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The Gauss-Markov Theorem: Beyond the BLUE 

Leigh J. Halliwell, FCAS, MAAA 
______________________________________________________________________________ 

Abstract: Until now the Gauss-Markov theorem has been the handmaid of least squares; it has served 
as a proof that the least-squares method produces the Best Linear Unbiased Estimator (BLUE).  This 
theoretical paper shows that it can be, and should be, reformulated as the solution to the problem of the 
minimization of a quadratic form subject to a linear constraint.  The whole theory of linear statistical 
modeling, from basic to complicated, receives a clean and efficient development on the basis of this 
reformulation; estimates and predictions based thereon are BLUE from the start, rather than BLUE by 
subsequent proof.  With an intermediate-level background in matrix algebra the reader will understand 
the frequent interpretations of this development in terms of an n-dimensional projective geometry.  
Because this paper elevates BLUE to its true role, “Beyond the BLUE” really means “To the True 
BLUE.” 
Keywords: Gauss-Markov, BLUE, linear model, projection, distance metric 

______________________________________________________________________________ 

1.  INTRODUCTION 

The many treatments of the Gauss-Markov theorem (e.g., Judge [1988, 202-206], Halliwell 

[2007, Appendix B], and Wikipedia) lead one to believe that the theorem is no more than a 

proof that ( ) yβ XXX 1 ′′= −ˆ  is best linear unbiased estimator (BLUE) of β in the model 

ey +β= X , where [ ] I2σ=eVar .  In this capacity the theorem is impressive enough; 

however, with a little abstraction it becomes much more, as we shall see in the following 

eleven sections. 

2.  STATEMENT OF THE THEOREM AND ITS PROOF 

The Gauss-Markov theorem is essentially the solution to a constrained-optimization 

problem, more exactly, to the problem of minimizing a quadratic form subject to a linear 

constraint.  Here is our formulation of the theorem: 

The Gauss-Markov Theorem: If symmetric nn×Σ  is positive-definite and nm×A  is of 

full-row rank, then ( ) WWW 1−Σ′=Φ  can be minimized subject to the linear 

constraint pmpnnm ××× = BWA .  The value ( ) BAAAW -1* ′Σ′Σ=  uniquely minimizes 

Φ  at ( ) ( ) BAABW -1* ′Σ′=Φ . 
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To prove the theorem, we take for granted two theorems about positive-definite matrices.1  

First, positive-definite matrices have inverses; the inverses also are positive-definite.  

Therefore, symmetric 1−Σ  exists, and is positive-definite.  Second, if nm×A  is of full-row 

rank and nn×Τ  is positive-definite, then AA ′Τ  is positive-definite.  From these it follows that 

AA ′Σ  is positive-definite and invertible; hence, ( ) BAAAW -1* ′Σ′Σ=  exists.  Moreover, 

*W  satisfies the constraint, since ( ) BBIBAAAAAW -1* ==′Σ′Σ= m . 

 

Now if 1W  satisfies the constraint, then: 

( )
( )

( ) ( )
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BAAAWWW

1-

1-
1

1-
1

-11
1

*1
1

′Σ′=

′Σ′=

′Σ′′=

′Σ′ΣΣ′=Σ′ −−

 

And since *W  is an allowable instance of 1W , we have the following chain of equalities: 

( ) ( ) 1
1**1

1
*1**1*1-*1

1 WWWWWWWWBAABWW −−−−− Σ
′

=
′

Σ′=
′
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′
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As the heart of the Gauss-Markov proof: 
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1 For a review of positive-definite and non-negative-definite (or positive-semi-definite) matrices see Judge 
[1988, Appendix A.14] and Halliwell [1997, Appendix A]. 
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The last line is to be taken in a matrix-definite sense, viz., that the difference 

( ) ( )*
1 WW Φ−Φ  is the non-negative-definite matrix ( ) ( )*

1
1*

1 WWWW −Σ
′

− − .  And 

because 1−Σ  is positive-definite, the difference equals the zero matrix ( pp×0 ) if and only if 

*
1 WW = .  Therefore, ( ) BAAAW -1* ′Σ′Σ=  uniquely minimizes ( ) WWW 1−Σ′=Φ  subject 

to BAW = .  Furthermore, the minimum is ( ) ( ) BAABW -1* ′Σ′=Φ . 

 

3. GEOMETRICAL INTERPRETATION WITH A DISTANCE 
METRIC 

A geometrical interpretation of the theorem will prove helpful.  Again, let 1W  satisfy the 

constraint, and let ( ) BAAAW -1* ′Σ′Σ= .  From the chain of equalities, we derive: 

( ) ( ) ( )*
1

1**1**1
1

*1*
1 WWW00WW-WWWWW −Σ

′
=′==Σ

′
Σ′=Σ

′
− −

××
−−−

pppp  

These are unusual quadratic forms.  The usual quadratic form is xy Σ′ , where the factors 

before and after 1−Σ  are n×1  and 1×n  vectors.  Here the form is XY 1−Σ′ , where the 

factors before and after 1−Σ  are np× and pn×  matrices, and the integer p  may exceed 

one. 

 

But for now, consider the usual quadratic form in the special case that nI=Σ .  Actuaries 

know that ∑
=

=′=′
n

i
in x

1

2xxxIx  is the square of the distance from the origin of nℜ  to x (or 

the area of a square the length of whose sides is that distance).  Less well known is that 

∑
=

=′=′
n

i
ii yx

1
yxxy  represents the area of a rectangle, the length of one of whose sides is 
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the length of the projection of one vector onto the other.  Most will recognize, however, an 

equivalent interpretation, viz., that 0yxxy =′=′  if and only if yx ⊥ .  The standard 

(Euclidean) definition of the distance from x  to y  is ( ) ( ) ( )xyxyyx −′−=,d .  It has the 

three properties of a metric on nℜ : 

( ) ( )
( ) ( )
( ) ( ) ( ) inequality trianglezxzyyx3

symmetryyxxy2

zero  trivially;negativitynonyx0yx;0yx1

,d,d,d.

,d,d.

,d,d.

≥+

=

−=⇔=≥

 

But for any positive-definite matrix nn×Σ , one can define a valid “Σ metric” on nℜ  as 

( ) ( ) ( )xyxyyx 1 −Σ′−= −
Σ ,d , which is valid in that it possesses these three properties.2  

The matrix Σ  represents a combination of scaling and rotating the axes of nℜ . 

 

So what is special in the Gauss-Markov theorem about ( ) BAAAW -1* ′Σ′Σ= ?  Adapting the 

concept of perpendicularity to a metric, we have: 

( ) pp×
− =Σ

′
− 0WWW *1*

1  

                                                 
2 Some confusion results from using the inverse of Σ in the quadratic form; one must think twice to determine 

whether something is a Σ  metric or a 1−Σ  metric.  However, consider the usual formula for the ellipse whose 

major semi-axis is two units and minor semi-axis is one: ( ) ( ) 22
2

2
1 112 =+ xx .  As a quadratic form this 

would be: 

[ ] 2

2

1
1

21 1
10

02
=
























−

x

x
xx  

 
It seemed more natural to call this a [2 0; 0 1] metric (as if to say, “Two units on the first axis count as one unit 

on the second.”), rather than to call it a [½ 0; 0 1] metric.  This ellipse is the set of points in 2ℜ  whose 
distance from the origin is one unit according to the [2 0; 0 1] metric.  It may help some readers to know that 

( ) ( ) ( )xyxyyx 1 −Σ′−= −
Σ ,d  is called the “Mahalanobis distance” (cf. Wikipedia), in whose definition 

the Σ matrix is inverted.  Appendix A provides a proof of the triangle inequality, as well as a justification of the 
geometric interpretation of yx′ as the product of the length of x and the length of the projection of y onto x. 
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This means that according to the Σ  metric *W  is perpendicular to *
1 WW −  (and vice 

versa).  In mathematical notation, ( )*
1

* WWW −⊥
Σ

.  The heart of the Gauss-Markov 

theorem, expressed above as ( ) ( ) ( ) ( )*
1

1*
1

*
1 WWWWWW −Σ

′
−=Φ−Φ − , is really just the 

Pythagorean theorem adapted to the Σ  metric: 

( ) ( ) 1
1

1
*

1
1*

1
*1* WWWWWWWW −−− Σ′=−Σ

′
−+Σ

′
 

*W  is the element of the constraint set closest to the origin according to the Σ  metric.  The 

following diagram clarifies this: 

{ }BAW:W ={ }BAW:W =

W1

W*

0

 

The orange line represents the constraint set.3  The origin, 
*W , and 1W  form the Σ-right 

triangle, of which 1W  is the hypotenuse, and *W  and *
1 W-W  are the legs.  The salient 

point is that the Σ area of the square with side *W  is less than or equal to that of the square 

with side 1W , or 11
** WWWW Σ′≤Σ

′
, and equal if and only if *

1 WW = .  This is valid even 

                                                 
3 Since the constraint on W  is linear, the constraint set is a hyperplane (technically, an affine apace).  The 
Gauss-Markov theorem requires a linear constraint; constraints involving curvature are inadmissible. 
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when the area concept is abstracted from a non-negative scalar to a non-negative-definite 

matrix. 

 

This ends the geometric interpretation.  Gauss-Markov reasoning happens whenever a 

quadratic form is to be minimized subject to a linear constraint.  Gauss-Markov/BLUE 

proofs are abstractions of what we all learned in plane Geometry, viz., that the shortest 

distance from a point to a straight line is along a line segment perpendicular to the line.  

Lines are abstracted into linear constraints and distance is abstracted into a Σ  metric. 

 

It is hardly necessary to memorize the formula for *W .  With the following heuristic 

reasoning one can derive it on the fly.  Since nm×A  is of full-row rank (or of rank m), the 

mm×  matrix AA ′  is invertible.  In fact, as stated above, for any positive-definite nn×T , 

AA ′Τ  is invertible.  Thus, there is a family of “right inverses” of A  that have the form 

( ) 1AAA −′Τ′Τ .  *W  will be the matrix product of one of these right inverses and B , i.e., 

( ) BAAAW 1* −′Τ′Τ= .  Since we seek to minimize WW 1−Σ′ , distance is measured 

according to a Σ=Τ  metric.  According to this metric ( ) BAAAW 1* −′Σ′Σ=  is the element 

of the constraint set closest to the origin. 

4. PROJECTION INTO THE CONSTRAINT SPACE 

In the interest of economy and precision, let us introduce some more formalism.  Our ‘W’ 

variables denote elements of pn×ℜ , the real space of pn×  dimensions.  Let us use ‘Ω’ to 

denote the constraint set: { }BAW:W =ℜ∈=Ω ×pn .  Obviously, pn×ℜ⊆Ω ; but it is not 

empty under the assumption that nm×A  is of full-row rank.  In fact, we have just seen that 
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( ) BAAAW -1* ′Σ′Σ=  is the element of Ω  closest to the origin of pn×ℜ  according to the Σ 

metric.  We may say that ( ) BAAAW -1* ′Σ′Σ=  is the Σ projection of the origin into Ω .  In 

general, what is the Σ projection of any element of pn×ℜ  into Ω ? 

 

Using ‘P’ for projection, we define ( )ΣΩ,P ;W0  as the function which projects pn×ℜ∈0W  

into Ω according to the Σ metric.  As before, Ω  is the non-empty solution set of the linear 

constraint BAW = , and Σ is positive-definite.  When these parameters are understood, we 

will use the abbreviation ( )0WP .  So ( )ΣΩ,P ;W0  is an element of Ω that minimizes the Σ-

metric distance from 0W  to Ω.  Equivalently, it minimizes the quadratic form 

( ) ( ) ( )0
1

0 W-WW-WW −Σ′=Φ  subject to BAW = . 

 

We could argue from scratch as in Section 2, but the following analysis is more insightful.  

The constraint BAW =  is equivalent to ( ) 00 AWBWWA −=− .  So the projection 

problem is to minimize ( ) ( )0
1

0 W-WW-W −Σ′  subject to ( ) 00 AWBWWA −=− .  This is 

the Gauss-Markov problem with two changes in variables: 

0

0

AWBB

WWW

−→

−→
 

Hence, the Gauss-Markov theorem states that ( ) ( ) ( )0
1*

0 AWBAAAWW −′Σ′Σ=− -  

uniquely minimizes ( ) ( ) ( )0
1

00 WWWWWW −Σ′−=−Φ − .  But since 0W  is a constant, 

( ) 0
**

0 WWWW −=− , or ( ) ( ) ( )0
1

0
*

00
* AWBAAAWWWWW −′Σ′Σ+=−+= - .  So 

there is not just an element of projection, but a unique element: 
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( ) ( ) ( )
( ){ } ( ) BAAAWAAAA

AWBAAAWW;
11

1

--
n

-

I

,P

′Σ′Σ+′Σ′Σ−=

−′Σ′Σ+=ΣΩ
 

As a check: 

( ) ( ){ } ( )

( ){ } ( )
{ }
B

BIWAIA

BAAAAWAAAAAA

BAAAAWAAAAIAW;A
11

11

=

+−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

mm

--

--
n,P

 

Hence, for all pn×ℜ∈W , ( ) Ω∈WAP .  So P is a mapping from pn×ℜ  into Ω, i.e., 

Ω→ℜ ×pnP : .  In particular, the mapping of the origin is: 

( ) ( ){ } ( ) ( ) BAAABAAA0AAAAI0 111 ---
npnP ′Σ′Σ=′Σ′Σ+′Σ′Σ−=× , 

which is the 'W' *  of the theorem itself.  Accordingly, we may employ the formulation 

( ) ( ){ } ( )0WAAAAIW 1 PP -
n +′Σ′Σ−= . 

 

P maps element pn×ℜ∈W  to the closest element of constraint set Ω according to the Σ 

metric.  Geometrically, P sends a Σ perpendicular from W into Ω; in symbols, 

( ) ( )WWWW 1 PP −⊥−
Σ

, for every Ω∈1W , as the following algebra shows: 
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( )( ) ( )( )

( ){ } ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )
0

BBAAAWB

WAAWAAAWB

WWAAAAWB

WWAAAAWB

WWAWBAAA

WWAWAAABAAA

WWAWAAA0

WWW0WAAAAI

WWWW

1

1
1

1
1

1
11

1
11

1
111

1
11

1
11

1
1

=

−′Σ′−=

−′Σ′−=

−′Σ′−=

−ΣΣ′Σ′−=

−Σ
′

−′Σ′Σ=

−Σ
′

′Σ′Σ−′Σ′Σ=

−Σ
′

′Σ′Σ−=

−Σ
′

−+′Σ′Σ−=

−Σ′−

−

−

−

−

−

−

-

-

-

-

-

--

-

-
n

P

P

P

P

P

PP

PP

PP

 

 

Because of the first property of a metric (zero-triviality), within the restricted domain Ω, P is 

the identity mapping.  Hence, not only is P a mapping into the constraint set Ω; it is also a 

mapping onto Ω.  Nonetheless, we will prove it algebraically.  If Ω∈W : 

( ) ( ){ } ( )

( ) ( ) ( )
( ) ( ) ( )

W

BAAABAAAW

BAAAAWAAAW

BAAAWAAAAIW

11

11-

11

=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

--

-

--
nP

 

Conversely, if ( ) WW =P , then ( ) BWAAW == P  and Ω∈W .  Therefore, P is a many-

to-one mapping from pn×ℜ  onto constraint set Ω, and an element of 
pn×ℜ  belongs to Ω if 

and only if P acts upon it as an identity mapping. 
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Just as the Σ-metric right inverse ( ) 1AAA -′Σ′Σ  is conspicuous in the formula 

( ) ( ) BAAA0 1-
pnP ′Σ′Σ=× , so too is it conspicuous in the formula for what we will call the 

“Σ-projection matrix” ( ) AAAAI 1-
n ′Σ′Σ− .4  Since Σ  is positive-definite, it can be 

Cholesky-decomposed as QQ ′=Σ  for some non-singular nn×Q .  Then the matrix can be 

factored as ( ) ( ){ } 11-11 QMQQAQAQAQAQIQAAAAI --
n

-
n =′′′′−=′Σ′Σ− .  So the rank 

of the matrix is the rank of ( ) AQAQAQAQIM 1-
n ′′′′−= .  But M  is a (symmetric) 

idempotent matrix (i.e., MMM ′= ), and the rank of an idempotent matrix equals its trace 

(Judge [1988, Appendix A.4 and A.12] and Halliwell [1997, Appendix B, 317; also Note 3]).  

Employing basic theorems about the trace operator, we derive: 

( )( ) ( ){ }( )
( )( )

( )( )
( ) ( )( )
( ) ( )( )
( ) ( )

mn

TrTr

TrTr

TrTr

Tr

rank

rankrank

mn

-
n

-
n

-
n

-
n

--
n

-
n

−=

−=

′′′−=

′′′−=

′′′−=

′′′−=

′′′−=′Σ′Σ−

II

AQAQAQAQI

AQAQAQAQI

AQAQAQAQI

AQAQAQAQI

QAQAQAQAQIQAAAAI

1

1

1

1

111

 

So every column of the elements of constraint set Ω has m  fewer degrees of freedom than 

the columns of pn×ℜ ; in a sense, the dimensionality of Ω is ( ) pmn ×−ℜ .  This can be surmised 

from the full-row rank of nm×A , which imposes m  independent restrictions on the elements 

of pn×ℜ  that belong to Ξ .  This will prove useful in Section 9, in which we will treat linear 

statistical models with parameter constraints. 

                                                 
4 The projection matrix shows to its greatest effect in the homogeneous form, i.e., in the differential form, 

( ) ( ) ( ){ }( )12
-1

12 WWAAAAIWW −′Σ′Σ−=− nPP . 
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5. VARIANCE AS A METRIC 

In this section we will show how the variance of a random vector serves as its natural metric.  

Let x be an n×1 random vector with mean μ and non-degenerate variance Σ.  Since the 

variance is non-degenerate, the variance of every non-zero linear combination of its elements 

is positive, i.e., Σ is positive-definite and 1−Σ  exists.  The variance of a random vector is a 

measure of its ability to differ from its mean.  So the distances of random vectors from their 

means should somehow be invariant, when their variances serve as their distance metrics. 

 

The square of the Σ-metric distance of x from its mean is ( ) ( ) ( )µ−Σ′µ−=µ −
Σ xxx 12 ,d .  

And by definition, the variance of x is [ ] ( )( ) 



 ′µ−µ−=Σ= xxx EVar .  Using again the 

trace-operator theorems of the previous section, we find: 

( )[ ] ( ) ( )

( ) ( )

( ) ( )

( )( )

( )( )

( )( )

( )
( ) nITr

Tr

ETr

ETr

TrE

TrE

ETr

E,dE

n ==

ΣΣ=












 ′µ−µ−Σ=












 ′µ−µ−Σ=





 





 ′µ−µ−Σ=





 





 µ−Σ′µ−=












 µ−Σ′µ−=





 µ−Σ′µ−=µ

−

−

−

−

−

−

−
Σ

1

1

1

1

1

1

12

xx

xx

xx

xx

xx

xxx
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Hence, a random vector’s variance is its natural metric, according to which its expected 

squared distance from its mean equals its dimensionality n, the degrees of its freedom.5 

 

6. PROJECTIONS OF RANDOM VECTORS 

As in the previous section, let x be an n×1 random vector with mean μ and variance Σ, i.e., 

( )Σµ,~x .  Since the Gauss-Markov theorem has to do with abstract projective geometry, 

we may inquire about the moments of the Σ projection of x into the constraint space 

{ }11 bxA:x ××× =ℜ∈=Ω mnnm
n . 

 

The Σ projection is ( ) ( ){ } ( ) bAAAAAAA; 11 --
nI,P ′Σ′Σ+′Σ′Σ−=ΣΩ xx .  Therefore: 

( )[ ] ( ){ } ( )[ ]
( ){ } [ ] ( )

( ){ } ( )

( ) ( )µ−′Σ′Σ+µ=

′Σ′Σ+µ′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

bAAA

bAAAAAAA

bAAAAAAA

bAAAAAAA;

1

11

11

11

-

--
n

--
n

--
n

I

EI

IE,PE

x

xx

 

The variance follows from the standard formula [ ] [ ]QQQ ′= xx VarVar : 

                                                 
5 Moreover, if x is multivariate normal, or if x ~ N(μ, Σ), then ( ) ( ) 21

n~ χµ−Σ′µ− − xx  (Judge [1988], 
§2.5.9).  The multivariate normal distribution is unique in that its probability distribution is a function of its 

variance metric: ( ) ( ) ( )µ−Σµ−− −′

∝
xx

2
1 1

x ef x .  Most likely, this is the ultimate reason why normality is preserved 
under any linear transformation. 
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( )[ ] ( ){ } ( )[ ]
( ){ }[ ]

( ){ } [ ] ( ){ }
( ){ } ( ){ }

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) Σ′Σ′Σ−Σ=

Σ′Σ′Σ+Σ′Σ′Σ−Σ′Σ′Σ−Σ=

Σ′Σ′Σ′Σ′Σ+Σ′Σ′Σ−Σ′Σ′Σ−Σ=

Σ′Σ′−Σ′Σ′Σ−=

′
′Σ′Σ−′Σ′Σ−=

′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

AAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAA

AAAAAAAA

AAAA

bAAAAAAA;

1

111

1111

11

11

1

11

-

---

----

-
n

-
n

-
n

-
n

-
n

--
n

II

IVarI

IVar

IVar,PVar

x

x

xx

 

Therefore, if ( )Σµ,~x , then ( ) ( ) ( )( )Σ′Σ′Σ−ΣΣΩµΣΩ AAAA;; 1-,,P~,P x .  As a check, 

[ ] ( ) bAA =µ= PE x  and [ ] ( )( ) mm
-Var ×=′Σ′Σ′Σ−Σ= 0AAAAAAA 1x .  This will prove 

useful in Section 11. 

 

7. PARAMETER ESTIMATION IN THE LINEAR STATISTICAL 
MODEL 

Now let us apply our Gauss-Markov theorem to the linear statistical model.  First, and as an 

easy start, we will apply it to derive the best linear unbiased estimator (BLUE) of the 

parameter β in the model ey +β= ×× 1X kkt , where [ ] ttVar ×Σ=e .  X  is of full-column rank, 

and Σ is positive-definite.   The estimator is linear in y , or yβ W′=ˆ .6  Because it is unbiased 

for all β, [ ] [ ] β=β′=′= XWW yβ EˆE .  So matrix W′  is constrained according to the 

equation kIXW =′ , which transposes as kIWX =′ .  The best of the unbiased estimators 

minimizes [ ] [ ] WWW Σ′=′= yβ VarˆVar .  So the problem is to minimize 

                                                 
6 For a reason immediately to become apparent, we use here the transpose of W. 
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( ) ( ) WWWWW 11 -−Σ′=Σ′=Φ  subject to kIWX =′ . The correspondences between the 

theorem and this model are: 

kIB

XA

WW

ModelTheorem
1

←

′←

←

Σ←Σ

←
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X′  is of full-row rank, because X  is of full-column rank.  Hence, according to the 

theorem, ( ) ( ) 111111* XXXIXXXW −−−−−− Σ′Σ=′′Σ′′′Σ= k .  So ( ) yyβ 111* XXXW −−− Σ′Σ′=
′

=ˆ  

and [ ] ( ) ( ) 1111** XXIXXIWW −−−− Σ′=′′Σ′′=Σ
′

= kk
ˆVar β .  Accordingly, [ ] yββ 1X −Σ′= ˆVarˆ . 

 

8. PREDICTION IN THE LINEAR STATISTICAL MODEL 

The goal of most linear modeling is not to estimate the parameter β , but rather to estimate7 

quantities which eventually will be observed.  Although the model makes such quantities 

dependent on the parameter, the parameter itself is usually hypothetical and never to be 

observed.  With partitioning between the observed 1y  and the to-be-predicted 2y  (hence, 

containing missing values) the general form of the linear statistical model is:  
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Not only must Σ  be symmetric and non-negative-definite, 11Σ  must be positive-definite, 

and 1X  must be of full-column rank.  We seek the best linear-in- 1y , unbiased estimator 
                                                 
7 More accurately, the goal is to predict – we seek the best linear unbiased prediction.  But we will continue to 
call this BLUE, because BLUP already has a different technical meaning in statistics (Wikipedia, “Best linear 
unbiased prediction”). 
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(BLUE) of 2y , i.e., 12 W yy ′=ˆ  for some matrix W′ , which depends only on the partitions 

of the design X  and variance Σ  matrices.  Because the estimator is unbiased for all β, 

[ ] [ ] ( )β′−=′−=−= 121222 XWXW0 yyyy EˆE .  Thus the estimator is unbiased if and 

only if 21 XXW =′ .  By transposition, 21 XWX ′=′  , where W is 21 tt × . 

 

But now there is a complication in being “best.”  Predicting 2y  as 2ŷ , we will err by the 

amount  22 ŷy − .  So it is the prediction-error variance that we must minimize: 
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Although we can ignore the constant 22Σ  in the minimization, we cannot ignore the second 

and third terms, which are linear in W. 

 

The key here is to apply the one-to-one transform 12
1

11WV ΣΣ−↔ − .  The transformation 

of the constraint set is { } { }12
1

111212
1

1111121 X-XX-WXVX:VXWX:W ΣΣ′′=ΣΣ′′=′=′=′ −− .  

So expressed in terms of V: 
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This transformation is a matrix version of completing the square.  We can now apply the 

Gauss-Markov theorem to the problem of minimizing ( ) VVVV 11
1111

−−Σ′=Σ′  subject to 

12
1

11121 X-XVX ΣΣ′′=′ − .  The correspondences are: 
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As before, the conditions are met; 1X′  is of full-row rank since 1X  is of full-column rank.  
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The minimized prediction-error variance is: 
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Introducing the estimator ( ) 1
1

111
1

1
1

111 XXX yβ −−− Σ′Σ′=ˆ  and its variance  [ ] ( ) 1
1

1
111 XX −−Σ′=β̂Var  

allows us to simplify: 
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Combining this completing-the-square technique with the Gauss-Markov theorem makes for 

a cleaner and more elegant proof than that in Halliwell [1997, Appendix C, 328-330]. 

 

9. LINEAR STATISTICAL MODELS WITH PARAMETER 
CONSTRAINTS 

Here we will impose upon the model of Section 8 a constraint on β, viz., 11 rR ××× =β jkkj .  

The rows of R must be linearly independent, i.e., R  must be of full-row rank.  The 

constraint set { }rR: =βℜ∈β k  is non-empty because right inverses of R exist, most 

obviously ( ) 1RRR −′′ .  Hence, ( ) rRRRβ 1−′′= exists and satisfies the constraint. 

 

Two procedures are commonly employed to solve β-constrained linear models.  The first is 

to reduce the parameter dimension according to the equation ( ) ( ) 10 S ×−−× γ+β=β jkjkk , for 

some matrix S (of full-column rank) such that ( )jkj −×= 0RS , as done in Halliwell [1997, 

Appendix B, 321-324].  This is the purist approach to the problem, but it requires an 

understanding of eigen-decomposition, cannot be performed in Excel without add-ins, and 

may suffer from the numerical-analysis problem of deciding when small eigenvalues should 
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be zeroed.  The second procedure is to employ the Lagrange multiplier (Judge [1988, §6.2, 

235-237]) to minimize ( ) ( ) ( ) ( )rR2XX 1
1 −βλ′+β−Σ′β−=λβΛ −
× yyj, .  But a third 

procedure (Halliwell [1998, Appendix C]) to us is the most convincing. 

 

This procedure is to treat the β constraint as the limit of ηr +β= R  as [ ] jjVar ×→ 0η .  We 

could have specified the variance as jI2σ , and the limit as 02 →σ ; but for the sake of 

generality we will let [ ] Η=ηVar  be any positive-definite matrix.  So we can form the 

following augmented linear model, which satisfies the conditions of Section 8: 
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The parameter estimator, which depends on Η, is: 
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Therefore, according to the formulas of the previous section, the predictor is: 
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And the variance of the prediction error is: 



The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 19 
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These two formulas depend on Η only insofar as β̂  depends on Η.  Therefore, it remains 

for us to determine ( )Η=
→Η
ββ ˆlim

0

* . 

 

We start with [ ] ( ) 11
1

1
1110

* RRXX −−−

→Η
Η′+Σ′= limVar β .  The following proof makes use of the 

theorem ( ) ( ) 1111111 CABCADBAABDCA −−−−−−− +−=+  (cf. Judge [1988, A.7, 938]; the 

inverses must exist, as they do here): 8 
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The variance of the constrained estimator is neatly expressed in terms of the variance of the 

unconstrained estimator [ ] ( ) 1
1

1
111 XX −−Σ′=β̂Var .  As a check: 

[ ] [ ] [ ] [ ] [ ][ ] [ ] 0RRRRRRRRRRR
1** =′′′−′=′=
−

ββββββ ˆVarˆVarˆVarˆVarVarVar  

                                                 
8 In the following formulas the existence of the inverse of ( ) [ ]RRRXXR -1

1
1

111 ′=′Σ′ − β̂Var  is guaranteed, 
since the variance matrix is positive-definite and R is of full-row rank. 
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In order to take the limit of ( )Ηβ̂  we need the following intermediate result: 

( )[ ] ( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]

[ ] [ ][ ] 1

111
11

11
11

1
111

11
11

11

1
111

11
11

11

111
11

111
11

11
11

111
11

111
11

11
11

111
11

111
11

11
11

111
11

111
11

11
11

1

RRR

RXXRRXX

RXXRRXX

RXXRIIRXX

RXXRRXXRIRXX

RXXRRXXRIRXX

RXXRRXXRRRXX

RXXRRXXRRIXXR

−

−−−−−

−
−−−−−

−
−−−−−

−−−
−−−−−

−−−
−−−−−

−−−
−−−−−

−−−
−−−−−−

′+Η′=

′Σ′+Η′Σ′=

Η






 Η′Σ′+Η′Σ′=

Η






 Η′Σ′+Η+−′Σ′=

Η






 Η−′Σ′+Η′Σ′+Η−′Σ′=

Η






 ′Σ′′Σ′+Η−′Σ′=

Η






 ′Σ′′Σ′+Η′−′Σ′=

Η′






 Σ′′Σ′+Η′−Σ′=Η′Η

ββ

β

ˆVarˆVar

ˆVar

jj

j

j

k

 

Therefore: 

( )

( )[ ]( )
( )[ ] ( )[ ]

[ ] ( )[ ]( )

[ ] [ ] [ ][ ]( )
[ ]

[ ]

[ ] [ ] [ ][ ]( )
[ ] [ ] [ ][ ]
[ ] [ ] [ ][ ] [ ]{ } [ ] [ ][ ]

[ ] [ ][ ]{ } [ ] [ ] [ ][ ]
[ ] [ ][ ]{ } [ ] [ ][ ] rRRRRRRRI

rRRRXRRRRI

rRRRXRRRR

rRRRX

RβRRRX

RβRRRX

RX

RX

RX

11

1

1
1

111

1

1

1
1

111

1

1

1
1

111
*

1

1
1

111
*

0

1

1
1

111
*

0

1

01
1

111
*

1

01
1

1110

1
1

1
1110

0

*

−−

−−−

−−−

−−

−−

→

−−

→Η

−

→Η

−

−

→Η

−

→Η

−−

→Η

→Η

′′+′′−=

′′+Σ′′′−=

′′+Σ′′′−=

′′+Σ′=

′′+Σ′=







 +′′+Σ′=







Η′Η+Σ′=

Η′Η+Σ′Η=

Η′+Σ′Η=

Η=

βββββ

ββyβββ

ββyββββ

ββyβ

ββyβ

ηββyβ

rβyβ

rβyβ

ryβ

ββ

η

ˆVarˆVarˆˆVarˆVar

ˆVarˆVarˆVarˆVarˆVar

ˆVarˆVarˆVarˆVarˆVarˆVar

ˆVarˆVarVar

ˆVarˆVarVar

limpˆVarˆVarVar

limpˆVarlimVar

ˆVarlimˆVarlim

ˆVarlim

ˆlim

k

k

Var

 

As a check: 
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And so, to summarize, the solution of a β-constrained linear model is the solution of the 

unconstrained model with the substitution of *β  for β̂ , where: 
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10. PARAMETER CONSTRAINTS AS PROJECTIONS  

The formulas above for *β  and [ ]*βVar  may seem cumbersome, perhaps even repugnant.  

However, they become perspicuous when interpreted as a projection.  From Section 6 we 

take the projection formula { }( ) ( ){ } ( ) bAAAAAAAbAx; 11 --
nI,P ′Σ′Σ+′Σ′Σ−=Σ= xx , 

where [ ]xVar=Σ .  But now let the constraint space Ω be { }rRβ:β k =ℜ∈ .  In this case: 

[ ] [ ][ ] [ ] [ ][ ]
{ } [ ]( )ββ

ββββββ

ˆVar,ˆP

ˆVarˆVarˆˆVarˆVark
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Hence, the constrained parameter estimator is the projection of the unconstrained estimator 

according to the metric of the variance of the unconstrained estimator.  Just to corroborate, 

we see that the variance of the constrained estimator, 



The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 22 

[ ] [ ] [ ] [ ][ ] [ ]βββββ ˆVarˆVarˆVarˆVarVar RRRR
1* −

′′−=  accords with the projection variance 

( )[ ] ( ) Σ′Σ′Σ−Σ=ΣΩ AAAA; 1-,PVar x . 

 

Similarly to how we argued in Section 4, [ ]β̂Var  can be Cholesky-decomposed as 

[ ] QQ ′=β̂Var  for some non-singular kk×Q .  So the constrained variance can be factored as 

[ ] ( ){ } QQMQRQRQRQRQIQ 1 ′=′′′′′−= −
k

*Var β , and its rank is that of the idempotent 

matrix M , whose rank equals its trace.  Again, to continue as in Section 4: 

( ) ( ) ( )( ) ( )( ) jkTrkTrTrTr k −=′′′′−=′′′′−= −− RQRQRQRQRQRQRQRQIM 11  

Therefore, [ ] [ ] jˆVarrankjkVarrank * −





=−=






 ββ .  The parameter constraint reduces 

the parameter variance by j degrees of freedom.  In words, *βR  is a degenerate random 

variable, or a constant.  Certainly it is, since by the constraint rR =*β . 

 

All this shows that the solution of a parameter-constrained model is equivalent to the 

projection of the solution of an unconstrained model.  There seems to be a certain 

commutativity between constraining/projecting and solving. 

 

11. INFORMATION AS PROJECTION  

We start with the equation of Section 7: ey +β= ×× 1X kkt , where [ ] ttVar ×Σ=e .  However, 

let us suppose that β is known and needs no estimation.  Our best prediction of y is Xβ, 

whose prediction-error variance is [ ] [ ] [ ] Σ==−=− eyyy VarVarˆVar Xβ .  At this stage we 
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are saying nothing more than ( )Σ,~ Xβy .  But furthermore suppose that we have observed 

ytm×A , where A is of full-row rank.  Name the observed value 1×mb .  The problem is to 

predict y after the observation. 

 

Since ey +β= X , eyb AAXA +β== , where [ ] AAA ′Σ=eVar .  Since y is the same in the 

observation as in the prediction, the observation covaries with the prediction; in fact, 

[ ] [ ] Σ== AAA eeyy ,Cov,Cov .  We can predict y according to the parameter-constrained 

model of Section 9: 
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Although this will work, a simpler and more appealing model can be constructed if one 

allows for zero-dimensional matrices.9  Because all m×0 and 0×n matrices are of rank zero, 

nmnm ××× = 0BA 00 .  This is nothing more than the nullity of the empty summation operator, 

i.e., ( ) ( ) ( ) 0BAAB
0

1
== ∑

=k
kjikij .  The simpler model is: 
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Its solution begins with: 

                                                 
9 It is a windfall for a matrix language to allow for zeros in the dimensions of its arrays, as do APL, J, and R.  
SAS/IML does not; at least it did not in the late 1990s (version 7), when the author last used it. 
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The only thing to give pause here is the inverse of the 0×0 matrix.  But the space of real 0-

vectors, 

0ℜ , contains just one element, viz., the origin.  It is closed under addition and 

multiplication (0+0 = 0×0 = 0), and 0 serves as its identity element.  So in 0ℜ , 00 1 =− .  

Hence, ( ) ( )0000 1 ×=× − .  Therefore, [ ] ( )00×=γ̂Var  and ( )1010 ×=×γ̂ .10  Finally: 
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The variance of its prediction error is: 
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Except for slight notational differences, this solution is the same as that of Section 6.  As 

long as no parameter needs to be estimated (or the parameter dimension is 0×1), the linear 

statistical model treats “m dimensions” of prior information as a projection into a subspace 

of mt −  dimensions. 

                                                 
10 To elaborate on the previous footnote, we have verified that APL, J, and R yield these results.  Therefore, 

they correctly treat ( ) ( )00 as 00 1 ×× − . 
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12. COMBINING ESTIMATES  

It is not uncommon for an actuary linearly to combine two or more unbiased estimators of 

the same quantity.  Of course, it is desirable for the combination to be best.  In the simplest 

situation of independent scalar estimators, the best combination uses weights inversely 

proportional to the variances of the estimators.  But with Gauss-Markov theorem one can 

determine the best linear combination of vector estimators, even if they are not independent. 

 

To frame the problem, suppose that we have n unbiased estimators iŷ  of the same t×1 

vector y, as well as their t×t prediction-error variances [ ]iii ˆVar yy −=Σ .  Suppose also that 

we have the t×t prediction-error covariances [ ]jiij ˆˆCov yyyy −−=Σ , .  Frequently the 

covariances are 0t×t, but there are realistic exceptions.  Stack the estimators and block their 

(co)variances: 
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The variance matrix must be non-negative-definite; but we will assume it to be positive 

definite, hence invertible.  If the weight given to iŷ  is the t×t matrix iW′ , the combined 

estimator will be [ ] Y

y

y

yy ˆ

ˆ
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to be unbiased, [ ] t

t

t

t

t

n I

I

I

W

I

I

WW1 =



















′=



















′′  .  The transpose of this constraint is 
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[ ] ttntntttt IWII =×× .  The best combination will minimize the combined prediction-

error variance [ ]WW YY ˆVar −′ .  Posing the problem in the proper form, we seek to 

minimize [ ] [ ]( ) WWWW
11 −− −′=−′ YYYY ˆVarˆVar  subject to [ ] ttntntttt IWII =×× .  

According to the Gauss-Markov theorem: 

[ ] [ ] [ ]
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If the covariances Σ i≠j are zero, this simplifies to: 
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It is recognizable as the matrix version of the well known rule of weighting independent 

scalar estimates inversely proportionally to their variances.11  Appendix B will provide a 

simple example of covarying estimates, and will outline its importance to conjoint modeling, 

or to modeling in which ultimate paid and incurred losses must be equal. 

                                                 
11 Unlike scalar weighting, a matrix-weighted average can fall outside its extremes, e.g.: 
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..

..

..

..
, yet [ ]420400398 ,∉ .  This is 

due to non-zero off-diagonal amounts (± 0.25) in the weighting matrices.  In practice, such amounts are 
relatively small, and the matrix-weighted averages lie within their extremes.  Cf. Judge [1988, 287]. 
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13. CONCLUSION  

The Gauss-Markov theorem is truly profound.  It provides a lucid basis for solving a wide 

range of modeling and estimation problems, even within the rudimentary matrix 

functionality of Excel.  As the many sections of this paper have demonstrated, it deserves to 

be liberated from being an appendage to the least-squares approach to linear statistical 

modeling.12 

                                                 
12 For a brief history of the least-squares method and the true relation of the Gauss-Markov theorem to it see 
Appendix C. 



The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 28 

 

REFERENCES 

 
[1.] Halliwell, Leigh, “Conjoint Prediction of Paid and Incurred Losses,” 1997 Loss Reserving Discussion 

Papers, Casualty Actuarial Society, 1997, 241-379, 
www.casact.org/pubs/forum/97sforum/97sf1241.pdf. 

 
[2.] Halliwell, Leigh, “Statistical Models and Credibility,” CAS Forum (Winter 1998), 

www.casact.org/pubs/forum/98wforum/98wf061.pdf. 
 

[3.] Halliwell, Leigh, “Chain-Ladder Bias: Its Reason and Meaning,” Variance, 1:2, 2007, 214-247, 
www.variancejournal.org/issues/01-02/214.pdf. 

 
[4.] Judge, George G., Hill, R. C., et al., Introduction to the Theory and Practice of Econometrics (Second Edition), 

New York, John Wiley & Sons, 1988. 
 

[5.] Wikipedia contributors, “Best linear unbiased prediction,” Wikipedia, 
http://en.wikipedia.org/wiki/Best_linear_unbiased_prediction (accessed September 2015). 

 
[6.] Wikipedia contributors, “Gauss–Markov theorem,” Wikipedia, http://en.wikipedia.org/wiki/Gauss-

Markov_theorem (accessed September 2015). 
 

[7.] Wikipedia contributors, “Least squares,” Wikipedia, http://en.wikipedia.org/wiki/Least_squares 
(accessed September 2015) 

 
[8.] Wikipedia contributors, “Mahalanobis distance,” Wikipedia, http://en.wikipedia.org/wiki/ 

Mahalanobis_distance (accessed September 2015). 

http://www.casact.org/pubs/forum/97sforum/97sf1241.pdf
http://www.casact.org/pubs/forum/98wforum/98wf061.pdf
http://www.variancejournal.org/issues/01-02/214.pdf
http://en.wikipedia.org/wiki/Best_linear_unbiased_prediction
http://en.wikipedia.org/wiki/Gauss-Markov_theorem
http://en.wikipedia.org/wiki/Gauss-Markov_theorem
http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/%20Mahalanobis_distance
http://en.wikipedia.org/wiki/%20Mahalanobis_distance


The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 29 

APPENDIX A 

 

GEOMETRIC MATTERS CONCERNING VECTORS IN nℜ  

 
 
In this appendix we will interpret the vector dot product and prove the triangle inequality.  

For n, ℜ∈yx  the dot product ∑
=

=′=•
n

i
ii yxyx

1
yx .  However, this is easily generalized 

with a Σ metric as yx 1−Σ′ .  The Σ-metric triangle inequality is: 

( ) ( ) yyxxyxyx 111 −−− Σ′+Σ′≤+Σ′+  

 

As for the dot product, let ŷ  be the Σ projection of y onto x.  If 0x 1 ≠×n , then x is of full-

column rank, xx 1−Σ′  is 1×1 positive-definite, and ( ) 11xx −−Σ′  exists.  So vector y will Σ-

project as some multiple of x, or βxy =ˆ .  From Section 7, ( ) yxxxβ 111 −−− Σ′Σ′= .  Hence, 

( ) yxxxxy 111 −−− Σ′Σ′=ˆ .  Accordingly, ( ) yxyxxxxxyx 11-1111 ˆ−−−−− Σ′=Σ′Σ′Σ′=Σ′ .  So the Σ-

metric dot product of two vectors is equal to Σ-metric dot product of one vector and the Σ 

projection of the other onto it.  Although ( ) 11xx −−Σ′  does not exist if 0x = , we know that 

the projection of any vector onto 0 is 0.  Hence, our geometric interpretation of the dot 

product is valid for all x and y.  For the Euclidean metric nI=Σ , the projection is the 

perpendicular, and θyy cosˆ = , where θ is the angle between the two vectors with vertex at 

0.  From this follows the well-known formula θyxyx cosyx =′=• . 
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In preparation for the triangle inequality, since Σ is positive-definite, the following 2×2 

symmetric matrix is non-negative-definite: 

[ ] [ ] [ ]












Σ′Σ′

Σ′Σ′
=Σ













′

′
=Σ′

−−

−−

−−
××

yyxy

yxxx
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x
yxyx

11

11
11

11 nn  

It is a theorem that the determinant of a non-negative-definite matrix is non-negative; but we 

can readily prove it here for the 2×2 case.  Such a matrix can be Cholesky factored as 

























d

ba

db

a

0

0
, for real numbers a, b, and c.  This equals 













+ 22

2

dbba

aba
, whose 

determinant is ( ) 2222222 dabadba =−+ , which must be greater than or equal to zero. 

 

Now let ‘~’ stand for the relationship in the triangle inequality: 

( ) ( ) yyxxyxyx 111 −−− Σ′+Σ′+Σ′+ ~  

Because the quantities under all the radical signs are non-negative, the following 

transformations will not affect the relationship: 

( ) ( )

( )

xyyxyyxx~0

yyxx~xyyx

yyxxyx

yyxxyx

yyxx2~yx2

yyxx2~xyyx
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But the expression on the right of the last line is the determinant of our 2×2 non-negative-

definite matrix.  Therefore ‘~’ is ‘≤’.  Thus have we proven the triangle inequality in nℜ for 

every valid Σ metric. 
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APPENDIX B 

COVARYING ESTIMATORS AND CONJOINT PREDICTION 

 
 
This appendix furnishes a simple, but not too contrived, example of combining estimators 

that are not independent.  Let [ ]2σμ,~X i  be independent random variables.  Our task will 

be to estimate the mean μ.  However, we must estimate it from two known statistics, 

( ) 33211 XXXY ++=  and ( ) 2432 XXY += .  Four X variables have been melded into 

two Y variables: [ ]3σμ 2
1 ,~Y  and [ ]2σμ 2

2 ,~Y .  But since 3X  is common to both, they are 

not independent; rather, [ ] [ ] 62,3, 2
3321 σ== XXCovYYCov .  So the first two moments 

of the y vector are: 
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′  subject to [ ] 112 IW11 =× .  By the Gauss-

Markov theorem (the 2σ  cancels, so it’s omitted): 
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So the minimal variance results from combining in a 2:1 = 10:5 ratio.  One who ignored the 

covariance would weight them in a 3:2 = 9:6 ratio, underweighting the first and 

overweighting the second.  The minimal variance itself is:  

[ ] 720σ
18
5σ

31

32

2161

6131
σ3132 222 .⋅==
























 

Since 3σ720σ4σ 222 =<⋅< . , the informational value of the two Y statistics lies in 

between the informational values of three and four independent X statistics. 

 

As for conjoint prediction, the following model combines submodels a and b: 
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One who works through the formulas of Section 8 will find that the solution of the 

combination is identical to the combination of the separate solutions (Halliwell [1998, 

Appendix A]).  Were it not for this good fortune, one would have to model everything in 

order to model anything.  So this combination is trivial; although the submodels are written 

down together, they interact neither in the design matrix nor in the variance structure.  But 

conjoint prediction (Halliwell [1997]) makes use of the fact that paid losses (model a) and 

incurred losses (model b) must ultimately be equal by exposure period.  This constrains the 

variance matrix; the sums of the paid and the incurred errors of each exposure period must 

be equal.  But additionally, it imposes a restriction on the parameters.  The a priori, or prior-

to-any-observation, expected values are [ ] aaaE βX=y  and [ ] bbbE βX=y .  The exposure-

period sums of these paid and incurred vectors must also be equal.  A “semi-conjoint” 



The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 34 

model adds the appropriate β constraint to the trivial combination: 

r0
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β

X0

0X
QRβ ==












⋅
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a
; consequently, aβ̂  and bβ̂  will covary.  This parameter 

covariance will introduce covariance, or off-diagonal blocks, into 
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According to Section 12, one may best combine the semi-constrained solutions 
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Var

yy

yy
 according to the linear constraint that exposure-period sums of paid and 

incurred losses are equal.  Equivalently, in terms of Section 11, one can project the semi-

constrained solution into the subspace of the constraint.  Although a proof of this has so far 

eluded us, it works with examples.  So the Gauss-Markov theorem seems to allow modeling 

temporarily to ignore variance restrictions in order to arrive at a tentative solution that can 

rather easily be collapsed by the hitherto ignored restrictions into the desired solution.  This 

is the meaning of the sentence at the end of Section 10: “There seems to be a certain 

commutativity between constraining/projecting and solving.”  Conjoint prediction by 

collapsing a semi-conjoint model is much easier than fully conjoint prediction; it requires no 

eigen-decomposition, and is amenable to a spreadsheet solution. 
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APPENDIX C 

LEAST-SQUARES VERSUS GAUSS-MARKOV 

Many, probably most, actuaries think in terms of linear regression, rather than in terms of 

linear modeling.  The standard linear-regression problem begins with t observed quantities yj.  

Each observation is associated with a k-tuple of known variables ( )jkj x,,x 1 , on which the 

observation is believed linearly to depend, i.e., kjkjj xxy ββ11 ++=  .  Of course, if kt =  

and the k-tuples are linearly independent, one is merely solving simultaneous equations for 

the βj.  The regression problem arises when kt > , and the equations are approximate: 

kjkjj xxy ββ11 ++≈  .  One then needs to find the values of βj that make 

kjkj xx ββ11 ++  most closely approximate the yj.  A reasonable method, called “least 

squares,” is to find the βj that minimize the sum of the squared errors, i.e., to minimize 

( ) ( )∑
=

++−=
t

j
kjkjjk xxy,,f

1

2
111 ββββ  .  This is a problem well within the capability of 

a first-year calculus student. 

 

The least-squares criterion for fitting, or “regressing,” the best line to data first appeared in 

print in 1805, when Legendre published his Nouvelles méthodes pour la détermination des 

orbites des comètes.  Earlier, in 1801, Gauss had applied the method to predict the 

reappearance of Ceres, which had just been discovered and then lost.  However, he did not 

publish the method until 1806 in his Theoria Motus Corporum Coelestium in sectionibus 

conicis solem ambientium.  Apparently, he did not refer to Legendre; and in the ensuing 

controversy over priority Gauss insisted that he had worked out the method at least as early 
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as 1795, when at the age of eighteen he entered the University of Göttingen.13  The relevant 

point of this interesting story is that in this early astronomical setting, the least-squares 

method was not statistical modeling.  It was applied to deterministically moving objects 

(comets and the newly discovered asteroids).  All uncertainty stemmed from the imprecision 

of the astronomers.  But for the first time it was realized that many economical but “fuzzy” 

observations could be more useful than one costly but “sharp” observation. 

 

Gradually the approximate equations were turned into exact ones with random error terms: 

jkjkjj xx ey +++= ββ11  .  Gauss himself in 1822 stated the optimality of the least-

squares method, an early form of BLUE.  So today we talk of the “Gauss-Markov” theorem 

because Gauss started it.  But the linear algebra and statistical theory that developed after his 

death in 1855 culminated in the work of Andrey Markov (1856-1922).  Even today it is 

common for students to be introduced into linear modeling by way of least squares; many 

texts still refer to the matrix formula ( ) yβ XXX 1 ′′= −  as the OLS (“Ordinary Least 

Squares”) estimator. 

 

How does the least-squares method differ from our version of the Gauss-Markov theorem?  

To put it in modern terms, both deal with estimating the β parameter in the model of 

Section 7: ey +β= X , where [ ] Σ=eVar .  But instead of finding the t×k matrix W that will 

make estimator yβ W′=ˆ  unbiased and of minimal variance, as per the Gauss-Markov 

theorem, the least-squares method seeks the value of β for which Xβ most closely 

                                                 
13 Wikipedia “Least squares” gives an excellent account of this history, which is also recounted in many 
histories of mathematics.  However, there is slight disagreement about some of the dates.  Most historians cede 
the priority to Gauss. 
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approximates y.  “Closeness” here requires distance as measured by the Σ metric.  So the 

least-squares problem is to minimize ( ) ( ) ( )XβXβ 1 −Σ′−=β − yyf .  As with the Gauss-

Markov theorem, X must be of full-column rank and Σ must be positive-definite.  But the 

two approaches are not logically equivalent.  Although they yield the same answer, BLUE is 

a posteriori to the least-squares answer, whereas it is a priori to the Gauss-Markov. 

 

The usual approach to the minimization is by means of multivariate calculus: 

( )

XX2
ββ

XβX2
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1
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−Σ′−=
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f

f y

 

Setting the first derivative to 10 ×k , we derive ( ) yβ 111 XXX −−− Σ′Σ′=~ .  Since the second 

derivative is positive-definite, the critical value β~  is a minimum, as desired.  However, since 

vector differentiation is unfamiliar to many (cf. Judge [1988, Appendix A.16]), we will solve 

the problem algebraically: 
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As in Section 2, the last line is to be taken in a matrix-definite sense.  Moreover, since 

XX 1−Σ′  is positive-definite, the inequality is strict except for β~=β .  Therefore, β~  uniquely 

minimizes ( ) ( ) ( )XβXβ 1 −Σ′−=β − yyf .  Geometrically, the least-squares method drops a 

Σ perpendicular from y to the linear subspace swept by Xβ. 

 

But now that we have a “least-squares” estimator, we must check its “BLUE-ness.”  This is 

the meaning of the sentence above, that BLUE is a posteriori to the least-squares answer.  Of 

course, from our a priori Gauss-Markov approach, we already know it to be BLUE, since it is 

identical to the Section 7 formula ( ) yβ 111 XXX −−− Σ′Σ′=ˆ .  If β~  were not identical to β̂ , β~  

would be either biased or not as good as β̂ ; it would lack either the ‘B’ or the ‘U’ of BLUE. 

 

Finally, despite the historical development from least squares to Gauss-Markov, this is 

neither a “distinction without a difference” nor a matter of taste.  Developing the theory of 

linear statistical modeling from our Gauss-Markov theorem allows us cleanly to solve 

problems that the least-squares approach can solve only with difficulty, if at all – such 

problems as predicting (Section 8), constraining (Section 9), projecting (Section 10), 

incorporating prior information (Section 11), and combining estimates (Section 12). 


	The Gauss-Markov Theorem: Beyond the BLUE
	1.  INTRODUCTION
	2.  STATEMENT OF THE THEOREM AND ITS PROOF
	3. GEOMETRICAL INTERPRETATION WITH A DISTANCE METRIC
	4. PROJECTION INTO THE CONSTRAINT SPACE
	5. VARIANCE AS A METRIC
	6. PROJECTIONS OF RANDOM VECTORS
	7. PARAMETER ESTIMATION IN THE LINEAR STATISTICAL MODEL
	8. PREDICTION IN THE LINEAR STATISTICAL MODEL
	9. LINEAR STATISTICAL MODELS WITH PARAMETER CONSTRAINTS
	10. PARAMETER CONSTRAINTS AS PROJECTIONS
	11. INFORMATION AS PROJECTION
	12. COMBINING ESTIMATES
	13. CONCLUSION
	REFERENCES
	APPENDIX A
	GEOMETRIC MATTERS CONCERNING VECTORS IN
	APPENDIX B
	COVARYING ESTIMATORS AND CONJOINT PREDICTION
	APPENDIX C
	LEAST-SQUARES VERSUS GAUSS-MARKOV

