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Classifying the Tails of  Loss Distributions 

Leigh J. Halliwell, FCAS, MAAA 
____________________________________________________________________________________________  

Abstract. Of the several classifications which actuaries have proposed for the heaviness of loss-distribution tails, 
none has been generally accepted.  Here we will show that the ultimate settlement rate, or asymptotic failure rate, 
provides a natural tripartite division into light, medium, and heavy tails. We prove that all the positive moments of 
light- and medium-tailed distributions are finite.  Within the heavy-tailed distributions, we will define very heavy-
tailed and super heavy-tailed, and we will explain how the power and exponential transformations are the basis for 
these subdivisions.  An appendix relates extreme value theory to our findings. 
Keywords:  loss distribution, ultimate settlement rate, power transform, exponential transform, extreme value 
theory 

____________________________________________________________________________________________  

1. INTRODUCTION 

Many actuaries are as fascinated with the “heaviness” of loss-distribution tails as chemists are with 
heavy elements and as physicists are with heavy particles.  However, unlike those scientists, with their 
periodic table and standard particle theory, “actuarial scientists” have no generally accepted standard 
of tail comparison.  In this paper we will propose one that gives every indication of being natural, 
comprehensive, and insightful.  To outline our progress, after briefly defining in Section 2 what 
constitutes a loss distribution, in Section 3 we will introduce the ultimate settlement rate and derive 
the settlement rates of several familiar distributions.  Then in Section 4 we will show how the most 
basic transformation, a change of a distribution’s scale parameter, provides the basis for a division of 
loss distributions into light-, medium-, and heavy-tailed.  An immediate benefit from this is a proof in 
Section 5 that all the positive moments of light- and medium-tailed distributions are finite.  Infinite 
moments are a sufficient, but not a necessary condition, for being heavy-tailed.  Section 6 takes up 
the next logical transformation, the power transformation, and will show its effect on the tail class of 
a distribution.  A symmetric “multiplication” table there, showing the medium-tailed distribution to 
be like an identity element among distributions, will be crucial to the following sections.  Section 7 
contains an abstract examination into the results so far, finishing with a diagram that will make 
memorable the classification schema.  In Section 8 we will treat the next logical transformation, the 
exponential, which is the key to loss-tail heaviness.  Then in Section 9 we will treat the moments of 
exponentially transformed random variables, vindicating the power of this classification by the 
results.  Section 10 is a brief treatment of two other transformations, inverting and mixing.  Finally, 
before concluding, in Section 11 we will show that the classification is indefinitely expandable, 
encompassing ever more distant realms of heavy and light tails.  An appendix will fit extreme value 
theory into the classification schema. 
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2. LOSS DISTRIBUTIONS DEFINED 

 
For the purposes of this paper X is a loss distribution1

( ) [ ]xXobPrxS X >=
 if its survival function 

 has the following properties: 

(i)   ( ) 10 =XS  

(ii) ( ) 0>xS X  

(iii) For all 21 xx < , ( ) ( )21 xSxS XX ≥ .  And there exists some ξ such that for 

 all 21 xx <<ξ , ( ) ( )21 xSxS XX >  

(iv) ( ) 0=
∞→

xSlim Xx
 

(v) For all x greater than some ξ, ( ) 0>′′ xS X  

Although these properties are standard, some commentary will be helpful.  Property (i) implies 
that X must be positive; in particular, there is no probability mass at zero.  So this definition 
disqualifies the Tweedie distribution (Meyers [5]; cf. Footnote 15).  The property provides for X1  
to be a loss distribution, which we deem desirable.2

[ ] 0>∞=XobPr

  Property (ii) requires the tail of a loss 
distribution to be infinite.  We are not interested in classifying tails of finite distributions; they might 
as well be “no-tailed.”  Property (iii) requires for the survival function never to increase, and beyond 
some point for it strictly to decrease.  Property (iv) precludes any probability that X might be infinite.  
Though we will often encounter limits to infinity, infinity is not a real number.  This property is allied 
with the first, for if somehow , then the inverse X1  would have a probability 
mass at zero.  And property (v) demands beyond some point for the survival function to be concave 
upward.  Of course, for the second derivative to exist the first derivative must also exist.  By 
implication, the left and right derivatives must be equal.  This property ensures that at some point the 
survival function “settles down.”  Thereafter there will be no more discrete jumps or probability 
masses, no more vertices or corners, and no more undulations or inflections.  Having defined a loss 
distribution, we name the set of all loss distributions Ξ. 

 

3. THE ULTIMATE SETTLEMENT RATE 

 
                                                 
1 More accurately, X is a “loss random variable,” whose probability obeys a “loss distribution.”  But since “loss random 
variable” sounds odd, we will use ‘random variable’ and ‘distribution’ interchangeably. 

2 We also desire [ ]0XE  to equal unity, which would fail if there were any probability of the indeterminate 00 .  Cf. 
Section 5, esp. Footnote 6. 
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Of the several ways described by Klugman [4, pp. 86-92] and Corro [1] by which to compare the 
tails of loss distributions, we believe the best to be the “asymptotic failure rate” [4, p. 87] or “ultimate 
settlement rate” [1, p. 451].  Since ( ) [ ]xXobPrxS X >=  is the probability for X to “survive” at least 
until x, we may think of X as being subject to a force of mortality 

( ) ( )
( )

( ) ( )
( )xS
xf

dx
xdS

xSdx
xSlndx

X

XX

X

X
X =−=−=λ

1 .  Corro’s ultimate settlement rate is 
( )xlim XxX λ=τ

∞−
.  Just as an account compounding at a higher interest rate will eventually overtake an 

account compounding at a lower rate, regardless of their current positive balances, so too if YX τ<τ , 
( )
( )xS
xS

Y

X  will grow infinitely large with x, i.e., 
( )
( ) ∞=

∞→ xS
xSlim

Y

X

x
 or 

( )
( ) 0=

∞→ xS
xSlim

X

Y

x
.3

Xτ
  But, following 

Klugman [4, p. 88], from L’Hôpital’s rule we may express  in terms of the probability density 
function: 

( )

( )
( )
( )

( )

( )
( )( )

( )
dx

xflndlim

xf
xflim

uf

xflim

xS
xflim

xlim

X

x

X

X

x

xu
X

X

x

X

X

x

XxX

∞→

∞→

∞

=

∞→

∞→

∞→

−=

−
′

=

=

=

λ=τ

∫
form  

0
0  a  

This does not mean that ( ) ( )
dx

xflndx X
X −=λ ; it is only true in the limit as ∞→x .  Of course, 

for x≤ξ≤0 , where ξ is the “settling down” point required by property (v):  

( ) ( )
( )∫

ξ= ξ=

λ−
x

u
X duu

XX eSxS  

 

Let us look at the settlement rates of some well known distributions.  If ( )θα,Gamma~X , or 
equivalently ( )1,Gamma~X αθ , then ( ) ( ) θ








θαΓ

=
−α

θ
− 11 1xexf

x

X , for positive α.  If k<α− , 
[ ] ( )

( )αΓ
+αΓ

θ=
kXE kk .  Now: 

                                                 
3 This implies an infinite right tail for X (property ii).  Although in order for ( )xS X  to reach zero the force of mortality 

( )xXλ  must become infinite, once ( )xS X  “flatlines” at zero, ( ) 00=λ xX .  It is meaningless to speak of the 
growth (or mortality) rate of something whose quantity is zero; a zero balance in a bank account remains zero at any 
interest rate.  Property (v) guarantees the existence of ( )xXλ  far enough out, as well as for ( )xlim Xx

λ
∞−

 either to 

converge to a non-negative real number or to diverge to positive infinity. 
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( )
( ) ( )

θ
=






 −α

+
θ

−−=






 −α+

θ
−

−=−=τ
∞→∞→∞→θα

111
1

x
lim

dx

xlnxd
lim

dx
xflndlim

xx

X

x,Gamma  

The ultimate settlement rate of a Gamma-distributed random variable depends only on its scale 
parameter θ.  But the force of mortality of the exponential random variable is ( ) ( )

θ
=λ θ

1
1 x,Gamma .  For 

this reason it is legitimate to say that far enough out in the tail, every gamma distribution looks like an 
exponential distribution.  Compare this with the right tail of a normal distribution:4

( )
( )

( )

∞=






σ
µ−

=









σ
µ−

−

−=−=τ
∞→∞→∞→σµ 2

2

2

2
1

2

xlim
dx

xd
lim

dx
xflndlim

xx

X

x,N

 

 

So the right tail of the normal distribution is “lighter” than that of the gamma. 

 

For the inverse-gamma random variable, ( ) ( )11 ,Gamma~X βθ − , or ( )11 ,Gamma~X βθ , 
where 0>β .  Its density function is ( ) ( ) θ







 θ

βΓ
=

+βθ
− 11 1

x
exf x

X , and [ ] ( )
( )βΓ
−βΓ

θ=
kXE

k
k , for 

β<k .  As for its ultimate settlement rate:   

( )
( ) ( )

01
1

2 =





 +β

−
θ

−=






 +β−

θ
−

−=−=τ
∞→∞→∞→θβ xx

lim
dx

xln
x

d
lim

dx
xflndlim

xx

X

x,InvGamma  

So the inverse-gamma is “heavier-tailed” than the gamma distribution, since θ< 10 .  One might 
have surmised this from the non-existence of its positive moments greater than or equal to β. 

 
If X is a lognormal random variable, then ( )2σµ,N~Xln  and ( )

( )

x
exf

xln

X
1

2
1 2

2

2
1

2
σ

µ−
−

πσ
= .  

For all real k, [ ] 222σ+µ= kkk eXE .  All the moments of the lognormal random variable exist, even the 
negative ones.  Its ultimate settlement rate is: 

( )
( )

( )

0112
1

2

2

2

2 =





 +⋅

σ
µ−

=








−

σ
µ−

−

−=−=τ
∞→∞→∞→σµ xx

xlnlim
dx

xlnxlnd
lim

dx
xflndlim

xx

X

x,LogNorm
 

Hence, the lognormal distribution is heavier-tailed than the gamma.  Although its settlement rate 
equals the inverse-gamma’s, the existence of all its moments implies that it is not as heavy-tailed as 
                                                 
4 The normal distribution with its infinite left tail is not a loss distribution.  But we may still calculate the ultimate 
settlement rate of its right tail.  Alternatively, we could also consider the right tail of the absolute value of the standard 

normal distribution (i.e., ( )10,N~X θ )  and arrive at the same result (cf. Footnote 10). 
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the inverse gamma. 

 

Last, let X be a generalized-Pareto random variable.  In our parameterization this will mean that 
( )
( )1

1
,Gamma
,Gamma~X

β
α

θ
, where the two gamma random variables are independent.  The distribution 

function for X is ( ) ( )
( ) ( ) ( )2

11

θ+
θ









θ+
θ









θ+βΓαΓ
β+αΓ

=
−β−α

xxx
xxf X , and its moments are 

[ ] ( )
( )

( )
( )βΓ
−βΓ

αΓ
+αΓ

θ=
kkXE kk , for ( ) ( )β<∩<α−=β<<α− kkk .  Division by the 

( )1,Gamma β , or multiplication by the ( )1,InvGamma β  random variable, places a positive limit on k.  
Its ultimate settlement rate is: 

( )
( ) ( ) ( ) ( )( ) 011

=







θ+
β+α

−
−α

=
θ+β+α−−α

−=−=τ
∞→∞→∞→θβα xx

lim
dx

xlnxlndlim
dx

xflndlim
xx

X

x,,GenPareto  

Again, this is the same rate as the inverse-gamma’s and the lognormal’s.  But the domain of its 
positive moments makes its tail like the inverse-gamma’s.  The non-existence of negative moments is 
relevant only to the tail of the inverse distribution. 

 

To conclude this section, the tail of the normal distribution is lighter than the tail of the gamma 
distribution, which is lighter than the tails of the lognormal, inverse-gamma, and generalized-Pareto 
distributions, even as 0>θ>∞ .  The non-existence, or infinitude, of positive moments hints at 
secondary orderings within the last three distributions. 
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4. THE ULTIMATE SETTLEMENT RATE UNDER A SCALE 
TRANSFORMATION 

In the previous section we saw that the ultimate settlement rate of a gamma random variable is 
the inverse of its scale parameter.  Here we will generalize, and form the basis for classifying the 
(right) tails of loss distributions. 

 

If X is a random variable and θ a positive constant, the scale transformation of X is the random 
variable XY =θ .  Accordingly: 

( ) [ ] [ ] [ ] ( )θ=θ>=θ>θ=>= uSuXobPruYobPruYobPruS XY  

Hence: 

( ) ( ) ( )
( ) θ

τ
=

θθ
θ

−=
θ

−=−=τ
∞→θ∞→∞→

XX

u

X

u

Y

uY ud
uSlndlim

du
uSlndlim

du
uSlndlim 1  

A scale transformation should not be the basis for tail class; in fact, most loss distributions are 
parameterized to include one “scale” parameter along with one or more “shape” parameters.5

00 =θ
  

Because , +=θ+ , and ∞=θ∞ , there are only three essential values for ultimate 
settlement rates, zero (0), positive (+), and infinity (∞), with the ordering, ∞<+<0 .  Since smaller 

Xτ  means heavier tail, we will classify a loss distribution as light-, medium, or heavy-tailed according 
as Xτ  is ∞, +, or 0.  The meaning of the symbols in the partition ∞+ Ξ∪Ξ∪Ξ=Ξ 0  should be 
obvious.  This is the gist of our classification; the rest of the paper merely draws out its implications. 

                                                 
5 The scale parameter bears the unit of the random variable Y , so θY  is unitless, or a pure number.  Most accurate is 
to divide each random variable by a parameter and to relate them by a unitless factor (called a “scalar”), as in 

( )21 θη=θ XY .  This is a safeguard in the physical sciences, but here it would be stilted.  Cf. Footnote 13. 
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5. POSITIVE MOMENTS AND THE ULTIMATE SETTLEMENT RATE 

In Section 3 we found loss distributions whose ultimate settlement rates spanned the range of 
zero, positive, and infinity.  The normal distribution is light-tailed; the gamma distribution is 
medium-tailed; and the inverse-gamma, lognormal, and generalized-Pareto distributions are heavy-
tailed.  We also noted that some of the moments of the inverse-gamma and generalized-Pareto 
random variables were infinite.  In this section we will prove that all the positive moments of light- 
and medium-tailed random variables are finite.  But before that we will prove a partitioning lemma 
about non-negative moments, viz., that if [ ]lXE  is finite for l<0 , then [ ]kXE  is finite for 

lk <<0 . 

 

If 0>X , then 10 =X .6 [ ] ( ) 100 ==> XSXobPr  Because according to property (i) , 
[ ] 110 ==XobPr  and so [ ] [ ] 110 == EXE .  In words, the zeroth moment of a loss distribution 

exists and equals unity.  Next consider [ ]kXE  for 0>k .  Because over this range of integration kx  
is non-negative: 

[ ] ( ) ( ) ( ) ( )∫∫∫∫
∞

=

∞

==

∞

=

+≤+==
11

1

00

1
x

X
k

x
X

k

x
X

k

x
X

kk xdFxxdFxxdFxxdFxXE  

So whether or not [ ]kXE  is finite depends on ( )∫
∞

=1x
X

k xdFx .  But for 1≥x  and lk < , 
lk xx ≤≤1 .  So, if ( )∫

∞

=1x
X

l xdFx  converges, then so to does ( )∫
∞

=1x
X

k xdFx .  Likewise, if ( )∫
∞

=1x
X

k xdFx  
diverges, so too does ( )∫

∞

=1x
X

l xdFx .  Therefore, for lk <<0 , if [ ]lXE  is finite, so too is [ ]kXE .  
And if [ ]kXE  is infinite, so too is [ ]lXE .  The existence or non-existence of moments partitions the 
non-negative real numbers into two subsets.  The lower partition is not empty, since it includes zero.  
The upper partition is empty when all the positive moments converge. 

 

To return to the theorem of this section, let the distribution of X be light- or medium-tailed.  So 
( ) 0>λ=τ

∞→
xlim XxX .  And let 2Xτ=ρ , if Xτ  is finite; let 1=ρ , if it is infinite.  In either case, 

0>ρ  and there exists a 0>ξ  such that for all ξ≥x , ( )xXλ<ρ .  So for all ξ≥x : 

( ) ( )
( )

( ) ( ) ( )ξ−ρ−
ρ−λ−

ξ=
∫

ξ≤
∫

ξ= ξ=ξ= x
X

du

X

duu

XX eSeSeSxS

x

u

x

u
X

 

                                                 
6 The form 00 is undefined, even as 00000 ⋅−∞⋅ == eeln .  Corro’s “convention” that 100 =   [1, p. 453] is equivalent 
to the convention that 0000 ==⋅∞ .  This convention is wired into the arithmetic of some programming languages (e.g., 

APL and J.  R is inconsistent: 100 = , but 00  is undefined).  However, such conventions should not be placed on 
undefined, or indeterminate, forms, since in limiting cases they may assume different values. 
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By integration by parts one can show that ( )[ ] ( ) ( ) ( )∫
∞

=

+=
0

0
x

X xdhxShXhE .7

[ ] ( ) ( ) ( ) ( )

( ) ( )∫∫

∫∫∫∫
∞

ξ=

ξ−ρ−
ξ

=

∞

ξ=

ξ

=

∞

=

∞

=

ξ+⋅≤

+==+=

x

kx
X

x

k

x

k
X

x

k
X

x

k
X

x

k
X

kk

dxeSdx

dxxSdxxSdxxSdxxSXE

0

000

1

0

  So, for positive k: 

 

Finally, we simplify the inequality: 

[ ] ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) k
X

k

k

x

kx
X

k

k

x

kx
X

k

x

kx
X

x

kk

kekS

xdxeekS

xdxeekS

dxeSdxXE

ρΓξ+ξ=

ρ⋅ρρξ+ξ≤

ρ⋅ρρξ+ξ=

ξ+⋅≤

ρξ

−
∞

=ρ

−ρ−ρξ

−
∞

ξ=

−ρ−ρξ

∞

ξ=

ξ−ρ−
ξ

=

∫

∫

∫∫

0

1

1

0

1

 

Thus we prove that [ ]kXE  is not infinite.  As a result, we know that all the positive moments of 
light- and medium-tailed distributions exist. 

 

This converse (“Not all the positive moments of heavy-tailed distributions exist.”) is not true, for 
the lognormal is heavy-tailed, yet all its moments exist.  But a random variable that lacks even one 
positive moment is heavy-tailed.  This suggests a subclass of the heavy-tailed distributions 0Ξ .  
Those lacking in positive moments are heavier-tailed than those not lacking.  And the heaviest of 
many heavier-tailed distributions is the one with fewest positive moments (or the one with the most 
infinite moments).8

 

  But the next section will provide a better subclassification. 

6. THE ULTIMATE SETTLEMENT RATE UNDER A POWER 
TRANSFORMATION 

In Section 4 we found the tail classification of a random variable to be invariant to a scale 
transformation; more accurately, we devised that classification for it to be invariant.  But just as 

                                                 
7 For details cf. Halliwell [3, Appendix A] 
8 Are there distributions so heavy-tailed that they have no positive moments?  In a Section 9 we will prove that there are 
such distributions.  However, it seems that their worth is purely theoretical. 
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Klugman [4, pp. 92-93] advances from scale transformations to power transformations, so too will 
we in this section. 

 

Our form of the power transformation is γ=
θ

XY , for positive γ.9

[ ] ( )[ ] [ ]γγ θ=θ=


















θ

θ= kkkk
k

kk XEXEYEYE
  The equation 

 puts the moments of X and Y into a one-to-one 
correspondence.  Thus, distributions with infinite positive moments remain heavy-tailed under a 
power transformation.  But how other distributions power-transform requires the following analysis. 

 

Since γx  strictly increases: 

( ) [ ] [ ] ( )[ ] ( )( )γγγ θ=θ>=θ>=>= 11 uSuXobPruXobPruYobPruS XY  

Therefore: 

( )

( )( )
( )

( )

( )

( ) ( )

( ) ( ){ }

( ){ }γ−
∞→

−γγ

∞→

−γ

∞→
∞→

γ

γ

γ

∞→

∞→

⋅λ
γθ

=

⋅λ
γθ

=









θθ
γ
⋅−=







 θ

θ
θ

−=

−=τ

1

11

11

1

1

1

1

1

1

vvlim

vvlim

u
dv

vSlndlim

du
ud

ud
uSlndlim

du
uSlndlim

Xv

Xv

X

uv
u

X

u

Y

uY

 

Now ( ) XXv
vlim τ=λ

∞→
.  And 










>γ

=γ

<γ<∞

=γ−

∞→

10

11

10
1vlim

v
.  By the product rule we can express Yτ  in 

the following three-valued multiplication table (so γθ1  may be ignored): 

                                                 
9 Klugman [4, p. 93] uses ‘τ’ for the exponent ( τ= 1XY ); we use ‘γ’ to avoid confusion with Corro’s ultimate settlement 
rate τ.  We also invert the exponent, because we believe it easier to see that 1<γ  thins the tail (taking a root) and 1>γ  
thickens it (raising to a power). 
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0000:

0:

0:
1

1
10

∞⋅=τ

+∞+=τ

⋅∞∞∞∞=τ
>γ

=γ
<γ<







 =
θ

τ γ

X

X

X

Y

Heavy

Medium

Light

ThickerThinner
XY

 

Most obvious is the sensitivity of the medium-tailed random variable: the slightest exponent 
ε±=γ 1  knocks it off the medium ridge into light or heavy valleys, from which the inverse exponent 

can restore it.  For example, if X is medium-tailed, then 2XY =  is heavy-tailed.  And if 50.XY = , 
then Y is light-tailed.10

( ) ( )γγγγ == 11 YYY
  So by power transformation, a medium-tailed distribution can become either 

heavy or light.  But because , power transformations are invertible.  By repeated 
transformations and inversions, one can cycle a medium-tailed distribution through all three types; 
e.g., ( ) XXXXXX =→=→→ 224

 is a three-stop roundtrip from medium to light to 
heavy and back to medium. 

 

7. SET-THEORETIC PRESENTATION AND DIAGRAM OF RESULTS SO 
FAR 

Define [ ]θγ,;XPT , the power transformation of random variable X with positive parameters γ 
and θ, as the distribution Y such that γ=

θ
XY .  Therefore, [ ] γθ=θγ XXPT ,; .  A compound power 

transformation reduces to a simple one: 

[ ][ ] [ ]( )

( )

[ ]2

21
2

21

2

1221

12

12

1122211

,;

,;,;,;

γ

γ

θθ=θγγ=γ=

θθ=

θθ=

θγθ=θγθγ

γγ

γγ

γ

XPT

X

X

XPTXPTPT

 

Because the four original parameters are positive, the two reduced parameters are defined and 

                                                 
10 Consider the transformation 50.XY = , where ( )2½50 ,Gamma~X .  .  Because the gamma distribution is 

medium-tailed and ½=γ , Y is light-tailed: ( ) lightmedium =∞=<γ× 1 .  Moreover: 

( ) ( ) ( ) ( )xfex
x

e
dx
dxxexf ,N

xxx

Y 10
22

21½2
2

222

2
221

2
1

2½
1

=
π

=
π

=







Γ

=
−−

−
−

 

Hence, ( )10,N~Y ; the negative support of the standard normal distribution has been reflected onto the positive 
support.  Thus, the right tail of the normal distribution is light, in confirmation of what we derived in Section 3. 
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positive.  By repetition, an n-step power transformation is always equivalent to a direct one.  Due to 
the asymmetry of the scale formula, power transformation is not commutative.  But since 

( ) ( ) 32332
123123
γγγγγ θθθ=θθθ , it is associative.  And power transformation can always be inverted: 

[ ][ ] [ ] XXPTXPTPT ==θγθγ γ− 1,1;,1;,; 1 . 

 

So if X can power-transform into Y, it can do so in one step.  And from Y it can return to X in 
one step.  Therefore the range within which X can power-transform is a closed network.11

( ) [ ]{ }θγ=>θγ∃Ξ∈= ,;:0: XPTY,YXptn
  The 

power-transformation network of X is the set .  And the 
power-transformation range of Ξ⊆Φ , where Φ is a set of random variables (or of their distributions), 
can be defined as ( ) [ ]{ }θγ=>θγ∃Φ∈∃Ξ∈=Φ ,;:0,: XPTY,XYPTR  or as 

( ) ( ){ } Φ∈=Φ XXptnPTR : .  Unlike ( )Xptn , there is no guarantee of a power-transformation 
connection between any two elements of ( )ΦPTR .  Because ‘network’ connotes interconnectedness, 
we changed the noun here to ‘range’. 

 

Obviously, ( ) ∅=∅PTR  and ( ) Ξ=ΞPTR .  But of interest here is ( )+ΞPTR , the set of all 
distributions that can be formed by power-transforming medium-tailed distributions.  Above we saw 
that the power transformation “knocks distributions off the medium ridge into light or heavy 
valleys.”  Therefore, this set is larger than +Ξ , i.e., ( )++ Ξ⊂Ξ PTR .  It spills into 0Ξ  and ∞Ξ , or in 
symbols ( ) ∅≠Ξ∩Ξ +PTR0  and ( ) ∅≠Ξ∩Ξ +∞ PTR .  But there are distributions in 0Ξ  and ∞Ξ  
that are unattainable from +Ξ  by power transformation.  We found above that power transformation 
cannot unseat distributions that are so heavy as to have infinite moments; hence, a trip to them from 

+Ξ  to them is precluded.  But even the lognormal, whose moments are all finite, power-transforms 
back to lognormal. 

 

On the other hand, the symmetry of the multiplication table hints that some light-tailed 
distributions might be too light to power-transform elsewhere.  Indeed, the survival function of one 
such distribution is ( ) ( )1−−=

xe
Q exS .  It is light-tailed, since ( ) ( )
∞=

−
=−=τ

∞→∞→ dx
edlim

dx
xSlnd

lim
x

x

Q

xQ
1 .  But if γ=

θ
QY , then: 

                                                 
11 Technically, it is an algebraic group, whose set G  is { }++ ℜ×ℜ∈θγ, and whose function GGGf →×:  is 

( ) 2

12212211 ,,,
γ

θθγγ=θγθγ ,f .  The function is associative; 1,1  is the identity element; and every 

element has an inverse: ( ) ( ) 1,1,,,1,1,, 11 =θγθγ=θγθγ γ−γ− ff . 
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( ) ( )
∞=













⋅
θ
γ

=












⋅
−

θ
γ

=












⋅−
θ
γ

=τ γ
−γ

∞→

γ
−γ

∞→

γ
−γ

∞→

111 1 velimv
dv

edlimv
dv

vSlnd
lim v

v

v

v

Q

vY . 

Hence, this distribution remains light under power transformation.  So within the ∞⋅0  and 0⋅∞  
cells of the table are distributions so heavy-tailed and so light-tailed as to be unmoved by power 
transformation.  So these cannot belong to ( )+ΞPTR .  Because of this duality, we deem the power 
transformation to be a better basis for subclassification than the divergence of positive moments.  
Tail-class immutability to power transformation merits the adverb ‘very’.  Thus we will now speak of 
“very light-tailed” and “very heavy-tailed” distributions and random variables.  The lognormal is very 
heavy-tailed, though not as heavy-tailed as something with missing moments.  Quite appropriately, 
nothing is “very” medium-tailed; medium is just medium.  The following diagram will conclude this 
section: 

 

The diagram, which looks like a painted tennis court with half a net, represents a tripartite form of 
Ξ. The black regions are boundaries; Ξ is the union of the colored regions.  The middle partition is 
the set of all loss distributions whose tail classes change under power transformation.  All the 
medium-tailed distributions, the green area, must belong to this set.  The red and violet regions 
contain all the loss distributions whose tail classes do not change.  These unchangeable distributions 
are either light-tailed and in the red region or heavy-tailed and in the violet region.  The yellow region 
contains the changeable light-tailed distributions, the blue the changeable heavy-tailed.  By definition, 
power transformation cannot “jump” from the red or violet regions.  But if perchance, it could jump 
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from the middle, it could not jump back.  So since power transformation is reversible, the black 
regions are barriers to power transformation. 

 

Now consider all the changeable distributions as organized into horizontal slices of power-
transformation networks.  Whatever might be the position of distribution X in its network, γ= XY  
transforms X to the right if 1>γ and to the left if 1<γ .  The movement approaches the black 
boundaries as γ approaches infinity or zero.  If the movement passes through a medium-tailed 
distribution, then it is within the power-transform range ( )+ΞPTR .  Since a power-transformation 
range can contain at most one medium-tailed distribution,12

+Ξ
 the set of medium-tailed distributions 

 is merely an interface between 0Ξ  and ∞Ξ .  It is not intended for the green region to appear 
thick. 

 

But one might think that the transition between light and heavy implies that some γX  is medium-
tailed.  A counterexample disproves this: let R be the random variable ( ) ( ) x

R xxS −+= 1 .  Its hazard 
rate is ( ) ( ) ( )xxxlnxR +++=λ 11 .  Hence: 

( ){ }

( ) ( )( ){ }

( ) ( )
( ) ( )

( )( )







>γ

≤γ<∞
=

⋅
γθ

=









⋅⋅

+++
γθ

=

⋅+++
γθ

=

⋅λ
γθ

=τ

γ−

∞→

γ−

∞→

γ−

∞→

γ−

∞→=
θ

γ

10

10

1

111

111

1

1

1

1

1

vvlnlim

vvln
vln

vvvlnlim

vvvvlnlim

vvlim

v

v

v

RvRY

 

So there are power transformations back and forth between ∞Ξ and 0Ξ  which avoid +Ξ .  For 
this reason, the area underneath the green is porous; it shades from yellow to blue 

 

                                                 
12 More accurately, it contains at most one medium-tailed distribution per θ.  The diagram cannot represent Ξ as a metric 

space; only Xτ  and γX  are represented. 
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8. THE ULTIMATE SETTLEMENT RATE UNDER EXPONENTIAL 
AND LOGARITHMIC TRANSFORMATIONS 

Our third transformation is the exponential, which Klugman defines as XeY =  [4, p. 95].  
However, for two reasons we prefer the form 

η
−

=
θ

η 1XeY
, for 0>η .13 XeY =  First, although  

works for such random variables as the normal, with support over ℜ , we are transforming loss 
distributions, whose support is positive.  We wish all our transformations ( )xhy =  to be strictly 
increasing functions from [ )∞,0  onto, not just into, [ )∞,0 .  Therefore, ( )00 h= , as it does in the 
above forms.  Second, the parameter η , though not strictly necessary, standardizes the 
transformation; it sets the derivative at zero to unity, or ( )01 h′= .  The standardized transformation 
looks like xy =  in the neighborhood of the origin.  In fact, the limit of the standardized 
transformation as +→η 0  is the identity function ( ) xxh = .  The appeal of this limiting case is the 
second reason for our form. 

 

As for the ultimate settlement rate under the exponential transformation: 

( ) 















θ
η+

η
=
















θ
η+

η
>=








θ>

η
−

=





θ
>

θ
=

η ulnSulnXobPrueobPruYobPruS X

X

Y 11111  

Therefore: 

                                                 
13 Actually, for precision and to ensure unitless parameters in transcendental functions we should include two scale 

parameters: 
η
−

=
θ

φ
η

1
X

eY
.  But, again, as in Footnote 5, this overparameterizes, for ( )

( )

( )φη
−

=
φθ

φη 1XeY
.  This 

transformation is valid and meaningful even for 0<η , as explained in the appendix.  
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( )

( )

( )

( )

( ){ }

01

1

11

1

1

1

11

11

11

⋅τ
θ

=

⋅λ
θ

=









θ
⋅⋅λ=



















θ
⋅

θ
η+

⋅−=




































θ
η+

η

















θ
η+

η

















θ
η+

η
−=

−=τ

η−

∞→

η∞→

∞→
∞→

∞→

∞→

X

v
Xv

vXv

X

uv
u

X

u

Y

uY

evlim

e
vlim

udv
vSlndlim

du

ulnd

ulnd

ulnSlnd
lim

du
uSlndlim

 

Since 0>η , medium- and heavy-tailed random variables exponentially transform into heavy-
tailed ones; light-tailed random variables are indeterminate. 

 

But let X be light-tailed ( ∞=τ X ), but not very light-tailed.  This puts X in the yellow region of 
the diagram.  Using “simply” for “not very,” we can say that X is simply light-tailed.  Then, it 
becomes heavy-tailed ( 0=τZ ) under some 1>γ  power transformation γ= XZ .  Hence: 

( ){ } ( ){ }γ−
∞→

γ−

∞→
⋅λ=⋅λ

γ
⋅γ=τ⋅γ=⋅γ= 11100 vvlimvvlim XvXvZ  

This information resolves the indeterminacy of the exponential transformation.  The following 
proof makes use of the truth that { } 01 =−γη−

∞→
velim v

v
 for 0>η : 
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( ){ } { }

( ){ }

( ){ }

Y

v
Xv

v
Xv

v

vXv

evlim

vevvlim

velimvvlim

τ=

⋅λ⋅
θ

=

⋅λ⋅
θ

=

⋅⋅λ⋅
θ

=

⋅⋅
θ

=

η−

∞→

−γη−γ−

∞→

−γη−

∞→

γ−

∞→

1

1

1

0010

11

11

 

So, in the “simply light” case, the indeterminacy of 0101
⋅∞⋅

θ
=⋅τ

θ
=τ XY  resolves to heavy. 

 

However, we do not yet know whether Y is simply heavy or very heavy (blue or violet).  So now 
let Z now be a power transformation of 

θ
Y , i.e., 

γηγ









η
−

=






θ

=
1XeYZ .  And so:  

( )
























η+

η
=























η+

η
>=












>








η
−

= γγ

γη 11

11111 ulnSulnXobPrueobPruS X

X

Z  

We have seen just above that because X is simply light-tailed, ( ){ } 0=⋅λ η−

∞→

v
Xv

evlim .  But this 
holds true any 0>η .  And since 0>γ , it will hold true also for 0>γη .  Therefore, knowing that 

( ){ } 0=⋅λ γη−

∞→

v
Xv

evlim , we can determine the value of Zτ : 
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( )

( )

( )

( )

( ){ }

0

01

1

111

11

1

1

11

11

11

1

1

1

1

1

1

11

1

1

1

=

⋅
η⋅γ

=

⋅λ
η⋅γ

=













⋅






 −
⋅λ

η⋅γ
=
































η
−

γ
⋅λ=





















η+

γ⋅−=



















































η+

η

























η+

η

























η+

η
−=τ

γ−

γη−

∞→γ−

γη

γ−

η

η

∞→γ−

η

γ−η

∞→

γ

−
γ

∞→
∞→

γ

γ

γ

∞→

v
Xv

vv

v

Xv

v

v

Xv

X

uv
u

X

uZ

evlim

ee
evlim

e

e

vlim

u

u

dv
vSlndlim

du

ulnd

ulnd

ulnSlnd

lim

 

Consequently, Y is a heavy-tailed random variable whose tail class is invariant to power 
transformation; it is very heavy-tailed.  This proves that an exponential transformation of a simply 
light-tailed random variable is a very heavy-tailed random variable.  In the diagram exponential 
transformation moves from the yellow region to the violet; unlike power transformation, it is capable 
of jumping a least the right barrier. 

 

In the exponential-transformation of medium- and heavy-tailed random variables, there is no 
indeterminacy to ( ){ } 01

=⋅λ
θ

=τ η−

∞→

v
XvY evlim .  But again, the ultimate settlement rate of a 

subsequent power transformation is ( ){ } 01
1 =⋅λ

η⋅γ
=τ γη−

∞→γ−
v

XvZ evlim . Hence, exponential 
transformation turns medium and simply heavy tails into very heavy tails.  In sum, it transforms 
yellow, green, and blue into violet.  But its differing effect on moments will be treated in the next 
section. 
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We can be brief about the logarithmic transformation ( )XlnY
η+

η
=

θ
11 .  It is the inverse of the 

exponential transformation, but less obviously than in the case of power transformation.  Define two 
operators: the exponential transformation [ ]

η
−

θ=θη
η 1,;

XeXET  and the logarithmic 
transformation [ ] ( )XlnXLT η+

η
⋅θ=θη 11,; .  Just as [ ] XXET θ→θη,;  as +→η 0 , so too 

[ ] XXLT θ→θη,;  as +→η 0 .  One who performs the algebra will find that 
[ ] [ ] XXETLTXLTET =





θθ
η

θη=





θθ
η

θη
1,;,;1,;,; .  Since 0, >θη , the inverting parameters 

exist.  Now if ( )XlnY
η+

η
=

θ
11 , then ( )

















η
−

=
θ

η
1

u

XY
eSuS  .  The reader should be able to prove by 

now that ( ) ( ){ } ∞⋅τ
θ

=η+⋅λ
θ

=τ
∞→ XXvY vvlim 111 .  So 0>η  logarithmic transformation turns light 

and medium into light; the heavy-tailed random variables are indeterminate.  It is not necessary to 
repeat the power-on-top-of-exponential-transformation argument.  Because of exponential-
logarithmic inversion, the question “Into what do yellow, green, and blue logarithmically transform?” 
is equivalent to “What exponentially transforms into yellow, green, and blue?”  Whatever it is, it can’t 
be undone by power transformation.  Therefore, what exponentially transforms into the middle 
region of the diagram must be very light.  So exponential and logarithmic transformations from the 
middle jump the barriers. 

 

9. POSITIVE MOMENTS AND THE EXPONENTIAL 
TRANSFORMATION 

Section 5 proved that all the positive moments of light- and medium-tailed random variables are 
finite.  An infinite moment is a sufficient, but not a necessary, condition for a heavy tail. Here we will 
examine the positive moments of the exponentially transformed 

η
−

=
η 1XeY .  But 

kX
k eY 








η
−

=
η 1 .  

Although this is on the order of Xke η , it is not the same.  Since our findings depend on the behavior 
of Xke η , we must first prove that [ ]kYE  is finite if and only if [ ]XkeE η  is finite. 

 

To begin, [ ] ( )[ ]
k

kXkX
k eEeEYE

η
−

=



















η
−

=
ηη 11

.  Since η and k are positive, kη  is positive.  So 
[ ]kYE   is finite if and only ( )[ ]kXeE 1−η  is finite.  And since xx ee ηη <−≤ 10  over the support of X, 

( ) xkkxk ee ηη <−≤= 100 .  So ( )[ ] 110 =<−≤ ηη XkkX eeobPr  and ( )[ ] [ ]XkkX eEeE ηη <−≤ 10 .  
Therefore, if [ ]XkeE η  is finite, then so too is ( )[ ]kXeE 1−η .  As for the converse: 
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( )[ ] ( ) ( )
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∞
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η
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∞
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η

∞
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η
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=

ηη
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



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
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
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e
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Consequently, ( ) ( )[ ]kXk

lnx
X

xk eExdFe 12
2

−≤ η
∞

=η

η∫ .  Furthermore: 

[ ] ( )

( ) ( )

( ) ( )
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( )[ ]kXkk
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X

xkk

lnx
X
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x
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∞
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η

∞
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η
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∞
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∫
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∫

 

So [ ] ( )[ ]kXkkXk eEeE 1220 −+≤≤ ηη .  Therefore, if ( )[ ]kXeE 1−η  is finite, so too is [ ]XkeE η .  
Thus have we shown that [ ]kYE  is finite if and only if [ ]XkeE η  is finite. 

 

Now we continue with the simpler problem of examining the moments of [ ]XkeE η .  Using again 
the theorem from Section 5 that ( )[ ] ( ) ( ) ( )∫

∞

=

+=
0

0
x

X xdhxShXhE , we have: 

[ ] ( ) ( )∫∫
∞

=

η
∞

=

ηηη η+=+=
00

0 1
x

xk
X

x

xk
X

kXk dxexSkdexSeeE  
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Therefore, [ ]kYE  is finite if and only if ( )∫
∞

=

η

0x

xk
X dxexS  is finite.  Dispensing with mathematical 

rigor, we know that ( )∫
∞

=

η

0x

xk
X dxexS  is finite if and only there exists a 0>ξ  such that for all ξ≥x , 

( ) ( ) ( )ξ−η−ξ≤ xk
XX eSxS .  In words, in order for the integral to converge, at some point the survival 

function must decay at a rate greater than ηk .  But the limit of this decay is the ultimate settlement 
rate Xτ .  Hence, [ ]kYE  is finite if and only if Xk τ<η , or ητ< Xk .  Therefore, all the positive 
moments of exponential transformations of light-tailed ( ∞=τ X ) distributions are finite.  The 
positive moments of exponential transformations of medium-tailed ( ∞<τ< X0 ) distributions are 
finite for ητ< Xk  and infinite for ητ≥ Xk .  And all the positive moments of exponential 
transformations of heavy-tailed ( 0=τ X ) distributions are infinite.14

 

 

10. INVERTING AND MIXING LOSS DISTRIBUTIONS 

 
The commentary on property (i) in Section 2 stated the desirability for a loss distribution to be 

invertible.  But our only use of an inverse distribution was to derive the ultimate settlement rate of 
the inverse gamma in Section 3.  Moreover, Klugman lists a fourth transformation, viz., mixing [4, 
pp. 97-99].  Both inverting and mixing are involved in the generalized Pareto, because: 

( ) ( ) ( )

( ) ( )
( )( )θβα

α⋅θβ

α⋅
β

θ
θβα

,InvGamma,Gamma~

,Gamma,InvGamma~

,Gamma
,Gamma

~,,GenPareto

1

1
1

 

So the generalized Pareto can be formed as a gamma distribution whose scale parameter is an 
inverse-gamma distribution.  In this section we will explain why inverting and mixing tend to 
produce heavy-tailed distributions. 

 

                                                 
14 Thus indirectly we verify what we know about the lognormal distribution, an exponential transformation of the light-

tailed normal, viz., that all its moments are finite: ( )[ ] 2222 σ+µσµ = kk,kN eeE .  [ ] [ ] ( )η=≈ η kMeEYE X
Xkk .  If 

( )θα,Gamma~X , ( ) ( ) α−ηθ−=η kkM X 1 , which diverges for Xk τ=θ≥η 1 .  The missing moments 
explain the intractability, or even the nonexistence, of the moment generating functions of all but the simplest 

distributions.  However, the zeroth moment is finite: [ ] [ ] 100 == XeEYE .  So by virtue of absolute convergence in the 

complex numbers, viz.,  ( ) [ ] [ ] [ ] 11 ==≤=ϕ EeEeEt itXitX
X , the characteristic function is more successful.  All 

the imaginary moments of all real random variables exist as complex numbers. 
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First, as to inverting, if XY 1= , then: 

( ) 




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−


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 >=

u
S

u
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u
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u
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X
obPruS XY

1111111  

Here we will assume that X has no probability mass, at least not in the neighborhood of zero.  So  

( ) 





−=

u
SuS XY

11 .  Therefore: 
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And so the ultimate settlement rate of Y is: 

( ) ( )
( )

( )
( )

( )
( ) v
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vflimv
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vflimv

vS
vflim

u
u

S

u
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limulim X
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2

02 1
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where ( ) ( ) ( )∫
=

==
v

x
X

X xf
vv

vFvh
0

1
.  It is the average height of Xf  over the interval ( ]v,0 .  If Xf  

increases as +→ 0x , ( ) ( ) 0>> vfvh X .  Then 
( )
( ) 10 <<
vh
vf X , and 0=τY .  This holds true even if 

Xf  approaches infinity.  If Xf  is bounded within two positive numbers, then again, 0=τY .  The 
remaining possibility is that Xf  decreases to zero as +→ 0x , in which case 

( )
( )vh

vf X<1 . 

 

Now if Xf  is zero in some interval [ ]ε,0 , then [ ] 0=ε≤XobPr ; so 
( ) [ ] 011 =ε>=ε YobPrSY  and property (ii) would disqualify Y as a loss distribution.  So Xf  

decreases to zero, but equals zero only at the origin.  The obvious choice is a power-function 
approach into the origin, i.e., ( ) 1−γ∝ vvf X  for 1>γ .  But then ( ) γ∝ γvvF  and 

( ) 02
1

0
=

γ
=τ γ

−γ

→ +
v

v
vlim

v
Y .  So even power-function approaches are not slow enough.  For Yτ  to be 

positive, near the origin, 
( )
( )vF
vf

X

X  must be on the order of 2−v .  So 
( ) ( )

( ) 2v
k

vF
vf

dv
vFlnd

X

XX == , and 
( ) ( )

v
kkdx

x
kFlnvFln

v

x
XX −

ε
==ε− ∫

ε=
2 .  Thus, ( ) ( ) v

kk

XX eeFvF
−

εε= .  The solution which satisfies 
( ) 00 =XF  is ( )







=

>=
−

00

0

x

xexF
x
k

X .  But this is the inverse exponential cumulative density function.  
So, the only likely way of obtaining anything other than a heavy-tailed distribution by inversion is to 
invert an already inverted distribution.  One may expect inversion to produce heavy-tailed 
distributions. 

 

As for mixing, let ( ) ( ) ( )∫
θ

θ θ= dhxSxS XX .  The survival function of the mixed distribution is the 



Classifying the Tails of Loss Distributions 
 

Casualty Actuarial Society E-Forum, Spring 2013-Volume 2 22 

weighting according to ( )θdh  of the distributions indexed by θ.  Hence: 

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )∫

∫

∫

∫

∫
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θ

θ
θ

θ
θθ

θ
θ

θ
θ

θ⋅λ=

θ

θ⋅λ
=

θ

θ′

=

′
−=λ
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X
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In the last equation ( ) ( ) ( ) ( ) ( )∫
θ

θθ θθ=θ dhxSdhxS,xdw XX .  The weights vary by x; but for all 
x, ( ) 1=θ∫

θ

,xdw .  As ∞→x , the weighting will shift more and more toward the “surviving” 
distributions, i.e., in favor of the distributions whose τ is least.  Consequently, { }θτ=τ XX inf .  For 
the mixed exponential distribution ( ) ∑

=

θ
−

=
n

i

x

iMX
iepxS

1

, ( ) ( )iiX maxmin θ=θ=τ 11  .  This is 

medium-tailed; but ( ) ∑
∞

=

θ
−

=
1i

x

iMX
iepxS  is heavy-tailed, if ∞=θ

∞→ ii
lim .15

11. SUPER LIGHT AND SUPER HEAVY 

 

The region within the barriers of the diagram is like the everyday world.  Its span is that of the 
power transformation.  But of course, in the long run xe  overwhelms nx .  To what others mean 
loosely by “in the long run”16

∞→x
lim mathematicians have given precision, viz., .17

                                                 
15 The Tweedie distribution is 

  Just over the right 

NXXT ++= 1 , for ( )θα,Gamma~X  and ( )λPoisson~N .  Therefore, 

( )θα,NGamma~NT  and θ=τ 1NT .  So, { } θ=τ=τ 1inf NTT , and T  is medium-tailed. 
16 Such loose speech harbors specious arguments, for which Keynes expressed disdain in his famous quip, “In the long 
run we’re all dead.”  Many use the adverb ‘exponentially’, as in “Something is growing exponentially,” to express alarm, as 
if dealing with that thing were a critical matter.  The sober truth is that almost all growth is exponential, but of limited 

duration.  Mathematically, for 0≈x , xe x γ+≈γ 1 .  Moreover, the obverse is never considered: no one ever expresses 
alarm by saying that something is decaying exponentially. 
17 Still amazing even after 150 years are the accomplishments of such mathematicians as Cauchy, Weierstrass, and 
Dedekind concerning the nature of the real numbers, which finally put to rest the 2300-year-old paradoxes of Zeno.  One 
who might try to resurrect them on the basis of today’s quantum theory would ignore the fact that the paradoxes 
themselves presuppose continuity. 
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barrier are some familiar enough distributions, the very heavy-tailed ones.  Hopping over it, first we’ll 
find exponential transformations of simply light tails with all their moments.  Second we’ll find ETs 
of middle tails with moments up to a point.  Third we’ll find ETs of simply heavy tails with no 
moments at all.  The familiar enough distributions are of the first two types; the distributions with no 
moments we will call “super heavy-tailed.”  We could refine our diagram’s color scheme in 
conformity with the spectrum: first indigo, second violet, and third ultraviolet.  The span of these 
distributions is on the order of ( )γη Xe .  But because ( ) ( )γ>>

γ xx ee , their span is greater than that of 
the power transformation.  In fact, their span is “power-on-top-of-exponential.”  But at the end of 
that span is another barrier, over which another exponential transformation jumps, and so forth.  
The same applies in the other direction, into the microworld, with the logarithmic transformation.  In 
descending order of heaviness are logarithmic transforms of simply heavy tails, which we could color 
orange.  Second are LTs of middle tails, which remain red.  And third are LTs of simply light tails, 
“super light-tailed” distributions whose color is infrared.  And then we find a barrier to be 
surmounted by another LT.18

11. CONCLUSION 

  So the classification is indefinitely extendable; but current needs 
remain within one transformation of the center. 

Good classifications are not arbitrary; they are not set by convention or decree.  Natural 
classifications should actually help those who study a subject to understand it and eventually to make 
deeper discoveries.  Work is made easier with the right tools, and the essential tool for intellectual 
work is clear definition and classification.  In this paper we entered the house of loss distributions 
through the door of the medium-tail distribution.  We explored the first floor with the help of the 
power transformation, and then found exponential and logarithmic staircases to the second floor and 
the basement.  Some the mathematics was formidable; but it all reduces to the interaction between 
power and exponential functions.  The classification scheme yielded new and beautiful insights.  
Surely there is much more to be discovered; but the classification of distributions into light, medium, 
and heavy, as well as the subclassifications “very” and “super,” almost as surely will play an 
important role therein.  Though it might be hard for now to put this theory to practical use (we’ve 
given no list of “which distribution for which purpose”), actuaries have a right to appreciate the 
beauty of their subject – its æsthetic value.  And many, perhaps most, practical benefits have arisen 
from what once had been considered “mere theory.”19

                                                 
18 But however rarefied these tails may become, they are still infinite. 

 

19 That good theory aids discovery and technological progress (and conversely, that bad theory impedes them) is 
illustrated in modern physics.  On the basis of quantum theory in 1928 Wolfgang Pauli predicted the existence of 
antimatter, in particular, the anti-electron or positron, which was discovered in 1932 and whose discovery now benefits 
mankind in positron emission tomography – commonly performed in hospitals as PET scans.  Since the 1960s the 
standard model of particle physics has predicted the one still missing particle, the Higgs boson, whose existence many 
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APPENDIX 

Extreme Value Theory 
 
 

Most casualty actuaries have studied the forms of loss distributions that are given in Klugman [3, 
Appendix A].  However, in the field of extreme-value theory, there is a generalized-Pareto 
distribution that differs from our ( )θβα ,,GenPareto .  In this appendix we will translate it into forms 
more familiar to actuaries.  The survival function of this generalized-Pareto is: 

( ) [ ]









=ξ

≠ξ





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θ
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=>=θξ≥

θ
−

ξ
−

0for 

0for 1
;0

1

x
X

e

x
xXobPr,xS  

This is the definition given in [2, p. 33] and [5], except that we have zeroed a location parameter 
and used ‘θ’ instead of ‘σ’ for the scale parameter.  The shape parameter ξ may be any real number, 
but the scale parameter θ, as always, must be positive.  The function is defined for 0=ξ  as 

( ) ( )θξ=θ
→ξ

,xSlim,xS XX ;0;
0

, which pertains to the ( )θ,Gamma 1  or ( )θlExponentia  distribution. 

 

For 0≠ξ , the probability density function is ( ) ( )
θ
ξ









θ
ξ+

ξ
=−=

−
ξ

− 11

11 x
dx

xdSxf X
X .  If 0>ξ , 

the exponent is negative.  In this case, the function translates as follows: 
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 If 0<ξ , 
ξ

−
1  is positive, and the translation is: 
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Therefore, depending on the shape parameter, the tail of this distribution can be finite (“no-
tailed” 0<ξ ), medium-tailed ( 0=ξ ), or very heavy-tailed ( 0>ξ ). 

What is most relevant to our analysis of tail characteristics is that this distribution is an 
exponential transformation of the exponential distribution: 
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( )

ξ
−

θ

⋅ξ 11lExponentiae~X  

Under this transformation the light-tailed exponential distribution becomes very heavy-tailed. 
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