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Abstract 

Motivation. Quantile testing is a key technique for fitting parameters and testing performance in workers 
compensation experience rating and the number of quantile intervals must be specified for such a test. 
Method. A model is developed to compare the error in the quantile test empirical estimates of relative pure loss 
ratios to the interquantile differences between expected pure loss ratios.  The ratio of these two quantities can be 
interpreted as a kind of noise-to-signal ratio which must be kept below a certain tolerance for the results of the 
quantile test to be sufficiently clear in a statistical sense.  The formula for this ratio is a function of the random 
variation in individual risk loss ratios, a measure of the variation in experience modification (mod) values, the 
sample size of risks, and the number of quantiles.  Theoretical model predictions are compared to empirical 
results from bootstrap quintile tests of the National Council on Compensation Insurance (NCCI) Experience 
Rating Plan (ERP).  A generic type of individual risk credibility, though very different from the credibility values 
in the ERP, can be used to estimate the ratio of the standard deviation in individual risk loss ratios to a measure 
of variation in the mod values.  
Results. The model predicts that the noise-to-signal ratio grows in proportion to the 1.5 power of the number of 
quantiles and in inverse proportion to the 0.5 power of the sample size of risks.  Empirical quintile and decile 
tests of NCCI’s Experience Rating Plan are consistent with model predictions. 
Conclusions. Increasing the number of quantiles requires a much greater proportional increase in data volume 
to maintain a constant noise-to-signal ratio.  Combined with the typical large magnitude of individual-risk loss 
process variance to loss parameter variance, this explains the use of few quantiles, specifically quintiles, for 
testing NCCI’s Experience Rating Plan. 
 
Keywords. Quantile Test, Quintile Test, Experience Rating, Workers Compensation, Predictive Modeling, 
Credibility, Lift, NCCI 

             

1. INTRODUCTION 

The National Council on Compensation Insurance (NCCI) Experience Rating Plan (ERP) is 

routinely tested by sorting risks based on experience modification factor (mod) values into quintiles, 

each containing an equal number of risks.  A natural question is why specifically are quintiles, that is 

five quantiles, used to test the ERP.  Naïve intuition would suggest that more quantiles would reveal 

more details about performance.  However, like virtually all statistical tests, quantile testing attempts 

to uncover underlying systematic or signal information by filtering out random or noisy information.  

Using more quantiles affects both the signal and noise properties of each quantile.  This paper will 

explain how a constraint on the relative size of noise to signal in the quantile test suggests criteria for 
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selecting an optimal number of quantiles. 

The content of this paper is primarily related to individual risk rating, predictive testing, and 

credibility.  Although the application is to workers compensation specifically, the methods shown 

are generally applicable to predictive models of losses for individual risks in all lines of property and 

casualty insurance.  The predictive testing of individual risk rating plans has been discussed 

previously in [4], [8], [12], and [17].   Specifics of the NCCI Experience Rating Plan can be found in 

[15].   

1.1 Objective 

This paper will provide a justification for selecting a given number of quantiles, or comparing 

different possible numbers of quantiles, for testing the ERP.  No pretense is made of meeting the 

standards of mathematical rigor or rock solid logical derivation, but the model will follow from a 

sensible line of reasoning and whatever specific parameter values selected are intended for 

application with empirical data.  Some model results will be shown to be reasonably consistent with 

patterns seen in some empirical quintile and decile tests, providing validation to the extent of 

practical use. 

1.2 Outline 

The remainder of the paper proceeds as follows. Section 2 will describe a noise-to-signal (N/S) 

model for the resolution of a quantile test.  Section 3 shows how the properties of this model are 

consistently demonstrated in both empirical data and hypothetical examples.  Appendix A will show 

a connection between the N/S ratio model and credibility. 

2. BACKGROUND AND METHODS 

The purpose of experience rating is to improve the estimate of future expected losses for an 

individual risk using previous actual loss experience for that risk.  The basic underlying formula for 

the workers compensation experience rating modification factor is (2.1). 

 

(2.1) 

Ap = actual primary ratable loss from the experience period 

Ae = actual excess ratable loss from experience period 
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Ep = expected primary ratable loss from the experience period 

Ee = expected excess ratable loss from experience period 

E = Ep + Ep 

Zp = primary credibility 

Ze = excess credibility 

Although there are many other refinements to this basic formula as used in the ERP, the mod 

essentially compares actual loss experience to manual expected losses.  The Zp and Ze values, which 

vary by size of risk, determine the credibility assigned to experience.  The prospective manual 

premium for a policy is multiplied by this mod value, which is always positive but may be greater or 

less than 1.0, as part of premium calculation. 

2.1 Quintile Testing the Experience Rating Plan 

Risks are sorted by mod value and based on this order split into five quintiles, each containing an 

equal number of risks.  The performance of the ERP is tested by comparing relative pure loss ratios 

– the ratio of actual losses to expected losses – across the quintiles for the policy year to which the 

experience mod applies both before and after the mod is applied to manual expected losses.  Several 

adjustments are made to reported actual losses and NCCI manual rates so that losses are on an 

ultimate basis and exclude both underwriting and loss adjustment expenses.  A scale factor is also 

used to set total modified expected losses equal to total actual losses by risk hazard group within 

each state.  This equalization isolates relative differences between risks, which the mod is designed 

to address, from issues of aggregate rate adequacy, which are addressed by manual rate levels. 

2.2 Lift and Equity 
If the ERP can actually differentiate between risks then pure loss ratios calculated from manual 

rates should increase when moving from lower quintiles to higher quintiles.  This increasing slope is 

called lift.  The steeper the lift the more value the mod offers in differentiating risks. 

Including the mod in the calculation of expected losses should result in nearly equal pure loss 

ratios, or equity, across quintiles if the ERP is working well and there is sufficient data in each 

quintile.  This flatness of the relative modified pure loss ratios reveals how well the mod achieves 

equity between risks.   

Figure 1 displays an idealized hypothetical example.  The bars on the left side of the chart 

demonstrate the concept of lift.  The mod is able to differentiate between risks and the slope shows 
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the degree of differentiation between them.  If risks were rated only on manual rates then risks in 

the quintiles to the left would produce more favorable underwriting results. 

    Figure 1:  Experience Rating Plan Displaying Lift and Equity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The second set of bars in Figure 1 demonstrates that the combination of manual rates and the 

mod is equitable.  The underwriting results are equal across the quintiles.  Hence underwriting 

results are the same for risks with different mod values. 

Figure 2 displays a hypothetical ERP with considerable lift as seen by the bars on the left side.  

The five bars on the right side demonstrate that the mod has not fully corrected for predictable 

differences in manual loss ratios.  The rating plan does not charge risks with high mods enough and 

overcharges risks with lower mods.  This inequity is generally the result of not assigning enough 

credibility to individual risk experience.  In contrast, Figure 3 displays a hypothetical ERP that over 

corrects for predictable differences – this generally results from assigning too much credibility to 

individual risk experience. 
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Figure 2:  Experience Rating Plan That Undercompensates for Experience 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Experience Rating Plan That Overcompensates for Experience 
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In cases where specific measures are needed to quantify how effectively the ERP is finding lift 

and achieving equity, the NCCI considers two statistics.  The older quintile test statistic is B*/A*, 

where A* is the variance of the un-modified quintile pure loss ratios and B* is the variance of the 

modified quintile pure loss ratios:  the variance in the pure loss ratios after application of the 

modification factors is divided by the variance in the pure loss ratios at manual rates.  This 

traditional statistic measures equity or, perhaps more correctly, the movement towards equity with 

the ERP.  Ideally it should be as close to zero as possible.  Note that B*/A* would be zero for 

Figure 1 because B*, the variance in the modified quintile loss ratios, is zero for this hypothetical 

example. 

The newer quintile test statistic is sign(A-B)|A-B|0.5, where A and B are equivalent to  A* and 

B*, but may be calculated to include some extra variance due to bootstrapping the test, as will be 

discussed in Section 3.1.  This newer statistic measures how effectively the ERP is at finding lift and 

achieving equitable workers compensation rating.  Ideally it should be as large as possible.  Using 

this new test statistic, Figure 1 trumps Figures 2 and 3 because all three have the same value for A 

but B takes on the smallest possible value of zero for Figure 1. 

2.3 Sample Size and the Central Limit Theorem 
The Central Limit Theorem says that the sum or average of a large number of independent 

random variables will be approximately Normal.  Even a highly skewed distribution such as the pure 

loss ratio for an individual risk will tend towards a Normal distribution if an average is computed 

over many risks.  Figure 4 illustrates this concept.   

Figure 4: The Central Limit Theorem in Action 
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To simplify the discussion, assume that pure loss ratios for risks are independently and identically 

distributed with mean µ and variance σ2 and that each risk has the same expected loss.  ߪଶ/݊		is the 

variance and ߪ/√݊		is the standard deviation in the overall pure loss ratio for a bin containing n	

homogeneous risks.  As can be seen in Figure 4, the decreasing variance as n increases results in a 

tighter curve clustered around the expected value.  

The practical implication of this is that we expect for both manual and modified pure loss ratios 

the random observation error will be proportional to 1/√݊.  Although the assumptions about 

homogeneity of risks are far from perfectly met in the real world, the departure will generally not 

cause this 1/√݊ relationship to lose its practical value. 

2.4 Systematic Differences Versus Random Variation 
Individual quantiles should contain enough data so that the random variation of the manual pure 

loss ratios within quantiles is small compared to systematic differences in the underlying expected 

manual pure loss ratios between quantiles.  As another hypothetical example, suppose that risks with 

mods uniformly distributed on the interval [0.80, 1.00) are compared to risks with mods uniformly 

distributed on the interval [1.00, 1.20).  Figures 5a and 5b show, for interval sample sizes 1 and 100, 

respectively, hypothetical distributions for manual loss ratios for risks uniformly distributed across 

these two intervals, assuming individual risk loss ratios are lognormally distributed with mean equal 

to the mod value and 0.50 standard deviation.   

Random Outcomes versus Systematic Differences 

Figure 5a         Figure 5b 
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Note the substantial overlap in the distributions of actual pure loss ratios in the Figure 5a.  There 

is a fair chance that the actual ratio for a risk from [0.80, 1.00) will exceed that for a risk from [1.00, 

1.20), which would give misleading results about mod performance.  One might conclude that the 

mod cannot effectively distinguish the loss potential of individual risks.  If there are more risks in 

each interval, as in Figure 5b, then the distinction is almost certainly shown in the observed loss 

ratios. 

The systematic difference between the two previous intervals can be quantified as the differences 

between their midpoints of 0.90 and 1.10.  Assuming that there are enough risks in the intervals so 

that the resulting distributions are approximately Normal, standard deviations of manual loss ratios 

are a good way to characterize random variation.  The choice of how small the random variation 

must be compared to the systematic difference is fairly subjective but not impractically ambiguous, 

as will be demonstrated in the next sections.   

2.5 Tradeoffs in Determining the Number of Quantiles 
More quantiles provide a more detailed look at how the plan is performing all along the range of 

mod values.  However, more quantiles will increase the random variation within each quantile 

because a fixed number of risks will be split into fewer risks per quantile.  Worse still, more quantiles 

will simultaneously decrease the systematic differences between adjacent quantiles.   

Figure 6: Splitting Into More Intervals 
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Figure 6 shows an idealized view of the dilemma.   Here, we revisit the example from Figure 5b, 

breaking up the two intervals, each with 100 sampled risks into four intervals, each with 50 sampled 

risks.   First, note that we can safely ignore the contribution of variance of the mod within an 

interval to the variance of the loss ratio. The variance of the mod within the original 2 intervals of 

width 0.20 was 0.003 and for the split intervals of width 0.10 was 0.0008, trivial compared to the 

conditional variance of 0.25 for the loss ratio.  So, there will be an increase of about 41% in the 

standard deviation of the overall loss ratio due to smaller sample size.  Simultaneously, the distance 

between the midpoints of the adjacent intervals has been cut in half.  Consequently, the ratio of 

random variation to systematic variation in Figure 6 is about 282% of what it was in Figure 5b. 

2.6 Noise-to-Signal Ratio 
It is conceptually useful to think of random variation in observed loss ratios as noise and the 

systematic difference between the means of adjacent bins as signal.  The ratio of random to 

systematic variation, that we previously alluded to, is explicitly defined and referred to as the noise-to-

signal ratio (N/S) in (2.2). 

 

(2.2) 

All other things equal this ratio should be as small as possible.  Figure 7 graphically illustrates the 

significance of noise-to-signal ratios using a Normal distribution model.   

Figure 7: Noise-to-Signal For Normal Distributions 
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Table 1 shows the probabilities of reversals for a Normal distribution model.  By reversal we 

mean that the observed loss ratio for the higher interval is actually lower than the observed loss ratio 

for the lower interval. 

Table 1:  Noise-to-Signal Ratios and Ordering of Pure Loss Ratios 
 

Noise-to-Signal Ratio Probability of Reversal
  

1.00 0.2398
0.50 0.0786
0.25 0.0023
0.10 7.69 x 10-13

 

A reasonable tolerance for the N/S ratio might be selected at 0.25.  So, the “optimal” number of 

quantiles is beginning to emerge.  If we can estimate the N/S ratio as a function of the number of 

quantiles, then the maximum number of quantiles within our N/S tolerance will be that “optimal” 

number. 

2.7 The Number of Quantiles and Data Requirements 
 

To address the question of the number of quantiles the N/S signal ratio can be estimated by a 

formula in terms of the following quantities: 

b = number of quantiles 

2 = variance of the manual pure loss ratio for a single risk 

n = number of risks tested 

R = a constant corresponding to the “spread” or “variation” of mods  

 

We will assume risks are all the same size.  This is a reasonable simplifying starting assumption, 

but in reality risk sizes and the variances of their loss ratios span across orders of magnitude for the 

ERP.  The resulting formula will be validated, or invalidated, for the general context using empirical 

data. 

The standard deviation for the loss ratio in a single quantile will be ( )nbbn /=//  .    

Again, we will ignore variation in the loss ratio due to mod difference within quantiles, as this usually 

contributes a very small part of the total random variation. 

If there are more quantiles then the differences between the expected values for the mods of 
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adjacent quantiles is smaller.  If the number of bins is doubled then these differences should be 

approximately cut in half.  A reasonable rule of thumb is that the typical difference is inversely 

proportional to b, that is equal to R / b.   

Putting the pieces above together the N/S ratio formula leads to (2.3). 

 

(2.3) 

 

Solving for sample size n leads to (2.4). 

 

(2.4) 

Equation (2.4) shows, among other relations, that the amount of data needed increases as the 

cube of the number of quantiles:  ݊ ∝ ܾଷ.  The ERP is currently tested using a quintile test.  A decile 

test would require 8 times as much data for a comparable N/S ratio.  Similiarly, a test with twenty 

quantiles would require 64 times as much data.  

3. RESULTS AND DISCUSSION 

3.1 Bootstrapping Empirical Data Demonstrates Effects of Number of 
Quantiles  

To measure the noise associated with the relative pure loss ratios in a quintile test, NCCI 

bootstraps the underlying data.  The data set of risks used for a particular test is resampled with 

replacement 100 times. Each time the quintile test loss ratios are recalculated.  A candlestick chart 

illustrates the 5th, 25th, 75th, and 95th percentiles of the bootstrapped relative pure loss ratios. The 

vertical spread of the quintile bars is indicative of the noise in the test and the difference in the 

vertical location between adjacent candles is indicative of the signal in the test. Consider the 

following bootstrap quintile and decile tests for policy year 2010: 

 Figures 8a and 8b are countrywide, which includes 886,976 individual risks.   

 Figures 9a and 9b, are countrywide for risks whose policy period expected pure loss 

ranges from 1k to 10k, which includes 467,887 individual risks.   

 Figures 10a and 10b, are countrywide for risks whose policy period expected pure loss 
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ranges from 100k to 1m, which includes 18,692 individual risks.   

 Figures 11a and 11b, are for a large state, which includes 62,629 individual risks.   

 Figures 12a and 12b, are for a small state, which includes 10,943 individual risks.  

 

Figure 8a: Countrywide Quintile Test 
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Figure 8b: Countrywide Decile Test 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 9a:  Countrywide Small Risk Quintile Test 

 

 

 

 

 

 

 

 

 

 

 

Policy Year 2010: Countrywide Decile Analysis

0%

50%

100%

150%

200%

R
el

at
iv

e 
P

u
re

 L
o

ss
 R

at
io

Groups Based on Experience Rating Modification

Before Experience Rating

After Experience Rating

Before Experience Rating

After Experience Rating
5th Percentile

95th Percentile

25th Percentile

75th PercentileBefore Experience Rating

After Experience Rating

Policy Year 2010: Prospective Period Pure Expected Losses 1K - 10K Quintile Analysis

0%

50%

100%

150%

200%

0.16 -
0.89

0.89 -
0.93

0.93 -
0.96

0.96 -
1.05

1.05 -
4.67

0.16 -
0.89

0.89 -
0.93

0.93 -
0.96

0.96 -
1.05

1.05 -
4.67

R
el

at
iv

e 
P

u
re

 L
o

ss
 R

at
io

Groups Based on Experience Rating Modification

Before Experience Rating

After Experience Rating

Before Experience Rating

After Experience Rating

5th Percentile

95th Percentile

25th Percentile

75th Percentile
Before Experience Rating

After Experience Rating



Optimal Number of Quantiles For Predictive Testing 
 

Casualty Actuarial Society E-Forum, Fall 2013-Volume 2 14 
 

Figure 9b:  Countrywide Small Risk Decile Test 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 10a:  Countrywide Large Risk Quintile Test 
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Figure 10b:  Countrywide Large Risk Decile Test 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 11a:  Large State Quintile Test 
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Figure 11b:  Large State Decile Test 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 12a:  Small State Quintile Test 

 

 

 

 

 

 

 

 

 

 

 

Policy Year 2010: Large State Decile Analysis
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Figure 12b:  Small State Decile Test 
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Comparison between the quintile and decile tests illustrates the three-fold increase in N/S ratio 

predicted by the model.  Since the N/S ratio should also change in proportion to 1/√݊, where n is 

the number of risks, all other things equal (which they are not), we would expect the N/S to increase 

going from Figures 8 to Figures 11 to Figures 12.  In fact, such a pattern is clearly evident.  

However, between tests using the same number of quantiles but different data, the random variation 

in the loss ratio per individual risk may vary, and will certainly decrease going from the small risks in 

Figures 9 to the large risks in Figures 10.  Another thing that can change as the underlying data set 

changes is the typical signal difference between the quantiles.   

The general consistency between the patterns observed in these charts and what we expect from 

the N/S ratio model provides a reasonable validation of the model as a practical tool. 

The slight positive slopes seen in most of the empirical quintile and decile tests for policy year 

2010 highlight the need for increased effective credibility that prompted NCCI’s increases in the 

split point beginning in 2013, from $5,000 to $10,000 in year one, $13,500 in year two, and $15,000 

plus two years of inflation adjustment in year three.  Further routine increases based on severity 

indexation will follow. 

 
3.2  Measuring Lift and Equity 
 

At the end of section 2.2, two statistics were introduced: (1) B*/A* (smaller is better) is a measure 

of how effectively the ERP achieves equity, and (2) sign(A-B)|A-B|0.5 (larger is better) is a 

combination measure that increases with more lift, A	 is larger, and increases with more equity, B	 is 

smaller.  A* is the variance of the un-modified pure loss ratios and B* is the variance of the modified 

pure loss ratios across the quantile groups.  The quantities without the * are similar quantities but 

may include some additional variance from bootstrapping.  

 

Table 2 displays these statistics for the 2010 policy year data that was used to create the prior ten 

bootstrapping charts. The first column of numbers, B*/A*,	shows that the ERP makes considerable 

progress towards achieving equity because the variance in pure loss ratios is much smaller for the 

modified pure loss ratios than the un-modified pure loss ratios.  For example, the variance in the 

countrywide modified pure loss ratio quintiles is only 14.9% of the variance in the unmodified 

quintiles.  The second column shows that the ERP is finding lift and moving towards more equitable 

rating. 
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             Table 2:  Statistical Measures of Lift and Equity 

               Statistics
  B*/A* signሺA‐Bሻ|A‐B|0.5 

Countrywide Quintile 0.149  0.261 

Countrywide Decile 0.140  0.265 

Countrywide Small Risks Quintile 0.265  0.272 

Countrywide Small Risks Decile 0.259  0.284 

Countrywide Large Risks Quintile 0.105  0.296 

Countrywide Large Risks Decile 0.107  0.309 

Large State Quintile 0.144  0.232 

Large State Decile 0.150  0.239 

Small State Quintile 0.044  0.157 

Small State Decile 0.474  0.155 

     

3.3 Noise-to-Signal Ratio 
 

The noise-to-signal ratio (N/S) was introduced in equation (2.2) of section 2.6. 

 

(2.2) 

 

Although an explicit formula for calculating noise-to-signal ratios was presented in equation (2.3), 

the ratios can also be estimated by bootstrapping empirical data as done in section 3.1.   Noise-to-

signal ratios corresponding to the bootstrapping results used to create the charts in section 3.1  are 

displayed in Table 3.  As expected, the noise-to-signal ratios are significantly higher for deciles than 

quintiles.  The last column of the table displays the ratio of noise-to-signal ratios for deciles to those 

of quintiles.   

Equation (2.3) shows that   N/S ∝ 	√ܾଷ  where ܾ is the number of quantiles.  Comparing deciles 

and quantiles with this proportionality yields a value not too far from those in the last column of 

Table 3. 

N/S Deciles ÷ N/S Quintiles = √10ଷ 	ൊ	√5ଷ ൌ 	√2ଷ ൌ	2.83 . 

The theoretical value 2.83 is somewhat greater than values in the table because the	experience 

Signal

Noise


 intervalsbetween  ratios loss expectedin   Difference

ratio loss intervalan for  s variationrandom ofdeviation  Standard
 N/S
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modification factors spread out in the two tails of the mod distribution.  This would not happen if 

the mods were uniformly distributed over a range. 

	
									Table 3:  Bootstrapped Estimates of Noise-to-Signal Ratios		
	

 
 

Noise - to - Signal 
N/S Decile / 
N/S Quintile  Quintile Decile 

Countrywide (C/W) 0.086 0.229 2.67 

C/W  $1K - $10K 0.203 0.499 2.46 

C/W $100K - $1,000K 0.128 0.354 2.75 

Large State 0.192 0.482 2.51 

Small State 0.748 1.973 2.64 

 
 
3.4 Some Hypothetical Examples 

Appendix A develops the rule of thumb, shown in (3.1), to estimate /R in terms of the credibility 

Z for an individual risk loss ratio.  This is particularly useful, as Z can act as a reasonable measure of 

risk size, though not on a proportional scale.   

 

(3.1) 

 

However, before progressing too far we must recall that in principle a Z credibility value such as 

this, although it includes useful information about /R, is qualitatively very different from the Zp 

and Ze values found in the experience rating.  This Z value would: 

1. Estimate the true underlying mean for a single policy year using that policy year’s losses, 

rather than using prior policy years’ experience to predict the true mean for a future 

policy year, 

2. Cover all losses unlimited, and 

3. Use only one year of losses. 

    So, much caution must be used in attempting to apply it to the very different situation of the 

12

1/1
  

2 


Z

R


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ERP.  Unfortunately, there is no clear way to relate Z to the readily available, but fundamentally very 

different, Zp and Ze.  More generally, there is probably no good way to determine such a Z that  

would directly apply to the context of the NCCI ERP.  Statement 1 suggests Z should be higher 

than Zp, but 2 and 3 suggest Z should lower than Zp.  Since higher Z implies lower /R and hence 

lower N/S it is prudent to err on the side of a lower Z.  So, on balance, it is not unreasonable to 

speculate that Z should be on the same order as Zp, but somewhat lower, perhaps Z ≈ Zp / 2.  

Ultimately, any N/S model resulting from whatever relationship we may assume can be validated, or 

invalidated, using empirical data along the lines we followed in Section 3.1.  Table 4 explores what 

different values for Z, n, and b	imply for the N/S ratio.  

 

Table 4: Noise-to-Signal By  Z Credibility 

 

 

The formulas for Ze and Zp vary by state and over time, according to a fairly complicated formula 

that is a function of experience period expected losses, rather than policy period pure expected 

losses.  However, the values in Table 4 would be roughly in the ballpark for recent years.  

     The conjecture Z ≈ Zp / 2 together with Table 5 suggest that Z would be around 3% to 20% for 

Figures 9 and around 40% to 45% for Figures 10.                                

  

Noise to Signal <= 0.25 shaded

Z Credibility = 50% Z Credibility = 25%

Sample Size--> Sample Size-->
Quantiles 100        1,000      10,000      100,000      1,000,000 Quantiles 100        1,000     10,000    100,000  1,000,000  

2 0.14       0.04       0.01         0.00           0.00         2 0.32       0.10       0.03       0.01       0.00          
5 0.56       0.18       0.06         0.02           0.01         5 1.25       0.40       0.13       0.04       0.01          

10 1.58       0.50       0.16         0.05           0.02         10 3.54       1.12       0.35       0.11       0.04          
20 4.47       1.41       0.45         0.14           0.04         20 10.00     3.16       1.00       0.32       0.10          

100 50.00      15.81      5.00         1.58           0.50         100 111.80    35.36     11.18     3.54       1.12          

Z Credibility = 10% Z Credibility = 5%

Sample Size--> Sample Size-->
Quantiles 100        1,000      10,000      100,000      1,000,000 Quantiles 100        1,000     10,000    100,000  1,000,000  

2 0.81       0.26       0.08         0.03           0.01         2 1.63       0.52       0.16       0.05       0.02          
5 3.21       1.02       0.32         0.10           0.03         5 6.45       2.04       0.64       0.20       0.06          

10 9.08       2.87       0.91         0.29           0.09         10 18.23     5.77       1.82       0.58       0.18          
20 25.69      8.12       2.57         0.81           0.26         20 51.58     16.31     5.16       1.63       0.52          

100 287.23    90.83      28.72       9.08           2.87         100 576.63    182.35    57.66     18.23     5.77          
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                              Table 5: Approximate Recent ERP Credibility By Risk Size 
 

Policy Period Approximate Recent ERP Credibility 

Pure Premium Zp Ze 

 
                  1,000 5% 0% 

                 10,000 40% 2% 
               100,000 80% 10% 
            1,000,000 90% 40% 

Next recall that Figure 9 had a sample size approaching half a million risks and Figure 10 had a 

sample size a bit under 20,000.  From Table 4 we can see that both Figures 9 and 10 would be 

expected to be well within the acceptable N/S for the quintile.  The deciles test would be expected 

to be around the maximum N/S ratio.  This is roughly the situation we see in the charts and 

therefore Z ≈ Zp / 2 , although not founded in any sort of solid mathematics or logic, is still 

empirically validated to be in the ballpark and therefore practically useful within broad limits. 

4. CONCLUSIONS 

The number of quantiles selected for a meaningful test of predictive performance of the NCCI 

Experience Rating Plan is constrained by the ratio of noise-to-signal.  If this ratio is not kept below a 

reasonable threshold, which is subjective but can be sensibly selected somewhere in the 

neighborhood of 0.25, the results of the quantile test will be unclear.  In a sense the “optimal” 

number of quantiles is the largest number that produces a N/S ratio under this threshold.  The N/S 

ratio is proportional to the standard deviation of observed loss ratios for individual risks and the 1.5 

power of the number of quantiles.  The N/S ratio is inversely proportional to the variation in mod 

values and the square root of the number of risks in the data.  Consequently, the data required to 

maintain a given N/S ratio is proportional to the cubic power of the number of quantiles.  This huge 

data penalty in test resolution for increasing the number of quantiles explains the use of a relatively 

small number of quantiles, exactly five in the quintile test, for testing the NCCI Experience Rating 

Plan.  These and other implications of this N/S ratio can be demonstrated consistently for both 

empirical tests of the ERP and hypothetical examples.  
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Appendix A 

 
A Connection Between Noise-to-Signal Ratio and Credibility 
 

Suppose a single credibility Z value, which can be any value in (0%, 100%) not necessarily based 

on any sound credibility model, is used on the total unlimited policy year loss ratio L to estimate a 

non-predictive individual risk modification factor.  That is, a risk’s actual loss ratio in a single year is 

used to estimate its own true mean loss ratio for that same year.  The sample variance in such a mod 

would be (A.1). 

 

 

(A.1) 

 

 

where 2ˆ L
 
is the actual sample variance of the observed loss ratios. The remaining or “random” part 

of the sample variance is (A.2).  

 

(A.2) 

Although a quantile test would be meaningless in this non-predictive situation, we can estimate a 

ratio R/  in the N/S formula (2.3).  (A.2) can be used as an estimate of  ߪଶ		and (A.1) can be used 

to derive an estimate for R.  As a simplification, assume that mods are effectively uniformly 

distributed across an interval of width R.  For a uniform distribution the difference between the 

means of mods in adjacent quantiles, or signal, where mods are split into b quantiles would be R / b.  

This is the key property of R as used in (2.3).   Equating the variance expression for a uniform 

distribution with (A.1) leads to (A.3). 

 

(A.3) 

 
This would lead to (A.4). 
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(A.4) 

Assuming a uniform distribution of mods (A.4) corresponds implicitly to (A.5). 

 

(A.5) 

 
 (A.5) will certainly not hold true in general, but it is worth noting how it compares to a decile test 

of hypothetical mods lognormally distributed around mean 1.00 with standard deviation 0.10, as 

shown  in Table A1.  (A.5) predicts that R would be 0.346 and the difference between adjacent 

quantiles would be 0.035 in this situation.   

 
 Table A1:  Differences between decile means for a lognormal distribution with mean 1.00 

and standard deviation 0.10 
 
 

Decile Mean Difference

1st 0.836
2nd 0.897 0.061
3rd 0.930 0.033
4th 0.957 0.027
5th 0.983 0.025
6th 1.008 0.025
7th 1.034 0.027
8th 1.065 0.030
9th 1.104 0.040
10th 1.186 0.082
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Abbreviations and notations   

C/W, countrywide 
ERP, experience rating plan 
Mod, experience modification factor 
NCCI, National Council on Compensation Insurance
N/S, noise-to-signal ratio 
A,	A*, variance of un-modified quintile pure loss ratios 
B,	B*,	variance of modified quintile pure loss ratios 
b,	number of quantiles	
L,	unlimited policy year loss ratio for a risk	
n, number of risks 
R, spread in modification factor values 
2,	variance in pure loss ratio for one risk 
ො௅ߪ
ଶ,	actual sample variance of observed loss ratios 

Zp,	primary credibility for an experience rated risk 

Ze,	excess credibility for an experience rated risk

Z,		credibility for an individual risk	
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