we do not stop there. Our job is to project the 11th year from the data available. But the real 

data available is not just the sheet of numbers above; it’s all of our experience, and the experience of 

those we can learn from in the claims department and elsewhere.  Based on our level of curiosity, 
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knowledge, and energy we might assume that we: 

1. Take the lazy method and simply add an average. Let’s call this Average. 

2. Run a two variable OLS regression, call it Full OLS. Recall this is an average of an LDF 

estimator and the Average. 

3. Apply the Modeler routine: test for significance first and assume a constant Average 

amount of development in the next year unless the LDF is found significant.  

4. Having been around awhile and figured out that there’s always 10 nuisance claims, and 

about 30% of claims increase by 2, while 1 in 10 years have the catastrophic claim, we 

parameterize a conditional expected value that tells us the expected number of claims 

based on the number of aggregate claims in development year 0 and apply that to report 

year 10. Let’s call this the Parameterized. 

5.  Finally, let’s suppose we are energetic and experienced enough to actually determine to 

which class each one of the claims belong and then apply the parameters from 4. Let’s 

call this Energetic, and basically the only variability left in the reserve forecast comes 

from the 30% probability of a regular claim developing upward.  

Running our simulation with these loss development methods we find, with % reduction in 

RMSEP measured relative to the Average method: 

Improvement in Prediction Error 
From Different Approaches to 

Reserving 

Approach Bias RMSEP % Reduction 

Average 0.00 4.82 

Full OLS 0.00 4.54 -6% 

Modeler (0.00) 4.73 -2% 

Parameterized (0.01) 4.04 -16% 

Energetic (0.00) 2.90 -40% 

Please note that only the first three are standard estimators, and the latter are estimators where 

additional knowledge has been brought to bear on the parameters as described in 4 and 5 above. 
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Once again, the Modeler recommendations are not the best and do worse than just OLS 

regression, and show those recommendations can be unwise; but the practical difference in RMSEP 

is hardly important. But look on the other hand at how it could pay to understand and know 

something about the data. 

The Energetic does best because he or she is able to reduce the uncertainty around the claim type, 

even though the uncertainty around the development of regular claims is still irreducible. 

Of course if one has 20,000 claims a year rather than 20, it’s not practical to personally read every 

claim file to determine its underlying allegations and what its claim type is. But even as claims 

databases get bigger it’s not at all a given that the most effective computer algorithms would not be 

doing essentially the same that a person would do if equipped with the same patience and 

computational ability as a machine. I suspect every situation must be examined on a case-by-case 

basis to determine the most appropriate approaches. I also strongly suspect that in many cases 

where some advanced quantitative technique can be shown to be effective, there are simpler and 

more direct methods which are just as effective; but I’ll have to leave the exploration of this topic as 

an area for future research. 

The point of this example is not that modeling could not do what a traditional actuarial method 

could do nor vice versa. The point was merely that following a traditional actuarial method, the 

actuary was alerted quickly to an issue that when investigated further yielded a very large pay-off in 

terms of accuracy. Once an actuary knows that, for instance, certain claim types are an important 

variable, there are always ways to design programs to capture claim type or to model for it. The 

question is how is the actuary going to first discover this? And here I would think that the simpler the 

exploratory method the better.  

In reality, we’ll never know the parameters underlying the true model, though some believe that 

Bayesian estimation might get us close. There’s a risk as well that we will be fooled by randomness to use 

Nassim Taleb’s felicitous phrase, and by digging into the data and “learning” more we are just 

fooling ourselves that something is more predictable than it really is. There’s no way to tell ahead of 

time, but if one doesn’t look, one doesn’t find.  

It’s also highly judgmental how much time one should spend looking for information, especially 

given the risk of self-deception, rather than just making a selection and moving on. I doubt any hard 

and fast rules can ever be given, and different actuaries will choose to spend their time differently.  

Nonetheless, I believe we often face a situation in which there is reducible uncertainty, and with 
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enough hard work and looking beyond the mere numbers in an aggregate loss triangle we might 

discover it.  

Finally, in this example, the large losses came from truly horrific claims: fetal brain injuries. An 

insurer has a social obligation to learn as much as it can about the circumstances and possible 

prevention of such events, given the insurer’s other social responsibilities. If as a result of improved 

risk management the probability of such claims dropped from .1 to .05, it might invalidate the model 

assumptions, but so be it. There are more important things than model validity.   

3.3 The Miraculous Assumption of I.I.D.26 

I.i.d. is the workhorse of statistical assumptions and without it little gets done. 

By definition, random variables are independent if the probability that any one takes on a value (or 

set of values) remains the same no matter what values the others take on. They’re identically 

distributed if they have the same distributions. 

Mathematically, independence means that the joint distribution of the variables factors into the 

product of the marginal distributions of each variable. Identically distributed implies that all means, 

variances, and higher moments are the same (though not conversely.) 

Statistically, if one has a series of i.i.d. random variables, the sample mean is often an excellent 

estimator of the random variables’ means and the sample variance is unbiased and allows one to 

even calculate the error in one’s mean estimate. In short, the knowledge of the values of any subset 

of the series of random variables will allow one to predict all of the others, at least probabilistically. 

If one’s data series comes in the form of, for instance, a loss triangle where the lower right 

triangle is still to come, assuming i.i.d. is no less than assuming one can predict the future.   

 If random variables are not i.i.d., the sample mean need not be a very good estimator of the 

random variables’ means, the standard errors in significance tests may be wrong, and the sample 

variance may be very biased. In the last case, one can even think one has a much better estimate of 

the mean than one really has. 

The Collective Risk Theory assumes that the claim counts in every year are i.i.d., the severities are 

                                                           
26 See William Kruskal’s highly regarded American Statistical Association presidential address: “Statistics and Miracles: 
The Casual Assumption of Independence” [9] for a discussion of the importance of the independence assumption in the 
evaluation of testimony for miracles, among other things. 
Many of the remarks in this section apply equally to certain similar concepts such as exchangeability in Bayesian analyses. 
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independent of the claim counts, and they are i.i.d. within a particular year and across the years. 27 

The easiest way to appreciate the implausibility of the independence assumption is to recognize 

that any common cause that is neither certain to happen nor to not happen and that could effect, 

say, the means of two variables, even with different effects, would give them a non-zero correlation, 

and hence they’d no longer be independent.  

So, any underwriting changes, marketing changes, settlement changes, inflationary changes, 

weather changes, social changes, etc….anything which could serve to change the occurrences of 

claims or their settlement amounts will either act to change the distributions or to create dependence 

or to do both. The assumption of i.i.d. would fail. 

In classical applications of statistics that are widely regarded as successful, such as for example, 

casino games, medical testing, population surveying, and general experimentation, i.i.d. is not simply 

assumed, it requires hard work to achieve. And even then, it’s usually not perfect. 

Now is it possible that all of the different dependency effects will somehow negate each other? 

Or that we will somehow be able to adjust accurately for all of them? Sure it’s possible, but it would 

be little short of a miracle. 

If someone is simply presenting a theorem in pure mathematics, then one can assume whatever 

one likes. But if one is presenting any real world conclusion, one should pay attention to the validity 

of one’s assumptions. Since the assumers of i.i.d. are arrogating to themselves the ability to predict 

the future, the onus should be on them to establish that the assumption is true or at least cannot be 

very far from the truth. I would think that they should at least study and present the sensitivity of all 

of their conclusions to this assumption, but this appears to be a still largely unexplored area of 

actuarial research. 

4. CONCLUSIONS 

We saw immediately above that the fundamental assumption of statistical analysis is almost 

certainly false when applied to insurance.  

We saw earlier that even making this assumption, one is unlikely, because of limitations to 

statistical power, to be able to discover by statistical means anything very useful about the claims 

                                                           
27 One often adjusts for some theorized trend and portfolio changes (like deductible, etc.) first, but then the variables are 
assumed i.i.d.. 
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generation process or which reserving method to use.  

We saw for a few examples that some common modeling recommendations can be unwise, 

though we did not show that they would always be unwise. 

We only focused on modeling recommendations which have been applied to aggregate loss 

triangles; the recommendations might make more sense for individual claims modeling. I believe 

that many of the results in this paper generalize to contexts outside of modeling just yearly aggregate 

loss triangles, but that has to remain an area of future research for now. 

I believe that we’ve practically refuted two particular claims made on behalf of stochastic reserving 

of yearly aggregate triangles: the claims that assumptions can be tested and models validated effectively. 

But we’ve only showed this for a few examples and provided the conceptual tools to help study the 

issue. Others might want to research the situation and determine a precise delineation of when 

significance testing might lead to an optimal model and when the model diagnostics are most 

effective.  

We saw that one might be able to make greater progress in estimating reserves by focusing on 

fact-finding rather than model-checking.  

Outside of the aggregate triangle modeling we’ve considered, as datasets become larger, there are 

computer algorithms (such as text searches, clustering, etc.) that might prove extremely useful in the 

data exploratory process. Many of these methods don’t rely on statistical assumptions at all, though 

no doubt they have their own issues. Regardless, my criticism in this paper was leveled at some 

careless applications of statistical assumptions and modeling, and not at all “advanced” techniques 

whatsoever.   

There are also other arguments made on behalf of stochastic modeling. Some of these are more 

plausible, and, regardless, some of them are persuasive in certain situations.  

Generally, I believe that actuaries need to become much more skeptical and critical of the claims 

made on behalf of statistical modeling. For many, the technology and the imagined power of 

statistical analyses are just too seductive. The result can be a lot of wasted effort and misleading 

models.  

David Freedman in “As Others See Us: A Case Study in Path Analysis” [4], which carefully 

analyzes an application of path models in social science, notes about social scientists in general who 

apply advanced quantitative techniques that: “nobody pays much attention to the assumptions, and 
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the technology tends to overwhelm common sense. “ 

Freedman also cites in that paper studies showing that major econometric forecasting models do 

very poorly unless frequently revised and unless some of their parameters are re-estimated subjectively 

by modelers; and even then they do no better than forecasters without models. (page 123) 

The solution is simple, in fact probably too simple for many to accept. Freedman: 

“My opinion is that investigators need to think more about the underlying process, and look 

more closely at the data, without the distorting prism of conventional (and largely irrelevant) 

stochastic models. Estimating nonexistent parameters cannot be very fruitful. And it must be equally 

a waste of time to test theories on the basis of statistical hypotheses that are rooted neither in prior 

theory nor in fact, even if the algorithms are recited in every statistics text without caveat.” 
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