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frequency, severity, pure premium, reserves, development factors, and so on.
Such analysis often is the basis for estimating futire values of these randam
variables as an important aspect of ratemaking and reserving.

Since the inflationary spiral of the 1970s, the exponential curve has replaced
the straight line as the regression model of choice. The exponential model is
now commenly accepted even by regulators. By fitting an expenential curve, we
actuaries can avoid the underestimation of losses that often results from the
decreasing rate of change that is characteristic of the linear regression
mxdel., However, linear and other polyncmial regression models are still used
in some situations. Occasionally, other families of cawrves, such as logarith-

mic curves or power curves, are swggested as appropriate models.

In most cases, the purpcse of the regression medel is to cbtain a "trend
factor® that accurately reflects what has happened and/or will happen Quring
the time period that interests us. In the linear model, the trend "factor” is
a constant amount of increase or decrease per year. VWhen we fit an expenen—
tial curve, we lock for a constant percentage of amrmal increase or decrease.

Our models yield several tools that are useful for checking the validity of
the trend factor. It is worthwhile to comsider the magnitude of the residuals
(mean sguared error, for example) and whether the residuals show any
discernible patterns over time. But the statistic that is used most often is



the coefficient of determination, commonly called "R-squared.® In imprecise
tems, the coefficient of determination is the proportion of the data's
variability over time that is explained by the fitted curve. But we often use
this statistic as a measure of how well ar model fits the data, If the
coefficient of determination is high (near one), we are happy amd axr job is
done. If it is low (near zero), we consider the model—-or perhaps the data—
nearly useless, ard we lock around for samething else that will serve the same

parpose.

A quotation fraom an actuarial software marmal illustrates this common view:
*This statistic [R-squared] irdicates how good the fit of the line or curve is
to the data points. A zero R-squared implies a poor fit of the line or curve
to the data. . . ." And a large insurer has used the coefficient of deter-
minaticn as the maximm credibility it would assign to a trerd factor.

Unfortunately, the ccefficient of determination, by itself, is a poor measure
of goodness-of-fit.

Low R-Squared/Good Fit

Consider this example, using the linear model for simplicity. Example 1 shows
"data" for 10 years. The datum for each year is an independent cbservation
fram the nommal distribution with mean 50 and variance 1. One would not
expect to see a significant tremd in these data, amd, indeed, the slope of the
fitted line is near zero. Although we can see from the residuals that the
line fits pretty well, the coefficient of determination is only .024. (Note:
Graphs of all examples are apperded following the text.)
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Exanple 1

Linear Model
Distritwtion: Normal(50,1)
Fitted
Year Data _Line_ Residual
1979 48.746 49.425 -0.679
1980 49,914 49.461 0.453
1981 49.246 49.498 ~0.252
1982 50.297 49.535 0.762
1983 48.455 49.571 -1.116
1984 50.088 49,608 0.480
1985 50.559 49.645 0.914
1986 50.173 49.681 0.492
1987 49,336 49,718 -0.382
1588 49.084 49.755 -0.671
Slope 0.037
Coefficient of determinaticn 0.024
Mean squared error 0.446

In Example 2, we have introduced a positive trend into the same sample by
adding one to the second point, two to the third, etc. (Clearly, this is
equivalent to taking the first year's datum from Normal(50,1), the secomd
year's from Normal(51,1), and sc ocn. However, we are avoiding the randam
differences that would result from using data that are independent from those
of Example 1.) We would expect the slope of the fitted line in Bample 2 to
be near ane. It is; in fact, it is exactly one plus the slope in Example 1.
The coefficient of determination for Example 2 is .952. But as the residuals
are identical to those in the first example, we carmct say that this line fits
any better.
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Example 2

Linear Model
Distrikution: Normal (Year-1929,1)
Fitted
Yeay Data Live Residual
1979 48,746 49.425 ~-0.679
1980 50.914 50.461 0.453
1981 51.246 51.498 -0.252
1982 53.297 52.535 0.762
1983 52.455 53.571 ~1.116
1984 55,088 54,608 0.480
1985 56,559 55.645 0.914
1986 57.173 56.681 0.492
1987 57.336 57.718 -0.382
1988 58.084 58.755 ~0.671
Slope 1.037
Coefficient of determination 0.952
Mean squared error 0.446

We could analyze these examples in terms of the egquations that are fourd in
basic texts on regression techniques, but it may be more helpful to discuss
them less precisely. Both examples have the same amount of rardom error (also
known as "white noise"). A amve that fits the data well explains everything
but the rardam error. In both examples, the straight lines do that pretty
well, kut in the first one, there is little systematic variation ("trend") to
beexpla.med The actuary should be concermed not with the propertion of the
data's variation that is explained hut with the magnitude of what is left
unexplained. (Note that ™magnitude" is still a relative term here; we might
view the situation differently if the data in our examples began at five
instead of at 50.)

Certainly ane could construct counteresamples, but the general rule is this:
when the fitted line or crve is steep, the coefficient of determination tends

to be large; when the fitted line or curve is nearly flat, the coefficient of
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determination is likely to be small. But this does not imply that the steep
line or curve fits the "steep data" any better than the nearly horizemtal line
or curve fits the "flat data.” And, in particular, the low coefficient of
determination does not imply that the relatively flat line or curve fits the
data poorly.

High R-Squared/Poor Fit

Ancther example will show that a high coefficient of determination does not
necessarily mean that the selected curve fits the data well. During the
1980s, the rate of inflation decreased substantially. For many lines of
insurance, severity and pure premivm data for these years reflect this
decreasing rate. Still, the exponential model, which assumes a constant
armual percentage charge, prevails in most actuarial trend calculaticns.

This presents a problem. The exponential curve has a convex shape. But with
inflation decreasing, the data points are likely to follow a curve with a
concave shape. Example 3 shows the fitting of an exponential curve to "data®
that follow a concave power curve. (The “data® are not random here, as the
presence of white noise could cbscure what is happening.) Even though the
exponential curve is the wrong shape, the coefficient of determination is
rather high at .946. ‘This fact could easily tempt an actuary to use the
exponential arve's trend factor, which is 9.3% per year.
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Example 3
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Model
"Data" = 25 + SQRT(Year-1977)

Fitted
Year Deta Quve Residual
1979 35.355 40,174 -4.819
1980 43.301 43.916 =0.615
1981 50.000 48,007 1.993
1982 55,902 52.478 3.423
1983 61.237 57.367 3.871
1984 66.144 62.710 3.434
1985 70.711 68.551 2.160
1986 75.000 74.936 0.064
1987 79.057 81,916 -2.859
1988 82.916 89.546 -6.631
Slope percentage 9.314
Coefficient of determinatien 0.946
Mean squared error 12.287

The potential for overestimation is significant. If, for instance, these
data—for 1979 through 1988—were used in ratemaking, the trend problem might
involve making an estimate for 1990. The fitted exponential cuxrve hits 107.0
in 1990, whereas the power cxve is at 90.1. Use of the 1990 value from the
fitted curve would result in an error of 18.7%. But nowhere between 1979 and
1988 is the difference between curves so large.

Without drawing a graph, ane can often detect a poorly fitting auve by
locking at the signs of the residuals. 1In this example, the residuals are
negative, then positive, then negative again, following a clear pattern. When
a curve fits well, the signs of the residuals will appear to be distributed
more randomly.

One obvious solution is to use a more appropriate model——that is, ancther type
of curve. But industry ratemakers--in both campanies and rating bureaus--tend
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to use the exponential model regardless of how poorly it fits. The under-
writers and marketers may then adjust the actuarial indications dowrmard (by a
samevhat arbitrary amount) "because of campetition or "for the sake of rate
stability" before rates are filed or used. A more realistic approach to
trending might lead to better informed ratemaking decisions.
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Trend Example 1
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Trend Example 2
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Trend Example 3
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