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________________________________________________________________________ 

Abstract We introduce the hybrid chain ladder (HCL) method, a distribution-free stochastic loss reserving 
method that allows for a weighted combination of two approaches. The first approach is data driven 
resembling the Chain-Ladder (CL) method. The second approach uses expert estimates of ultimate 
losses in a similar way as the Bornhuetter-Ferguson (BF) method. The HCL method provides a class of 
models that allows one to study mixtures of the two approaches. Since the CL method is susceptible to 
outliers whereas the BF method is very robust, mixing the two approaches becomes of practical 
relevance when the actuary has concerns about the quality of the data or knowledge of particular events 
that cause unusual effects. We give predictors for the ultimate claims and estimators for the prediction 
error and the uncertainty in the claims development result. An implementation of the method in an 
Excel spreadsheet is available at www.RiskLab.ch/hclmethod.  

 

Keywords. Stochastic claims reserving, distribution-free method, Chain-Ladder, Bornhuetter-Ferguson, 
mean square error of prediction, claims development result. 
             

1. INTRODUCTION 

The Chain-Ladder (CL) and Bornhuetter-Ferguson (BF) methods are standard methods 

in claims reserving. When only the CL and BF methods are viable choices in reserving 

practice, choosing only one of them may not be adequate for a given data set. For instance, 

claims reserving triangles in which CL is appropriate for some accident years, whereas BF is 

suitable for the others, are frequently encountered in practice.  

There are many different approaches to embed CL and BF into stochastic frameworks, 

which allow one to deduce statistically consistent claims predictors and assess the uncertainty 

of the claims development. However, stochastic model versions of the CL and BF methods 

generally impose incompatible assumptions on the claims development. For instance, claim 

increments are assumed to be independent in the BF model given in Mack (2008b), whereas 

they are correlated in the CL model given in Mack (1993). Therefore, switching between CL 

and BF on an accident year-wise basis may lead to inconsistencies.  

In this paper we introduce the hybrid chain ladder (HCL) method, a class of distribution-

free stochastic loss reserving models that allows for weighted combinations of two 

methodologies. The first methodology is multiplicative in structure, resembling the CL 
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model as of Mack (1993), and relies purely on the claims data. The second methodology has 

an additive structure, similar to the BF model in Mack (2008b), and uses a prior estimate of 

ultimate losses. The weights between the two methodologies can be set differently for each 

accident and development year. 

We have implemented HCL in a ready-to-use Excel spreadsheet which can be 

downloaded at  

http://www.RiskLab.ch/hclmethod 

This spreadsheet allows testing of all features of the method and provides several case 

studies including the one discussed in this paper. 

Organisation of the paper. Section 2 motivates our modelling approach. Section 3 

introduces the model and derives the structure of the mean and the variance of the claims 

process. Section 4 defines estimators of the unknown parameters and predictors for future 

claims. Section 5 and Section 6 give estimators of the uncertainty in ultimate claims 

predictions and the claims development result, respectively. We extend the model in Section 

7 to incorporate uncertainty in the choice of prior ultimates. Section 8 discusses a possible 

choice of the remaining model parameters. A case study is presented in Section 9. We 

outline limitations and possible extensions in Section 10 and conclude in Section 11. 

2. MOTIVATION 

We first introduce some notation. Let ,i jC  denote the cumulative claims of accident year 

1, ,i I= …  and development year 0, ,j J= …  with 1J I≤ − . We assume that the ultimate 

claim for accident year i  is given by ,i JC , i.e., there is no further development after 

development year J . Moreover, denote by  

 { }, :1 ,0 , ,I i jC i I j J i j I= ≤ ≤ ≤ ≤ + ≤D  

the trapezoid of observations up to the I -th accounting year, illustrated in Figure 1.  
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Figure 1: The trapezoid ID  of cumulative claims known in 
accounting year I . The lower right triangle is yet unknown and has 
to be predicted. 

Stochastic reserving methods aim to predict the yet unknown lower right triangle c
ID , i.e., 

,i j IC ∉D , along with a measure of uncertainty. In particular we are interested in the 

prediction of the ultimate claim ,i JC  for each accident year { 1, , }i I J I∈ − + … . For the 

distribution-free model versions of the CL and BF method considered here, this is done as 
follows. In brief, CL predicts ,i JC  by 

 Ĉi ,J
CL =Ci ,I−i f̂ I−i+1 f̂ J ,  

where the ˆjf  are estimators of the age-to-age factors jf . These factors indicate the average 

relative increase of the cumulative claims in one accident year from one development year to 
the next development year. 

On the other hand, BF predicts ,i JC  by 

 , , 1
ˆ ˆ ˆ( ),BF
i J i I i i I i JC C µ γ γ− − += + +…+  

where the iµ  is a prior estimate of ,[ ]i JCE  and the ˆ jγ  are estimates of jγ , which denote the 

fraction of claims expected in development year j .  

The CL predictor has a multiplicative structure, whereas the BF predictor is additive. 
Moreover the two approaches represent two extreme positions of data reliance and expert 
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opinion. These differences impose restrictions on the applicability of the two approaches. In 
practice, one often encounters claims reserving triangles in which CL is appropriate for some 
accident years, whereas BF is suitable for the others. As stated in Neuhaus (1992), this can 
be caused by data sparsity, e.g., triangles which have missing entries or zero cumulatives for 

recent accident years. For instance small or negative values of ,i jC  for early development 

years cause problems when applying CL as e.g., discussed in Busse et al. (2010). Another 
reason is illustrated in the following example. Suppose we are given a short-tailed insurance 
runoff triangle ID . Assume the triangle behaves nicely to apply CL, except that in accident 

year k , the diagonal value ,k I kC −  is twice as large as , 1I k k I kf C− − − . The latter value represents 

the expectation of ,k I kC −  in the CL model, given the information in the previous accounting 

year. In the following, we illustrate different possible underlying reasons for such an 

observation ,k I kC − , which imply different appropriate reserves. 

• The increase is caused by a legal change leading to higher claims payments in all 
remaining development years of accident year k . In this case, CL is appropriate, 

as ,
ˆ CL
k JC  scales proportionally to ,k I kC − . 

• The increase , , 1k I k I k k I kC f C− − − −−  is caused by a single event ("outlier"), which is 

not systematic and is not expected to happen again. In this case, the predicted 
ultimate should be increased by this difference, which is realised by BF. 

• The increase is due to an exceptional early commutation, which causes a claim to 
be paid earlier than usual. In this case, the predicted ultimate from the previous 
accounting year should not be changed at all. 

The reserving actuary often knows the underlying reasons for seemingly unusual 
behaviour in a triangle. However, such information cannot be extracted from ID  nor from 

prior estimates of the ultimate claims. Therefore, actuarial judgement is necessary and 
appropriate when choosing the reserving method. 

Due to these reasons, it is common practice for reserving actuaries to switch accident 
year-wise between CL and BF, i.e., decide for each accident year separately whether the 

reserves are determined according to ,
ˆCL
i JC  or ,

ˆ BF
i JC . Such approaches are easily applied, as 

both CL and BF can be quickly implemented in a spreadsheet. Commercial reserving 
software such as EMB ResQ™ and Milliman ReservePro® allow the user to set reserves as a 
weighted average between different reserving methodologies, with weights different for each 
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accident year.  

The crucial assumptions behind CL as given in Mack (1993) are that 

, , 1 , 1[ | ]i j i j j i jC C f C− −=E  and var(Ci , j |Ci , j−1) =σ j
2Ci , j−1 , where the 2

jσ  are variance 

parameters. BF as given in Mack (2008b) assumes increments to be independent, such that 

, , 1 , 1[ | ]i j i j i j i jC C C µ γ− −= +E  and var(Ci , j −Ci , j−1) =σ j
2µi . As a consequence, we can 

calculate the conditional covariance of consecutive increments: 

 cov Ci , j+2 −Ci , j+1,Ci , j+1 −Ci , j Ci , j( ) = f j+2 −1( )σ j+1
2 Ci , j , for CL,

0, for BF.

"
#
$

%$
 

This shows that the assumptions behind distribution-free model versions of the CL and 
BF method considered here are incompatible. However, these assumptions are applied to 
the whole triangle when estimating parameters. Thus, when switching accident year-wise 
between CL and BF, one cannot avoid applying two conflicting sets of assumptions on the 
triangle ID . 

Due to the different nature of the two methodologies, there is no straightforward 
stochastic representation of an accident year-wise weighting of CL and BF within a 
distribution-free model.  

Reserving models that allow for a combination of CL-style and BF-style reserves have 
already been studied in the literature. A first credibility approach is given by the Benktander-
Hovinen method, see Benktander (1976). In Neuhaus (1992) and Mack (2000) this credibility 
mixture of CL and BF is further studied but they do not specify a concrete parametric model 
and do not deduce a parameter estimation error. Alai (2010) provides a solution within a 
generalised linear model (GLM) framework. Bayesian approaches are proposed in Verrall 
(2004) and Section 4.3.2 of Wüthrich and Merz (2008), respectively. 

The HCL method as proposed here provides a class of distribution-free models that 
allows for a weighting between a multiplicative and an additive behaviour. The following 
three aspects highlight the main differences between HCL and the models referenced above. 

1) In the existing literature the weight between CL and BF is generally interpreted as 
a credibility weight, which is chosen to minimise the prediction uncertainty. This 
approach neglects special situations encountered in practice as discussed above. 
On the contrary, the HCL method assumes these weights to be known. In 
practice the reserving actuary determines through the choice of the weights 
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whether a multiplicative structure as in CL or an additive structure as in BF is 
more appropriate to predict the ultimate claim. 

2) The HCL method provides a stochastic model that allows parameter estimation, 
claims prediction, the calculation of the conditional mean square error of 
prediction (MSEP), and the calculation of uncertainty in the claims development 
result (CDR). Furthermore, an easy-to-use implementation is available. 

3) HCL is based on a distribution-free framework. This enables us to avoid 
assumptions needed in distribution based methods, such as positivity of 
incremental claims (in contrast to over-dispersed Poisson and GLM) or 
distributional assumption (in contrast to Bayesian methods). Distribution-free 
models are of limited use to answer questions about the tail behaviour of random 
quantities. However they are widely used and well understood in the insurance 
industry. They provide a first glance about the scale of the considered business 
and the corresponding uncertainty. As described in point 2) the HCL model 
provides all quantities that are usually considered when studying distribution-free 
models. This allows a direct comparison with other distribution-free models.  

3. THE HCL MODEL 

In this section we introduce the distribution-free Markov chain model defining the HCL 
model. Let 0 1( , , , )Jγ γ γ…  denote the incremental claims pattern and define the cumulative 

pattern as 
0

j

j k
k

β γ
=

=∑ , 0, ,j J= … . We can then interpret the assumptions on the 

conditional expectation of an increment as 

, , 1 1 , 1 1 , 1[ | ] / (1 / )i j i j j j i j j j i jC C C Cβ β γ β− − − − −= = +E , 

for CL and as  

, , 1 , 1[ | ]i j i j i j j iC C C γ µ− −= +E , 

for BF. The main idea of HCL is to take a weighted average of the above expressions 
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( ), , 1 , , 1 , , 1
1

, 1
, 1 , ,

1

[ | ] 1 (1 )

(1 ) ,

j
i j i j i j i j i j i j j i

j

i j
i j j i j i j i

j

C C C C

C
C

γ
α α γ µ

β

γ α α µ
β

− − −
−

−
−

−

⎛ ⎞
= + + − +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠

E

 

where ,i jα  denotes the weight for accident year i  and development year j . 

Model 3.1 (HCL Model). There exist parameters 

• jγ  and 2 0jσ >  for 0, ,j J= … , 

• 0jβ >  for 0, , 1j J= … − , 
• , [0,1]i jα ∈  for 1, ,i I= …  and 1, ,j J= … , 

• 0iµ >  for 1, ,i I= … , 

such that 1, 0, , , 0, ,( ) , , ( )j j J I j j JC C= … = ……  are independent Markov processes with 

• ,0 0[ ]i iC γ µ=E  and , 1
, , 1 , 1 , ,

1

[ | ] (1 )i j
i j i j i j j i j i j i

j

C
C C C γ α α µ

β
−

− −
−

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
E  for  

1, ,j J= …  and 

• 2
,0 0( )i ivar C σ µ=  and 2

, , 1( | )i j i j j ivar C C σ µ− =  for  1, ,j J= … . ∎ 

 

Note that although the parameters jγ  and jβ  are closely related, we assume them to be 

distinct and independent. The reason for this assumption is to allow a derivation of claims 
predictors and MSEP analogous to the deductions in Mack (1993) for CL. The precise 

relationship and the way to link the estimates of the jγ  and jβ  are explained in Section 8.1. 

The expectation , , 1 , 1[ | ]i j i j i jC C C− −−E  of the incremental claim , , 1i j i jC C −−  conditional 

on the previous year , 1i jC −  is equal to the product of jγ  and ,i jm , where  

• jγ  is the fraction of the ultimate claim expected in development year j , 
• ,i jm  is a volume measure of accident year i , defined by ,0i im µ=  and  

 ( ), 1
, , ,

1

1 for 0.i j
i j i j i j i

j

C
m jα α µ

β
−

−

= + − >  

The ,i jm  represent a weighted average of  
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• iµ , which is a prior estimate of the expected ultimate claim ,[ ]i JCE  that is 
independent of the claims process, and 

• , 1 1/i j jC β− − , which scales linearly in the previous observation , 1i jC − . The 

proportionality factor 1jβ −  is an estimate of the ratio of cumulative claims up to year 

1j −  to ultimate claims. 
We have that, for ,i jα  close to 0 , , , 1[ | ]i j i jC C −E  inherits similar features as in the BF model 

of Mack (2008b), whereas for ,i jα  close to 1, , , 1[ | ]i j i jC C −E  is similar to the distribution-

free version of the CL model presented in Mack (1993). Indeed, we show below that in the 

extreme cases , 1i jα =  or , 0i jα =  for all 1, ,j I i J= − + …  we have 

 

1
, ,

1
, , ,

, ,

,  if 1,
[ | ] [ | ]

,  if 0.

j j
i I i i j

I i j J j
i J I i J i I i

i I i i j i j
I i j J

C
C C C

C

β γ
α

β

µ γ α

−
−

− < ≤ −
−

−
− < ≤

+⎧
=⎪⎪

= = ⎨
⎪ + =
⎪⎩

∏

∑
E ED  

In particular, for , 1i jα =  we get a multiplicative structure as in the CL model whereas for 

, 0i jα =  we get an additive structure in correspondence to BF-type models.  

In Section 8.2 we give a discussion about the choice of the ,i jα  which corresponds to a 

prior choice of the model within the class of HCL models. Compared to the situation where 

only CL and BF are admissible models, in the HCL model, the choice of the ,i jα  replaces 

the selection process deciding between CL and BF.  

The following theorems deduce the structure of mean and variance of the ,i jC . We 

identify empty sums with 0  and empty products with 1. To simplify notation, let 

 , ,
1

1 for 1, , , 1, , .j
i j i j

j

i I j J
γ

ξ α
β −

= + = … = …  

The ,i jξ  take a similar role as the age-to-age factors jf  in the CL model in representing 

the influence of the realisation of , 1i jC −  on the expectation of ,i jC . 

Theorem 3.2. For 0 k j J≤ ≤ ≤  we have 

 , , , , , ,[ | ] (1 ) .i j i k i k i m i i n n i m
k n jk m j n m j

C C C ξ µ α γ ξ
< ≤< ≤ < ≤

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑∏ ∏E  (3.1) 
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Proof. The case k j=  is trivial. We assume by induction that (3.1) holds for some fixed 

j  and k . Then 

 
( )

, , 1 , , , 1

, , , , , 1

, , 1 , , , ,

, 1 , ,
1

[ | ] [ | ]

(1 )

(1 ) (1 )

(1

i j i k i j i k i k

i k i m i i n n i m i k
k n jk m j n m j

k i k i i k i k i m i i n n i m
k n jk m j n m j

i k i m i i
k m j

C C C C C

C C

C

C

ξ µ α γ ξ

γ α µ ξ ξ µ α γ ξ

ξ µ α

− −

−
< ≤< ≤ < ≤

−
< ≤< ≤ < ≤

−
− < ≤

⎡ ⎤= ⎣ ⎦

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠

= + −

∑∏ ∏

∑∏ ∏

∏

E E E

E

,
1

) .n n i m
k n j n m j

γ ξ
− < ≤ < ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∏

 

∎  

Other possibilities to express the conditional expectation , ,[ | ]i j i kC CE  are 

 

, 1 ,
, , , , ,

1

,
, , , , , ,

1

[ | ]
[ | ] (1 ) ,

[ | ] (1 ) .

i n i k
i j i k i k n i n i i n

k n j n

i k
i j i k i k n i n i n i i m

k n j n m jn

C C
C C C

C
C C C

γ α µ α
β

γ α α µ ξ
β

−

< ≤ −

< ≤ < ≤−

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

∑

∑ ∏

E
E

E
 

Theorem 3.3. For 0 k j J≤ ≤ ≤  we have 

 2 2
, , ,( | ) .i j i k i n i m

k n j n m j

var C C µ σ ξ
< ≤ < ≤

= ∑ ∏  (3.2) 

Proof. The case k j=  is trivial. We assume by induction that (3.2) holds for some j  and k . 

By the law of total variance we have 

 

( ), , 1 , , , 1 , , , 1

2 2
, , 1 , , , 1

2

2 2 2
, ,

2 2
,

1

( | ) ( | ) [ | ]i j i k i j i k i k i j i k i k

i n i m i k i k i m i k
k n j n m j k m j

i n i m i k i j
k n j n m j k m j

i n i m
k n j n

var C C var C C C var C C C

C var C Cµ σ ξ ξ

µ σ ξ µσ ξ

µ σ ξ

− − −

− −
< ≤ < ≤ < ≤

< ≤ < ≤ < ≤

− < ≤

⎡ ⎤= +⎣ ⎦

⎡ ⎤ ⎛ ⎞
= + ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

=

∑ ∏ ∏

∑ ∏ ∏

∑

E E

E

.
m k< ≤
∏

 

∎ 
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We see that mean and variance are similar in structure to the CL model, in the sense that 

they can be expressed in terms of some volume terms inflated by factors ,i jξ  (resembling 

age-to-age factors). Similar results are also obtained in the model given in Schnieper (1991), 
see also Section 10.2 in Wüthrich and Merz (2008). 

Note that for fixed i , the variances , , 1( | )i j i jvar C C −  all have the same proportionality 

factor iµ . Hence the 2
jσ  can be directly compared, unlike in the CL model, where the 

proportionality factors are different. 

4. PARAMETER ESTIMATION AND CLAIMS PREDICTION 

In the following section we define estimators for jγ  and 2
jσ  based on the information 

given in ID . These will imply a predictor of ,Ci J . For the deduction of estimators of the 

model parameters and other quantities, we will first assume that the parameters jβ , iµ  and 

,i jα  are known constants and hence ,i jm  can be calculated, conditionally given , 1i jC − . This 

assumption on the iµ  will be weakened in Section 7 and the estimation of the jβ  and an 

approach to setting the ,i jα  will be illustrated in Section 8.  

First, we define ,0 ,0 /i i iC µΓ =  and 

 , , 1
,

,

    for    j>0.i j i j
i j

i j

C C
m

−−
Γ =  (4.1) 

Moreover, we define the weights ,i jω  where ,0i iω µ=  and 

 
2 2

,
,

, , 1

    for    j>0.
( | )

 =
var

j i j
i j

i j i j i

m
C

σ
ω

µ−

=
Γ

  

In case there are i  and j  such that , 1 0i jC − < , we assume that ,i jα  is small enough (e.g. 

, 0i jα = ) to ensure , 0i jm > .  

In the following, conditioning on , 1iC −  denotes conditioning on the empty set, i.e., 

,0 , 1 ,0[ | ] [ ]i i iC −Γ = ΓE E . Note that , , 1[ | ]i j i j jC γ−Γ =E  and that the ,i jω  are independent of 
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2
jσ . Using the ,i jΓ , we define the following linear estimators of jγ  and 2

jσ  based on ID . 

For 0, ,j J= … , let 

 , ,
1

1 ,ˆ
I j

I
j i j i jI

ij

γ ω
−

=

= Γ
Ω ∑  (4.2) 

 2 2
, ,

1

1 ˆˆ ( ) ,
1

I j
I

j i j i j j
iI j

σ ω γ
−

=

⎛ ⎞
= Γ −⎜ ⎟− − ⎝ ⎠

∑  

where ,
1

I j
I
j i j

i
ω

−

=

Ω =∑ . The superscript I  indicates the fact that ˆ Ijγ  is based on the data in ID . 

Later, we will define an estimator 1ˆ Ijγ
+  based on the data available in accounting year 1I + . 

If 1J I= − , there is only one observation in the last development year and the denominator 
in 2ˆ Jσ  becomes zero. In that case, we propose to estimate 2

Jσ  with the extrapolation used by 

Mack (1993), i.e., 2 2 2 4 2
2 1 1 2ˆ ˆ ˆ ˆ ˆmin{ , , / }J J J J Jσ σ σ σ σ− − − −= . 

The following theorem shows several nice properties of the estimators ˆ Ijγ  and 2ˆ jσ , which 

are analogous to the characteristics of the estimators ˆjf  of the age-to-age factors jf  in the 

CL model. 

Theorem 4.1. Let  and note that . We have that 

1. ˆ[ ]Ij jγ γ=E . 

2. ˆ ˆ( ,cov ) 0I I
j kγ γ =  for j k≠ . 

3. Among all linear estimators, ˆ Ijγ  has minimal variance and 2
1ˆ( | ) /I I

j j j jvar Bγ σ− = Ω . 

4. 2 2ˆ[ ]j jσ σ=E .  

Proof. (1.) For 0j = , the claim immediately follows from the definition of Model 3.1. 

For 1j ≥ , unbiasedness of ˆ Ijγ  directly follows from , , , 1[ ] [ [ | ]]i j i j i j jC γ−Γ = Γ =E E E  and 

,
1

1/ 1
I j

I
j i j
i
ω

−

=

Ω =∑ .  

(2.) Let , ,{ : , }k i j i j IC C j k= ∈ ≤B D  and note that 1− =∅B . Suppose j k<  without loss 

of generality. As ˆ Ikγ  is kB -measurable, we get 

, ,{ : , }k i j i j IC C j k= ∈ ≤B D 1− =∅B



On a combination of multiplicative and additive stochastic loss reserving methods 

 

12  Casualty Actuarial Society E-Forum, Summer 2014 

 

 
1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) [ ] [ ] [ ] [ | ]

ˆ ˆ ˆ[ | ] [ ] 0.

I I I I I I I I
j k j k j k j k k j k

I I I
j k k j k j k j k

cov γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

−

−

⎡ ⎤= − = −⎣ ⎦

⎡ ⎤= − = − =⎣ ⎦

E E E E E

E E E

B

B
 

(3.) This is a direct consequence of Lemma 3.4 in Wüthrich and Merz (2008). 

(4.) Note that 1− =∅B . For 2
1ˆ[ | ]j jσ −E B , we obtain  

 ( )22
1 , , 1

1

1 ˆˆ .
1

I j
I

j j i j i j j j
iI j

σ ω γ
−

− −
=

⎡ ⎤⎡ ⎤ = Γ −⎣ ⎦ ⎢ ⎥⎣ ⎦− − ∑E EB B  

For the conditional expectations in the sum above, we have 

( ) ( ) ( ) ( )
2 2

2

, 1 , 1 , 1 1
,

ˆ ˆ ˆ2 , .j jI I I
i j j j i j j i j j j j j I

i j j

var cov var
σ σ

γ γ γ
ω− − − −

⎡ ⎤Γ − = Γ − Γ + = −⎢ ⎥⎣ ⎦ Ω
E B B B B  

Summing up yields 2 2
1ˆ[ | ]j j jσ σ− =E B . From the tower property for conditional expectations, 

we get 2 2 2
1ˆ ˆ[ ] [ [ | ]]j j j jσ σ σ−= =E E E B . ∎ 

In order to predict the ultimate claim ,i JC , we replace all the jγ  in 

, , ,[ | ] [ | ]i J I i J i I iC C C −=E ED  (see (3.1)) with the corresponding ˆ Ijγ : 

 , , , , ,
ˆ ˆ ˆˆ(1 )I I I I
i J i I i i m i i n n i m

I i n JI i m J n m J

C C ξ µ α γ ξ−
− < ≤− < ≤ < ≤

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑∏ ∏  (4.3) 

where , , 1
ˆ ˆ1 /I I
i j i j j jξ α γ β −= + . 

 In the extreme case where , 0i jα = , for 1, ,j I i J= − + … , we have 

 , ,
ˆ ˆ .I I
i J i I i i j

I i j J
C C µ γ−

− < ≤

= + ∑  (4.4) 

This resembles the expression in the pure BF case. If furthermore , 0i jα =  for all i  and j , 

the estimates ˆ Ijγ  are equal to the raw (unsmoothed) estimates deduced in Mack (2008b), 

hence also the predictions ,
ˆ I
i JC  coincide. 
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If conversely , 1i jα =  for 1, ,j I i J= − + … , we have 

 1
, ,

1

ˆˆ .
I

j jI
i J i I i

I i j J j

C C
β γ

β
−

−
− < ≤ −

+
= ∏  (4.5) 

The estimates ˆ Ijγ  are not equal to the CL estimates ˆCLjγ  of jγ , even if , 1i jα =  for all i  
and j . However, numerical examples show that for triangles with few outliers, they are very 

close and hence also the predictions ,
ˆ I
i JC  are close to the CL predictions ,

ˆCL
i JC . 

To simplify notation we rewrite (3.1) and (4.3) as 

 , , , , , ,
ˆ ˆˆ[ | ]     and    ,I I I I

i J I i n i m i J i n i m
I i n J I i n Jn m J n m J

C Cκ ξ κ ξ
− ≤ ≤ − ≤ ≤< ≤ < ≤

= =∑ ∑∏ ∏E D  

where 

 

,
,

,

,
,

,

, for ,
(1 ) , for ,

, for ,
ˆ

ˆ(1 ) , for .

i I iI
i n

i i n n

i I iI
i n I

i i n n

C n I i
n I i

C n I i
n I i

κ
µ α γ

κ
µ α γ

−

−

= −

− > −

= −

− > −

⎧
= ⎨
⎩

⎧
= ⎨
⎩

 

Of course, the properties of ˆ Ijγ  shown in Theorem 4.1 directly translate to analogous 

properties of ,
ˆ I
i jξ  and ,ˆ

I
i nκ , which are linear transformations of ˆ Ijγ . 

5. ASSESSING THE PREDICTION ERROR 

In this section, we provide a measure of uncertainty of the predicted aggregate ultimate 

claims ,
1

ˆ
I

I
i J

i
C

=
∑ . This is important, as we do not only want to determine the reserves but also 

measure their precision in predicting the outstanding claims. A popular measure of 

uncertainty among actuaries is the so called conditional mean square error of prediction 

(MSEP), defined as  

 ( )
2

, , ,
1 1

ˆ ˆ ,
I I

I I
i J i J i J I

i i
msep C C C

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑E D  
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which can be decomposed into process variance and parameter estimation error (PEE) 

 ( )
2

, , , ,
1 1 1

ˆ ˆ [ | ] .
I I I

I I
i J i J I i J i J I

i i i
msep C var C C C

= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ED D  

Note that the above expression corresponds to the MSEP of the aggregate reserves as, 

conditionally on ID , the reserves are a deterministic shift of ,
1

ˆ
I

I
i J

i
C

=
∑ . An analogous 

decomposition holds for the MSEP of one accident year, i.e., ,
ˆ( )Ii Jmsep C . For i I J≤ − , we 

have ,i J IC ∈D . Hence, we can omit the i I J≤ −  terms in the sum above. 

The process variance can be decoupled into 

 , ,
1 1

| ( | )
I I

i J I i J I
i i

var C var C
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑D D  

as accident years are assumed to be independent. For estimation, we replace the unknown 
quantities in (3.2) by their respective ID  estimates and get 

 var(Ci ,J |DI ) = µi σ̂ n
2 (ξ̂i ,m

I )2
n<m≤J
∏

I−i<n≤J
∑ .  (5.1) 

In order to estimate the PEE, we use a similar approach as used in Theorem 3 in Mack 

(1993). That is, we linearise the PEE and decompose it into a sum of expectations of which 

most drop out due to pairwise independence under a suitable change of conditioning, see 
Appendix A. To that end, for 1i I J≥ − +  and , ,n I i J= − … , we define 

, , ,
I

i n i n i m
n m J

κ ξ
< ≤

Ψ = ∏ , its ID  estimator , , ,
ˆˆ ˆI I I

i n i n i m
n m J

κ ξ
< ≤

Ψ = ∏  and 

 
( )

, , ,

, ,

, , , , ,

ˆ( ) , for ,

 
ˆ ˆˆ , for .

I I
i n i n i m

n m J

i n k
I I I
i n i m i k i k i m

n m k k m J

k n

n k J

κ κ ξ

ψ
κ ξ ξ ξ ξ

< ≤

< < < ≤

⎧ − =
⎪⎪

= ⎨ ⎛ ⎞ ⎛ ⎞
⎪ − < ≤⎜ ⎟ ⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠⎩

∏

∏ ∏
 

Note that using the above defined variables, we can decompose ,[ | ]i J ICE D  and ,
ˆ I
i JC , as 

, ,[ | ]
J

i J I i n
n I i

C
= −

= Ψ∑E D , , ,
ˆ ˆ

J
I I
i J i n

n I i
C

= −

= Ψ∑  and , , , ,
ˆ

J
I
i n i n i n k

k n
ψ

=

Ψ −Ψ =∑ . We can now rewrite the 

aggregate PEE as  
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For the one-year PEE, which is defined by 2

, ,
ˆ( [ | ])I

i i J i J Ipee C C= −E D  we find an 
analogous formula. 

 

In Appendix A we show that by a suitable change of conditioning and replacing all 

unknown quantities with their estimates we get the estimators 

 ψi1,n1,k1ψi2 ,n2 ,k2
 =

0, if k1 ≠ k2 ,

Ψ̂ i1,n1

I Ψ̂ i2 ,n2

I bi1,n1,kbi2 ,n2 ,k
σ̂ k
2

Ωk
I

if k1 = k2 = k,

$

%
&&

'
&
&

  

where 

 

,

1 ,

, ,

, if ,ˆ

1 i

0,

f , ,
ˆ

if .

i k
I

k i k

i n k
I
k

k n

b
k n n I i

k n I i

α

β ξ

γ

−

>

= > −

= =

⎧
⎪
⎪

= ⎨

−

⎪

⎪
⎪
⎪⎩

 

This leads to the following estimates 

 

 

pee i = ψi ,n1,k1ψi ,n2 ,k2
,

I−i≤n2≤J

n2≤k2≤J

∑
I−i≤n1≤J

n1≤k1≤J

∑

pee Σ = ψi ,n1,k1ψi ,n2 ,k2
,

I−J+1≤i2≤I

I−i2≤n2≤J

n2≤k2≤J

∑
I−J+1≤i1≤I

I−i1≤n1≤J

n1≤k1≤J

∑

 for the one-year and aggregate PEE. 

pee
Σ
= Ĉi ,J

I −E[Ci ,J | D I ]( )
i=1

I

∑
$

%
&&

'

(
))

2

= Ψ̂ i1,n1

I −Ψ i1,n1( ) Ψ̂ i2 ,n2

I −Ψ i2 ,n2( )
I−J+1≤i2≤I

I−i2≤n2≤J

∑
I−J+1≤i1≤I

I−i1≤n1≤J

∑

= ψi1,n1,k1ψi2 ,n2 ,k2 .
I−J+1≤i2≤I

I−i2≤n2≤J

n2≤k2≤J

∑
I−J+1≤i1≤I

I−i1≤n1≤J

n1≤k1≤J

∑
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We use the direct and well known approach of Mack (1993) in order to get an estimation of 

the PEE. Note that there are alternative procedures to estimate the PEE such as the 

conditional approach given in Buchwalder et al. (2006), which lead to similar estimates. 

The MSEP is finally estimated by msep(Ĉi ,J
I ) = var(Ci ,J |DI )+ pee


i  and 

 msep Ĉi ,J
I

i=1

I

∑
"

#
$$

%

&
''= var

i=1

I

∑ (Ci ,J |DI )+ pee


Σ.   

6. CLAIMS DEVELOPMENT RESULT 

After each year, i.e., at the end of an accounting year, we receive additional information 

on the claims runoff. This means that the available data ID  is augmented with an additional 

diagonal to 1 ,{ :1 ,0 , 1}I i jC i I j J i j I+ = ≤ ≤ ≤ ≤ + ≤ +D . According to this new 

information, we can update our prediction of the ultimate claim ,i JC . New solvency regimes 

(e.g., Solvency II and the Swiss Solvency Test) require protection for each year (one-year 

perspective) against the risk of possible changes in subsequent ultimate claim predictions. In 

this section, we provide estimates of the uncertainty in those changes. 

Similar to (4.3) we define 1
,
ˆ I
i JC
+  for 1i I J≥ − +  which is an estimate of E 𝐶!,! 𝐷!!!] at 

time 1I + , based on 1I+D : 

 1 1 1 1
, , 1 , , ,

11

ˆ ˆ ˆˆ(1 ) .I I I I
i J i I i i m i i n n i m

I i n JI i m J n m J

C C ξ µ α γ ξ+ + + +
− +

− + < ≤− + < ≤ < ≤

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑∏ ∏  (6.1) 

The 1ˆ Ijγ
+   are estimates of jγ  based on the information in 1I+D , as 1

0 0ˆ ˆI Iγ γ+ =  and for 1j ≥   

 
1

1,1
, , 1,1 1 1

1

1ˆ ˆ ,
II j
j I j jI I

j i j i j j I j jI I I
ij j j

ω
γ ω γ

− +
− ++

− ++ + +
=

Ω
= Γ = + Γ
Ω Ω Ω∑  

where 
1

1
, 1,

1

I j
I I
j i j j I j j

i
ω ω

− +
+

− +
=

Ω = =Ω +∑  and 1 1
, , 1
ˆ ˆ1 /I I
i j i j j jξ α γ β+ +

−= + . Note that 1I
j
+Ω  is ID -

measurable. 

The CDR viewed from time I  denotes the difference in estimated ultimate claims for 
subsequent accounting years  

 ( )1, ,
1

ˆ ˆ ,
I

I I
i J i J

i
CDR C C +

Σ
=

= −∑  
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and for a single accident year i   we have 1
, ,
ˆ ˆI I

i i J i JCDR C C += − . Note that for given ID  and 

i I J≤ − , we have 0iCDR = , whereas for 1i I J≥ − + , iCDR  is stochastic viewed from 
time I . 

Note that other publications such as Wüthrich et al. (2009) define the CDR as 

, , 1
1
( [ | ] [ | ])

I

i J I i J I
i

C C +
=

−∑ D DE E , while our definition is an estimate thereof. For a detailed 

interpretation of the CDR in a Bayesian setting we refer to Bühlmann et al. (2009). 

As we consider both ,
ˆ I
i JC  and 1

,
ˆ I
i JC
+  to be conditional best-estimates, we estimate 

CDR i = 0 . We want to assess the uncertainty in the CDR, measured by its second moment, 
2[( ) | ]ICDRU CDRΣ Σ= DE  as well as the accident year-wise uncertainty 
2[( ) | ]i i ICDRU CDR= DE . To do so, we define  

 

, 11
, 1

,

1 1 1
, , ,

, for 1,
ˆ  ˆ(1 ) , for 1,

ˆ

 

ˆ ˆ .

i I iI
i n I

i i n n

I I I
i n i n i m

n m J

C n I i
n I i

κ
µ α γ

κ ξ

− ++
+

+ + +

< ≤

= − +⎧
= ⎨ − > − +⎩

Ψ = ∏
 

With the above formulas and (6.1) we get 1 1
, ,

1

ˆ ˆI I
i J i n

I i n J
C + +

− + ≤ ≤

= Ψ∑ . For the CDR we then 

have 

 ( )1 1
, , , , ,

1 1

ˆ ˆ ˆ ˆ ˆ .I I I I I
i i n i n i I i i n i n

I i n J I i n J I i n J
CDR + +

−
− ≤ ≤ − + ≤ ≤ − + ≤ ≤

= Ψ − Ψ =Ψ + Ψ −Ψ∑ ∑ ∑  

We now rewrite ,
1

i i n
I i n J

CDR
− + ≤ ≤

= Θ∑  and , , ,

J

i n i n k
k n
θ

=

Θ =∑ , where 

 

1
, 1 , ,

, 1
, ,

, , ,

, , 1 1
, , , , ,

 

 

ˆ ˆ ˆ , for 1,
ˆ ˆ , for 1,

ˆ , for ,

ˆ ˆˆ , for

 

 ,

I I I
i n i n i n

i n I I
i n i n

I
i n k i m

n m J
i n k I I I

i n i m i n k i m
n m k k m J

n I i

n I i

e k n

e k n

ξ
θ

κ ξ ξ

+
−

+

< ≤

+ +

< < < ≤

⎧Ψ +Ψ −Ψ = − +⎪
Θ = ⎨

Ψ −Ψ > − +⎪⎩

⎧ =
⎪

= ⎨
>⎪

⎩

∏

∏ ∏

 

with 
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The CDRUΣ  expressed in terms of , ,i n kθ  is given by 

 

2

2

1 1 1 2 2 2
1

1 1 2

1 21 2

2

, ,
1 1

, , , ,
1 1
1 1

,

i n k I
I J i I I i n J n k J

i n k i n k I
I J i I I J i I
I i n J I i n J
n k J n k J

CDRU θ

θ θ

Σ
− + ≤ ≤ − + ≤ ≤ ≤ ≤

− + ≤ ≤ − + ≤ ≤

− + ≤ ≤ − + ≤ ≤

≤ ≤ ≤ ≤

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑ ∑ ∑

∑ ∑

D

D

E

E
 

where the i I J≤ −  terms have been omitted since 0iCDR =  in that case.  

In Appendix B, we prove by the help of approximations and a suitable change of 
conditioning, that we can estimate 

1 1 1 2 2 2, , , ,[ | ]i n k i n k Iθ θ DE  with  

E θi1,n1,k1θi2 ,n2 ,k2 | D I
!
"

#
$=

0, for k1 ≠ k2 ,

Ψ i1,n1
I+1
gi1,n1,k1Ψ

i2 ,n2

I+1
gi2 ,n2 ,k2µ I−k1+1σ̂ k1

2 , for k1 = k2 ,

(

)
*

+
*

  

where 

1
, 1

1
, , , ,

, , 1 , , 1

ˆ ˆ/ ( ),  for ,
ˆ ˆ(1 ) (1 ) , for , 1,

ˆ ˆ(1 ) , for 1.

I I
i k k k k

I I
i n k i i n n i i n n

I I
i I i i n i i n n i I i

k n
e k n n I i

C C k n I i

α β γ γ

µ α γ µ α γ

ξ µ α γ

+
−

+

− − − +

⎧ − >
⎪

= − − − = > − +⎨
⎪

+ − − = = − +⎩
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Ψ i ,n
I+1
=

Ψ̂ i ,n
I , for n > I − i +1,

Ψ̂ i ,n−1
I + Ψ̂ i ,n

I , for n = I − i +1,

#

$
%

&%

gi ,n,k =

1
ξ̂i ,k
I

αi ,k
βk−1

ω I−k+1,k

Ωk
I+1

1
mI−k+1,k

, for k > n,

1
γ̂n
I

ω I−k+1,k

Ωk
I+1

1
mI−k+1,k

, for k = n,n > I − i +1,

1
Ci ,I−iξ̂i ,I−i+1

I +µi (1−αi ,I−i+1)γ̂ I−i+1
I

, for k = n = I − i +1.

#

$

%
%
%
%

&

%
%
%
%

 

The terms with 1k n I i= = − +  cover the variability of the next diagonal 

, 1{ : 1, , }i I IC i I J I− + = − + … , i.e., they can be seen as the process variance components of the 

CDR. The other terms cover the variability of the jγ  estimates. 

With those approximations we define estimates of CDRUΣ  and iCDRU  by 

 

 

CDRU Σ  = E θi1,n1,k1θi2 ,n2 ,k2 |DI
"
#

$
%

I−J+1≤i2≤I

I−i2+1≤n2≤J

n2≤k2≤J

∑
I−J+1≤i1≤I

I−i1+1≤n1≤J

n1≤k1≤J

∑ ,

CDRU i  = E θi ,n1,k1θi ,n2 ,k2 |DI
"
#

$
%.

I−i+1≤n2≤J

n2≤k2≤J

∑
I−i+1≤n1≤J

n1≤k1≤J

∑
 

 

When , 0i jα =  for all i  and j , the HCL jγ  estimates as defined in (4.2) are equivalent to 

the raw estimates ˆ jγ  as defined in Mack (2008b) and Saluz et al. (2011). Hence, our formula 

can be used to estimate the CDRU  of the pure BF method. To our awareness, the only 
other work deducing such an estimate is Saluz (2010). 

7. ESTIMATING THE iµ  AND INCORPORATING THEIR 
UNCERTAINTY 

The HCL method requires prior estimates iµ  of the expected ultimate claims ,[ ]i JCE . In 
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most cases, the product of (planned) premium volume and expected loss ratio is considered 

as a viable estimate. Since the prior estimates iµ  for the HCL method are of the same nature 

as the prior estimates for the BF method, the same policy guidelines as in the BF method 

should apply. Namely, the iµ  should be independent of ID .  

The source of information that determines the iµ  often comprises inaccuracy. Therefore, 

the PEE should take this additional uncertainty into account. In the BF model, Mack 
(2008b) embeds the iµ  in the distribution-free framework, by assuming some variance 

( )ivar µ . A similar approach is used by Saluz et al. (2011) in a distributional framework. In 

order to estimate the PEE, Mack (2008b) assumes ˆ jγ  and iµ  to be independent. As the iµ  

appear in the quotient of ,i jΓ , we avoid this assumption and present a simple scenario-based 

approach instead, which naturally captures the dependence between the ˆ jγ  and iµ . Of 

course, the scenarios of iµ  can be fitted to any assumption on mean and variance. 

We consider 1( , , )Iµ µ…  to be a realisation of a random vector µ  taking values in a finite 

set of scenarios 1{ , , }Sµ µ…  and reformulate Model 3.1 as being conditional on

1( , , ) s
Iµ µ µ… =  for some {1, , }s S∈ … . The equations deduced in the previous sections 

continue to hold under the following model (but must be thought of as being conditional on 
the iµ ). 

Note that we could also assume µ  to have a continuous distribution. Then the 

calculation would require simulation. 

Model 7.1 (HCL Model with uncertain iµ ). There exist parameters   

• jγ  and 2 0jσ >  for 0, ,j J= … , 

• 0jβ > , for 0, , 1j J= … − , 

• , [0,1]i jα ∈  for 1, ,i I= …  and 1, ,j J= … , 

• and a discrete random vector (0, )I∈ ∞µ  satisfying [ ] 0s spµ= = >µP , {1,2, , }s S∈ …  for 

(0, )s Iµ ∈ ∞  and 
1

1
S

s
s
p

=

=∑ . 

Conditionally on 1( , , )Iµ µ= …µ , the 1, 0, , , 0, ,( ) , , ( )j j J I j j JC C= … = ……  are independent Markov processes 
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with  

• ,0 0[ | ]i iC γ µ=µE  and , 1
, , 1 , 1 , ,

1

[ | , ] (1 )i j
i j i j i j j i j i j i

j

C
C C C γ α α µ

β
−

− −
−

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
µE  for  

1, ,j J= … ; 

• 2
,0 0( | )i ivar C σ µ=µ  and 2

, , 1( | , )i j i j j ivar C C σ µ− =µ  for  1, ,j J= … .   ∎ 

We can now run the estimation procedure for each possible realisation of the random vector 

µ . For fixed iµ , we are in the framework of Model 3.1, which allows us to calculate 

estimates of ultimate claims etc. For the case sµ=µ , these estimates are denoted with a 

superscript s , such as ,
,
ˆ I s
i JC , var

s
(Ci ,J |DI ) , pee


Σ

s
 and CDRU i

s
. 

We calculate unconditional estimates by averaging out over the different possible 

outcomes of µ , using weights given by the probabilities sp .  

• Because , ,[ ] [ [ | ]]i J i JC C= µE E E , we estimate 

 ,
, ,

1

ˆ ˆ .s

S
II

i J i J s
s

C C pµ

=

=∑  

• By the law of total variance,  

 , , ,( | ) [ ( | , )] ( [ | , ]),i J I i J I i J Ivar C var C var C= +µ µD D DE E  

thus  

 var(Ci ,J |DI ) = var
s

s=1

S

∑ (Ci ,J |DI )ps + Ĉi ,J
I ,s − Ĉi ,J

I( )
2

s=1

S

∑ ps.  

• For the PEE we have that ,
,
ˆ I s
i JC  is close to ,[ | , ]i J I sC µDE , which allows to 

approximate pee i = pee i

s

s=1

S

∑ ps  and pee Σ = pee Σ

s

s=1

S

∑ ps , respectively. 

• As [ | ] 0iCDR µ ≈E , the uncertainty in the CDR can be estimated by 

CDRU i = CDRU i

s

s=1

S

∑ ps  and CDRU Σ = CDRU Σ

s

s=1

S

∑ ps , respectively. 

Note that the distribution of the iµ  can be fitted to any assumption on mean and variance. 

To determine an adequate amount of uncertainty in the iµ , we suggest the following 

possible sources of information: 
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• Experts can determine scenarios sµ  based on socio-economic scenarios. Using 

expert judgement unavoidably involves psychological effects, due to the expert's 

subjectivity. These effects should be taken care of, see for instance Meyer and 

Booker (2001). 

• Literature suggests to use a coefficient of variation, 

 ( ) ( ) / [ ],i i iCoV varµ µ µ= E  

between 5% and 10%, see Section 6.6.2 in Wüthrich and Merz (2008). This is also 

based on regulatory guidelines, see FINMA (2006). 

• Saluz et al. (2011) suggest a data-based approach in order to determine the 
uncertainty in the iµ . The two case studies considered in Saluz et al. (2011) induce a 

( )iCoV µ  between 5%  and 10% . 

• Regulators may enforce socio-economic scenarios, see FINMA (2006). 

• Industry data, such as provided by the Schedule P database in the US, can be used to 
determine a prudent amount of uncertainty in the iµ , see NAIC (2010). 

Note that we assume that the scenarios implied by µ  do not change over time. 

8. COMMENTS FOR PRACTITIONERS 

In Model 3.1 the parameters jβ  and ,i jα  are assumed to be fixed and given constants. In 

this section, we discuss practical approaches to setting the jβ  and ,i jα .  

8.1 Setting the jγ 's and jβ 's 

It might be surprising that in Model 3.1, jγ  and jβ  are introduced as distinct parameters 

although their role is very similar in describing the runoff pattern of the claims. This is done 
to allow a deduction of MSEP and CDRU estimates similar to the approach given in Mack 
(1993). In the following, we consider the relation between these two parameters. Although 

the jβ  are regarded in Model 3.1 as exogenous estimates, we propose an approach for 

estimation based on ID . 
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For given prior estimates iµ  and a known runoff pattern jγ , we would expect a realistic 

stochastic claims reserving method to satisfy  

 E Ci , j!" #$= γ0 +…+γ j( )µi , for all 0 ≤ j ≤ J ,  (8.1)  

 E Ci ,J!" #$= µi .  (8.2)  

This means that the jγ  and iµ  provide best-estimates for the runoff process. 

The following lemma yields a relation between the jβ  and jγ  such that (8.1) and (8.2) 

hold. 

Lemma 8.1. Suppose γ0 +…+γ J =1 and γ0 +…+γ j = β j  for all j J< . Then (8.1) and (8.2) 

hold. 

Proof. Fix some i . For 0j = , ,0 0[ ]i iC γ µ=E  holds by definition. We proceed by 

induction on j . 

 

E Ci , j!" #$ = E E Ci , j Ci , j−1
!
"

#
$ 

!
"

#
$= E Ci , j−1ξi , j +γ j (1−αi , j )µi  !" #$

= (γ0 +…+γ j−1)µi 1+αi , j
γ j
β j−1

&

'
(
(

)

*
+
++γ j (1−αi , j )µi

= (γ0 +…+γ j−1)µi +µiαi , jγ j
(γ0 +…+γ j−1)

β j−1

−1
&

'
(
(

)

*
+
+.

 

The second summand above is equal to zero if γ0 +…+γ j−1 = β j−1 .  ∎ 

Due to Lemma 8.1, we propose the following adaptions to the HCL method to be used 

in practice. 

• For initial estimates of the ˆ Ijγ , use (4.2). Then, smooth and/or rescale the ˆ Ijγ  such 

that 
0

ˆ 1
J

I
j

j
γ

=

=∑  holds. Smoothing techniques are described for instance in Mack 

(2008b) and Section 11.2 in Wüthrich and Merz (2008). This adaption may also 
comprise the inclusion of tail factors, see for instance Mack (1999). 

• Fix the jβ  such that 
0

ˆ
j

I
j k

k
β γ

=

=∑  holds. This can be achieved by running the whole 
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estimation procedure several times and iteratively plugging 
0

ˆ
j

I
k

k
γ

=
∑  into jβ . In our 

numerical examples, this took no more than 5 iterations to converge to a precision of 
1010− . 

This approach attaches additional data dependence and uncertainty to the jβ . However, 

we assume that these additional sources of errors are negligible compared to the error terms 

covered in Section 5, 6 and 7. One rationale to do so is that the estimated jβ  is most stable 

for late development years. For small j , when the relative error of the jβ  is potentially 

high, the ,i jα  are in general rather small when chosen as proposed in Section 8.2, which 

diminishes the final impact. Indeed, numerical tests confirm this statement. 

8.2 Setting the ,i jα  

From a practical perspective, the choice of the ,i jα  reflects the actuary's assessment of 

the behaviour of the claims process. At the same time, the ,i jα  control the reliance of the 

HCL method on the data ID . We can distinguish two ways of how the ,i jα  influence the 

final result: 

• For i j I+ ≤ , the ,i jα  control the data reliance in the parameter estimation. Each ,i jα  

gives a measure of the predictive power of , 1 1/i j jC β− −  as an estimator of the ultimate 

claim ,i JC .  

• For i j I+ > , the ,i jα  control the predictive power of the diagonal value ,i I iC −  of the 

ultimate claim ,i JC . In other words, how sensitive the prediction ,
ˆ I
i JC  is to deviations of 

,i I iC − .  

Recognising the two distinct manners of influence, the following presents a simple 

proposal to set the ,i jα .  

• For i j I+ ≤ , in general the runoff becomes more stable for higher development 

years, i.e., ,i jα  increases to 1 for increasing j . A simple and practical approach that 

satisfies this requirement, is to set   
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 , 1  for all .i j j i j Iα β −= + ≤  

We highlight that the ,i jα  as given above are development year-wise constant. Note 

that this approach is tail-adaptive, in the sense that for triangles with a longer runoff, 

the weight of the iµ  in the estimation of the ˆ Ijγ  for initial years will be higher than 

in triangles with a shorter tail. 

• On the other hand, for i j I+ > , a possible choice would be to set the ,i jα  accident 

year-wise constant as 

 αi , j =  αi  for all i + j > I ,  

where αi ∈ [0,1]  for I J i I− < ≤  have to be determined by the actuary. In that way, 

the data-reliance of the reserves estimates can be set separately for each accident 

year. We highlight that the HCL method is closely related to the Benktander-

Hovinen method, see Benktander (1976), when setting αi = βI−i . 

 

This approach is illustrated in Figure 2. Note that it reduces the number of α -parameters 

that have to be determined by the actuary from I J×  to J . The actuary can choose the αi  
according to judgment, whether a multiplicative or an additive structure is more appropriate 
for a particular accident year. Possible reasons to come to such a choice are given in the 
example in Section 2. However, there are many other possible approaches to choosing the 

,i jα . 
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Figure 2: A possible practical approach to set the ,i jα : For 

i j I+ ≤  development year-wise constant and increasing, for 

i j I+ >  accident year-wise constant according to the actuary's 

chosen αi .  

One drawback affecting the robustness of the CL method is that the ,i jC  appear in the 

denominator of the parameter estimators. These estimators can strongly deviate if some ,i jC  

are small, zero, or even negative for early development years in long-tailed claims triangles, 

see Busse et al. (2010). In the HCL model, the , 1i jC −  also appear in the denominator of the 

,i jΓ , but for early development years their weight (namely ,i jα ) is generally low for long-

tailed triangles, if the ,i jα  are set as outlined above. Therefore, the problem with unstable 

parameter estimators does not occur. 

Considering the case where only CL and BF models are admissible choices, a "super-
expert" chooses one and declares it as the true model. In the HCL model, the prior selection 

of the ,i jα  corresponds to the model choice. That is in the deduction of the estimates of 

msep and  CDRU, the ,i jα  are assumed to be constant and known. If model risk is to be 

taken into account, the sensitivity of the results with respect to changes in the ,i jα  should be 

checked and the additional risk should be considered. By no means should the choice of the 

,i jα  be motivated by a minimizing argument for the reserves or a measure of uncertainty, as 
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it is done in credibility approaches, see Neuhaus (1992). 

For sufficiently small jx , we have (1 ) 1j jx x+ − ≈∑∏ . Applying these approximations 

to (4.3), we get for the reserves of a single accident year i  that 

 Ĉi ,J
I −Ci ,I−i ≈  αi Ci ,I−i

β j−1 + γ̂ j
I

β j−1I−i< j≤J
∏ −Ci ,I−i

%

&
'
'

(

)
*
*+ 1− αi( ) µi γ̂ j

I

I−i< j≤J
∑

%

&
''

(

)
**.  (8.3) 

Recalling (4.4) and (4.5), we see that the reserves , ,
ˆ I
i J i I iC C −−  are approximately the 

weighted average between the completely data-reliant approach and the completely expert-
reliant approach.  

Equation (8.3) also shows that the HCL claims estimate is very similar to the Benktander-

Hovinen estimate, except for a different interpretation of the weights, see Mack (2000) or 

Section 4.1.1 in Wüthrich and Merz (2008). 

9. CASE STUDY 

In this section, we present a case study illustrating the use of the HCL method applied to 
the triangle given in Table 1. We analyse the same loss triangle and iµ  as in Mack (2006) and 

Mack (2008b). However, our results cannot be directly compared to the results therein, as 
Mack (2008b) manually increases the jγ  for the last development years and also adds a tail 

factor. The triangle represents claims from a general liability excess line of business, which is 
very long-tailed with more than 80% of the claims payments being expected in the 
development years 2j > . In general CL-type methods do not work robustly for data 
coming from business subject to strong volatility and long-tailed development. Therefore, 
we assume that the classical CL method is not an adequate model for the triangle considered 
in this case study. The results of the CL method applied to this dataset is given in the Excel 
sheet, which is available at www.RiskLab.ch/hclmethod.   
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Table 1: A triangle of cumulative paid losses ,i jC  and prior 

ultimates iµ  from a general liability excess line of business. This 

triangle is the same as used in Mack (2006) and Mack (2008b). On 

the right, we give the αi  used in model HCL 1 and HCL 2. As an 

approximation for the ˆ jγ  of all models, we give the ˆ jγ  of HCL 1. 

We compare three different setups for Model 3.1 (HCL 1, HCL 3 and HCL 4) and 

one setup for Model 7.1 (HCL 2): 

• HCL 1: Model 3.1 with ,i jα  set according to the proposals in Section 8.2. The 

chosen αi  are given in Table 1: αi =1 for 1, ,7i = …  and αi = 0  for 8, ,13i = … . 

• HCL 2: Model 7.1 with three scenarios for µ  (i.e., 3S = ) and ,i jα  as in HCL 

1. The first scenario 1µ  is equal to the iµ  given in Table 1. Second and third scenarios 

are 2 11.1·i iµ µ=  and 3 10.9·i iµ µ= , respectively. The scenario probabilities are 1 0.6p =  

and p2 = p3 = 0.2 . These scenarios correspond to 1[ ] µ=µE  and CoV( ) 6.3%iµ = . 

• HCL 3: Model 3.1 with , 0i jα =  for all i  and j . This model can be seen as 

representing BF. 

• HCL 4: Model 3.1 with , 1i jα =  for all i  and j . This model is similar to CL. 

|i j  0 1 2 3 4 5 6 7 8 9 10 11 12 iµ
 

 

1 234 4'877 11'126 14'656 21'195 23'932 26'478 28'293 28'628 28'738 28'756 28'782 28'781 32'299.9   

2 1'994 6'930 11'755 17'935 25'594 27'545 32'655 33'266 34'042 34'451 34'499 35'826 
 

40'279.1 1 

3 -75 3'133 10'986 18'113 23'473 27'349 30'775 32'215 33'498 33'565 35'181 
  

40'634.6 1 

4 236 2'438 6'563 11'566 15'755 24'819 27'021 29'085 32'329 33'508 
   

39'604.3 1 

5 976 5'695 15'092 28'345 34'451 39'426 42'475 47'194 49'909 
    

58'440.6 1 

6 -730 2'623 15'527 26'169 42'660 51'546 58'774 67'286 
     

81'346.9 1 

7 539 5'777 20'678 45'543 65'817 83'586 116'520 
      

163'258.7 1 

8 725 15'625 50'301 93'896 146'517 173'997 
       

268'150.6 0 

9 312 6'754 50'350 139'052 177'864 
        

331'893.1 0 

10 2'988 12'909 33'266 67'851 
         

193'519.8 0 

11 260 7'441 29'643 
          

169'559.7 0 

12 994 4'043 
           

157'381.6 0 

13 2'411                         156'150.7 0 

ˆ jγ ≈  
0.7% 4.8% 13.9% 20.8% 16.6% 11.8% 13.9% 7.6% 4.6% 1.4% 1.7% 2.2% 0% 

    

αi
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• Mack BF: The BF model as given in Mack (2008b), with the assumptions that 

( ) 10%iCoV µ = , ,ˆ 1/ (1 | |)U
i j i jρ = + − , ,ˆ

z
i jρ  as given in Mack (2008a). Furthermore, 

the ˆ jγ  are rescaled to sum up to 1 but no further smoothing techniques or tail factors 

are used. 

  
HCL 1 ( S =1, αi ) HCL 2 ( S = 2, αi ) HCL 3 (

,3, 0I jS α= = ) HCL 4 (
,4, 1I jS α= = ) Mack BF 

i  reserves msep  CDRU  reserves msep  CDRU  reserves msep  CDRU  reserves msep  CDRU  reserves msep  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 -1 1'294 864 -1 1'297 866 -1 1'273 849 -2 1'392 930 -1 1'273 
3 799 1'708 890 799 1'711 891 842 1'684 875 956 1'822 934 842 1'684 
4 1'385 1'984 922 1'384 1'987 922 1'476 1'947 886 1'660 2'097 947 1'476 1'947 
5 2'820 2'770 652 2'819 2'776 652 2'930 2'686 618 3'388 2'935 683 2'930 2'686 
6 7'440 4'178 1'786 7'436 4'194 1'790 7'661 3'934 1'593 8'990 4'503 1'970 7'661 3'934 
7 24'806 8'291 3'647 24'792 8'356 3'661 27'282 7'890 3'146 30'297 9'271 4'275 27'282 7'890 
8 84'355 18'646 10'138 84'414 20'052 10'167 81'821 16'390 8'955 98'794 24'308 14'815 81'821 13'638 
9 143'623 23'893 7'368 143'686 26'654 7'419 140'449 20'905 6'484 171'007 34'793 15'524 140'449 16'489 

10 115'799 17'650 7'086 115'823 19'746 7'165 114'154 15'844 6'855 131'612 32'404 20'859 114'154 13'329 
11 136'677 18'598 8'704 136'685 20'915 8'800 135'915 17'081 8'484 166'073 55'113 43'260 135'915 14'693 
12 148'719 18'173 3'819 148'720 20'673 3'911 148'522 16'873 4'163 84'930 89'384 73'585 148'522 14'680 
13 155'088 18'540 3'905 155'089 21'106 3'916 155'060 17'299 3'970 270'331 173'332 130'123 155'060 15'100 

Σ  821'509 89'253 18'226 821'644 106'548 18'365 816'112 79'146 17'011 968'036 236'197 158'553 816'112 61'922 

 

Table 2: Reserves estimates, square root of MSEP and square 
root of the uncertainty in the CDR for triangle given in Table 1. We 

use the models HCL 1 (one scenario, ,i jα  through αi ), HCL 2 

(three scenarios, ,i jα  through αi ), HCL 3 (one scenario, , 0i jα = ), 

HCL 4 (one scenario, , 1i jα = ) and Mack BF. The rows 1 to 13 

denote accident year-wise results and the row designated by ∑  
shows the results on an aggregate basis. 

For these four different HCL setups and Mack BF we summarise in Table 2 the 

reserves, the uncertainty in ultimate claims in terms of msep  and the uncertainty of 

the CDR in terms of CDRU . For Mack BF, no results on the CDR are available. 

Moreover we list the ˆ Ijγ  of HCL 1, to which the ˆ Ijγ  of the other models are very close. 

Additional details, such as all ˆ Ijγ , 2ˆ jσ  and var , are given in the Excel sheet. 

For the reserves, we see that HCL 1, 2, and 3 are very close. HCL 4 (and also CL, 
presented only in the Excel sheet) have significantly more unstable reserves estimates. 
The largest differences are in accident year 12i =  and 13i = , caused by the fact that 

12,1 0 1 12ˆ ˆ( ) 8656C γ γ µ<< + ≈  and 13,0 0 13ˆ 1093C γ µ>> ≈ . The ˆ jγ  for HCL 4 are larger 
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for late development years and smaller for earlier ones. This leads to the systematically 
larger reserves of HCL 4. The reserves of Mack BF are equal to HCL 3. 

For the uncertainties, we have that the iµ  generally have more explanatory power 

for the claims process than the ,i jC , as it is used in HCL 4 and CL. This leads to much 

smaller 2ˆ jσ  for HCL 1, 2, and 3 than for HCL 4. Furthermore, HCL 4 is more sensitive 

to deviations from the expectation in the next accounting year. This explains why 
MSEP and CDRU for HCL 4 are significantly higher than in HCL 1, 2, and 3.  

The MSEP of Mack BF is smaller than the MSEP of HCL 3 because Mack BF gives 

much lower estimates for the parameter estimation error in recent accident years. The 

estimated process variances are very close. 

We see that the additional uncertainty in the iµ  in HCL 2 compared to HCL 1 

increases the MSEP and CDRU but only marginally affects the reserves.  

10. LIMITATIONS AND POSSIBLE EXTENSIONS 

This section illustrates several possibilities to further extend and generalise our 

model we though refrain from working out the details. Most extensions to the classical 

CL model can also be translated to our model. Additional insight could be gained by 

reformulating our assumptions on mean and variance in a GLM or Bayesian 

framework, as it has been done for the CL model. 

The distinction between the jγ  and jβ  parameters in the model setup was made to 

allow a deduction of MSEP and CDRU estimates similar to Mack (1993). By using 
distributional assumptions (as e.g., in Saluz et al. (2011)), one could remove this 

distinction and furthermore avoid the necessity to smooth and rescale the jγ 's. 

Accounting year payments and their uncertainty can be estimated with the approach 

given in Section 5.5 in Wüthrich et al. (2010). This allows a market-consistent 

valuation. 

The HCL model can be formulated as a special case in the class of linear stochastic 

reserving methods (LSRM), introduced in Dahms (2010). Using the notation therein, 
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the model can be extended to use more sources of information for predicting ultimate 

claims. 

Model 3.1 can be interpreted within a time series model where 

Ci , j = E[Ci , j |Ci , j−1]+ σ j
2µiεi , j  with i.i.d. residuals εi , j . Under certain assumptions, 

bootstrapping can then be used to estimate the density of the reserve distribution as 

well as risk measures. Time and data dependencies of the jβ  and the ,i jα  can also be 

taken into account. Dependencies with other triangles can be modelled with the 
approaches given in Merz and Wüthrich (2009) and Kirschner et al. (2008). 

A different volume dependence of the process variance can be incorporated, for 

instance through assuming 2
, , 1( | )i j i j j ivar C C φσ µ− =  for some fixed φ .  

Generalising from the CL model, we would expect the process variance to be 
dependent on ,i jm , i.e., 2

, , 1 ,( | )i j i j j i jvar C C mσ− = . However, this approach leads to 

complicated estimation formulas as ,i jm  is not ID -measurable for i j I+ > , in 

contrast to iµ . The effects of this issue can be seen in the model proposed in 
Schnieper (1991), see also Lemma 10.13 in Wüthrich and Merz (2008). Furthermore, 
the iµ  in , , 1( | )i j i jvar C C −  merely represent a volume measure. 

11. CONCLUSION 

This paper discussed the HCL method which provides a class of distribution-free 

reserving models that combines two different claims reserving methodologies: a data-

reliant method which is multiplicative in structure, resembling CL, and an expert-reliant 

method which is additive in structure, resembling BF. Contrary to the existing 

literature, the HCL method does not consider the combination of the two 

methodologies as a credibility mixture. Instead, the weighting between the two 

reserving methodologies is seen as a prior model selection reflecting the actuary's 

assessment of the development of the claims. 

The approach to simultaneously use CL and BF to determine reserves is often used, 

but stochastic model versions of CL and BF generally make different underlying 

assumptions. The HCL method embeds this approach within a distribution-free 

framework, which provides estimators for parameters, reserves, uncertainty in ultimate 
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claims and the uncertainty of the CDR. Moreover, we provide an estimator for the 

uncertainty of the CDR in the BF method. 

As our method falls in the class of CL-type reserving methods, most modifications 

and extensions that are available for the CL method can also be applied to our method. 
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A PROOF OF SECTION 5 

Theorem A.1. For the , ,i n kψ , the following holds: 

1. , , 1[ | ] 0i n k kψ − =E B , 

2. For 1 2k k< , we have 
1 1 1 2 2 2 2, , , , 1[ | ] 0i n k i n k kψ ψ − =E B , 

3. For 1 2k k k= = , we have  

 1 2

1 1 2 2 1 1 2 2 1 1 2 2

1 2

2
, ,

, , , , 1 , , , , , ,
, ,

ˆ ˆ[ | ] ,ˆ ˆ
i m i mI I k

i n k i n k k i n i n i n k i n k I I I
k m Jk i m i m

b b
ξ ξσ

ψ ψ
ξ ξ

−
< ≤

⎛ ⎞
⎜ ⎟=Ψ Ψ
⎜ ⎟Ω ⎝ ⎠
∏E B  

where the , ,i n kb  are defined as in Section 5. 

Proof. (1) Note that for all k , , ,i n kψ , ,ˆ
I
i kκ  and ,

ˆ I
i kξ  are kB -measurable. Suppose that n k< , 

the other cases can be treated analogously. Then we have 

 
( ), , 1 , , , , , 1

, , , , 1 ,

ˆ ˆˆ| |

ˆ ˆˆ [ | ] 0.

I I I
i n k k i n i m i k i k i m k

n m k k m J

I I I
i n i m i k i k k i m

n m k k m J

ψ κ ξ ξ ξ ξ

κ ξ ξ ξ ξ
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−
< < < ≤

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎡ ⎤ = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦

⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∏ ∏

∏ ∏

B B
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E E

E
 

(2) 
1 1 1 2 2 2 2 1 1 1 2 2 2 2, , , , 1 , , , , 1[ | ] [ | ] 0.i n k i n k k i n k i n k kψ ψ ψ ψ− −= =E EB B  

(3) We only prove the equality for the case 1k n> , 2k n> , the other cases can be treated 

completely analogously: 
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1 1 2 2 1 1 1 1 1 1 1 1

1 1 1
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The last equation follows from multiplying and dividing by
1 2, ,
ˆ ˆI I
i m i m

k m J

ξ ξ
≤ ≤
∏ . For instance, 

the multiplication with 
1 ,
ˆI
i m

k m J

ξ
≤ ≤
∏  provides the missing factors for 

1 1,
ˆ I
i nΨ , which is why the 

expectation above simplifies. For the remaining parts inside the expectation, we get 

 1 2 1 2

1 1 2 2

2
, , , ,

, , , , 1 1
1 1 1 1

ˆ ˆ ˆ[( )( ) | ] ( | ) .i k i k i k i kI I I k
i k i k i k i k k k k I

k k k k k

var
α α α α σ

ξ ξ ξ ξ γ
β β β β− −

− − − −

− − = =
Ω

E B B  

∎ 

B PROOF OF SECTION 6 

In order to derive an approximation for 
1 1 1 2 2 2, , , ,[ | ]i n k i n k Iθ θE D , we first apply a change of 

conditioning. That is, we will condition on sets like kG , where kG  is ID  joined with the 

new diagonal of 1I+D , which is cut off at j k= , i.e.,  

 1,{ : 0 }.k I I j jC j k− += ∪ ≤ ≤G D  

The set kG  is illustrated in Figure 3. 

 

Figure 3. kG  which is ID  joined with the new diagonal of 1I+D , 

which is cut off at j k= . 

As a first approximation, we set  

 
1 1 1 2 2 2 1 1 1 2 2 2 1 2, , , , , , , , max{ , } 1 .i n k i n k I i n k i n k k kθ θ θ θ −

⎡ ⎤ ⎡ ⎤≈⎣ ⎦ ⎣ ⎦D GE E  

Note that , ,i n kθ  is kG -measurable where , ,i n kθ  is given in Section 6. Hence,  
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1 1 1 2 2 2 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2

1 1
, , , , max{ , } 1 , , , , , , , , , , max{ , } 1

ˆ ˆ ,I I
i n k i n k k k i n i n k i n i n k i n k i n k k kh h e eθ θ + +

− −
⎡ ⎤ ⎡ ⎤=Ψ Ψ⎣ ⎦ ⎣ ⎦G GE E  

Where 
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1
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,

1 ˆ ˆ/ , for ,ˆ
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ˆ

I I
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+

+
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+
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⎪
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⎪ =
⎪⎩

∏

∏
 

Note that the terms taken out in the above expectation contain terms which are not 

1 2max{ , } 1k k −G  measurable. A closer inspection reveals that all these terms cancel out in (B.1) 

because they appear as factors in the 1
,

ˆ I
i n
+Ψ  and as reciprocal in the , ,i n kh .  

In a next step, we deduce an approximation of 
1 1 1 2 2 2 1 2, , , , max{ , } 1[ | ]i n k i n k k ke e −GE . The 

difference of ˆ Ijγ  and the unknown jγ  is not measurable and is best estimated by 0 . For the 

consideration of the distortion 1ˆ ˆI I
j jγ γ +− , we approximate , ,i n ke  with ei ,n,k , by replacing all

ˆ Ijγ  in , ,i n ke  by jγ . To do this we introduce 

 

 γ j =
Ω j
I

Ω j
I+1
γ j +

ω I− j+1, j

Ω j
I+1

Γ I− j+1, j ≈ γ̂ j
I+1,  

and hence, 

 ei ,n,k =

αi ,k / βk−1(γ k − γ k ), for k > n,

µi (1−αi ,n )(γn − γn ), for k = n, n > I − i +1,

Ci ,I−iξi ,n−1 +µi (1−αi ,n )γn −Ci ,I−i+1, for k = n = I − i +1.

"

#
$$

%
$
$

 

Using the above definitions for , ,i n ke , we approximate 

 E ei1,n1,k1
ei2 ,n2 ,k2

Gmax{k1,k2}−1
"
#

$
% ≈ E  ei1,n1,k1

 ei2 ,n2 ,k2
Gmax{k1,k2}−1

"
#

$
%.  
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The following theorem summarizes several properties of ei ,n,k , that are similar to 

Theorem A.1. We will use these properties to estimate the conditional expectation 

E[ ei1,n1,k1
 ei2 ,n2 ,k2

|Gmax{k1,k2}−1] . 

Theorem B.1. For the ei ,n,k , the following results holds 

1. E[ ei ,n,k |Gk−1]= 0 . 

2. For 1 2k k< , we have E[ ei1,n1,k1 ei2 ,n2 ,k2 |Gk2−1]= 0 . 

3. For 1 2k k k= = , we have 

E[ ei1,n1,k1 ei2 ,n2 ,k2 |Gk2−1]= di1,n1,k1di2 ,n2 ,k2µ I−k+1σ k
2 ,  

where 

 

, 1,
1

1 1,

1,
, , , 1

1,

1 , for ,

1(1 ) , for , 1,

1, for 1.

i k I k k
I

k k I k k

I k k
i n k i i n I
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k n
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d k n n I i
m

k n I i

α ω

β
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µ α

− +
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− − +

− +
+

− +

⎧
>⎪ Ω⎪

⎪⎪
= − = > − +⎨

Ω⎪
⎪ = = − +
⎪
⎪⎩

 

Proof. (1) This follows directly from 1, 1[ | ]I k k k kγ− + −Γ =E G . 

 (2) ei ,n,k is kG -measurable. Hence we have the equality  

E[ ei1,n1,k1 ei2 ,n2 ,k2 |Gk2−1]= ei1,n1,k1E[ ei2 ,n2 ,k2 |Gk2−1]= 0  

(3) All stochasticity contained in ei ,n,k  with respect to 1k−G  is contained in 1,I k kC − + . 

Furthermore, ei ,n,k  depends linearly on 1,I k kC − + . Hence, it remains to show that the 

proportionality factor is equal to , ,i n kd− , i.e., ei ,n,k |Gk = −di ,n,kCI−k+1,k + (const)  which can be 

done by simple calculations.                             ∎  

In the last step to get an approximation of 
1 1 1 2 2 2, , , ,[ | ]i n k i n k Iθ θE D  we replace all unknown 

quantities by their estimates based on ID . For the two different cases 1n I i= − +  and 

1n I i> − + , we have 



On a combination of multiplicative and additive stochastic loss reserving methods 

 

Casualty Actuarial Society E-Forum, Summer 2014  39 

Ψ̂ i ,n
I+1 =Ci ,I−i+1 ξ̂i ,m

I+1

n<m≤J
∏ ≈ (Ci ,I−iξ̂i ,I−i+1 +µi (1−αi ,I−i+1)γ̂ I−i+1 ξ̂i ,m

I

n<m≤J
∏

= Ψ i ,n
I+1 = Ψ̂ i ,n−1

I + Ψ̂ i ,n
I , for n = I − i +1,

 

Ψ̂ i ,n
I+1 = µi (1−αi ,n )γ̂n

I+1 ξ̂i ,m
I+1

n<m≤J
∏ ≈ µi (1−αi ,n )γ̂n

I ξ̂i ,m
I

n<m≤J
∏

= Ψ i ,n
I+1 = Ψ̂ i ,n−1

I , for n > I − i +1,
 

An analogous approximation can be used to deduce the approximation 

 , , , , , , .i n k i n k i n kh d g≈  

We illustrate the case k n> , the other cases being analogous. For k n> , we have 
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The approach used here is similar to the one used in Appendix A, but is different to the 

approach used in Bühlmann et al. (2009). 

  


