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by
Roger M. Hayne
Abstract
This paper explores the collective risk mode! as a vehicle for estimating the probability distribution for
reserves. Though this basic mode! has been suggested in the past and it provides a direct means to
estimate process uncerainty, it does not directly address the potentially more significant problem of

parameter uncertainty. This paper presents some techniques to estimate parameter uncertainty and, to
some extent, also uncertainty regarding projection model selection inherent in reserve estimates.
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TIMATE P
LEVELS FOR LOSS RESERVES

1. Introduction

The collective risk modsl, see for example Beard, Pentikinen and Pesonen [1], provides a conceptually
simple framework to model total claims in the insurance process. in its simplest form this modei
calculates the total loss from an Insurance portfolio as the sum of N random claims chosen from a single
claim size distribution where the number N is itselff a random variable. With some fairly broad
assumptions regarding the number and size of claims we can draw conclusions regarding the various
moments of distribution of total claims. Thus this model seems to be a reasonable choice as a starting

point in estimating the distribution of reserves for an insurer.

The distribution resulting from this simple collective risk model provides an estimate of the potential
variation in total payments assuming all distributions are correct. We often refer to this variation as
process variation, that inherent due to the random nature of the process itself. Not directly addressed in
this simple collective risk model is the possibility that the estimates of the parameters for the underying

distributions, are incorrect. Variation due to this latter uncertainty is often called parameter variation.

Parameter variation is itself an important aspect in assessing the variability inherent in insurance related
estimates. Meyers and Schenker [2] discuss this aspect of collective risk applications. They conclude,
not surprisingly, that for a "farge” volume of claims, that expected to be experienced by most insurers,
parameter uncertainty is a much more significant contributor to overall variability than the random, or

process, portion.
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As indicated above, the collective risk model does not directly address parameter uncertainty nor does it
address the methodology used in obtaining reserve estimates themselves. In practice actuaries often
apply several methods, based on different underlying assumptions, to derive different projections of
required reserves. The actuary then selects a "best estimate" of required reserves, based on the various
projections used, keeping in mind the nature of the data and the assumptions inherent in each of the
methods. Complicating matters further Is the fact that most of the generally accepted actuarial projection
methods currently in use are not stochastic in nature, that is, they do not have specific assumptions
regarding underlying probability distributions. Thus, in many cases, they only provide "point estimates”

without any indication as to the statistical nature of those estimates.

Even if the actuary uses stochastic methods, methods that make assumptions regarding the underlying
distributions, the result will usually be a single distribution of total losses or reserves. It is possible that
different methods may lead to different estimates of the distribution of reserves. This raises another
area of uncertainty that should be considered in estimating probability levels for loss reserves; that of
uncertainty that the model applied is indeed the correct one. This is sometimes termed specification

uncertainty.

Though many of the stochastic methods we have seen attempt to provide estimates of process variation
and sometimes even parameter variation within the framework of the particular mode! those methods do
not provide a convenient means of measuring the possibility that the mode! itself may be incorrect.
Even regression related approaches with regimens in selecting which independent variables to include
can only claim to provide the "best" estimate within a particular family of models and do not generally

address whether another family is indeed better for a particular situation.

For these reasons this paper will deal with an application of collective risk theory to estimate probability

levels in loss reserves. Though the method that we present follows the general approach described in
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Hayne [3] we cover ground not covered there, especially in the area of estimating the impact of

parameter uncertainty in probability ievels.

2. The Collective Risk Model

The basic collective risk model, as described above, can probably be seen best as the implementation of

the following algorithm:

Algorithm 2.1
1. Randomly select N, the number of claims.
2. Randomly select N claims, X, X,,..., X, from the claim size distribution.

3. Calculate aggregate loss as 7= X, + X,+...4+X,.

4. Repeat steps 1 through 3 "many" times,

The distribution of T then represents the distribution of total losses given the distributions of the

individual claims X ; and the distribution of N, the number of claims. Assuming these distributions are

carract the result of this slgorithm provides an estimate of the inherent process variation. It does not,

however, provide a means of incorporating parameter uncertainty.

We will follow Heckman and Meyers {4] and consider a revised collective risk algorithm that incorporates

parameter uncertainty in both the claim count and claim size distributions. We assume that the number

of claims N has a Poisson distribution with mean A, and hence variance Var(N):A. We also assume
that 7 Is a random variable with E(y)=1, and Var(z)=c. The variable y then will be used to reflect

the uncertainty with the selection of the expected ciaim count parameter 2. If y Is assumed to have a
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Gamma distribution then Heckman and Meyers show that the resulting M will have a negative binomial

distribution with

E(N)= 4, and
Var(N) = 2+c2?

In this case Var(N)=E(N), with equality only if ¢ = 0.

As Heckman and Meyers point out, the Poisson distribution assumes that claims during two disjoint time
periods are independent, that the expscted claims in a time interval is dependent only on the length of
the interval and not on the starting point of that interval and that no more than one claim can occur at a
time. They introduce the contagion parameter ¢ to allow for dependence of the number claims in one
time interval on claims in prior interval(s). The above modification with ¢ > 0 assumes that the number
of claims in one interval is positively correlated with the number in past intervals. For example, a

successful liability claim may lead to an increased number of future claims.

Similarly it is possible that the existence of past claims may decrease the possibility of future claims. An
example that Heckman and Meyers point out in this situation is with a group of life insurance policies
where clalms in an earlier period reduces the number of claims in a later period. They model this by
assumning that the final claim count distribution will be Binomial. In this case Var(N) <E(N), which can
be accomplished with an appropriate negative value for ¢, even though a negative value does not make
sense in the original derivation of the distribution for N. We will thus assume that N has either a

Binomial distribution (¢ < 0), a Poisson distribution (c = 0), or a Negative Binomial distribution (¢ > 0).
The maodification of Algorithm 2.1 also reflects uncertainty in the overall mean of the claim size

distribution. For this we assume that # is a random variable with E{ ) =1 and Var(})=b. With these

added distributions Heckman and Meyers present the following modified collective risk algorithm:
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Algorithm 2.2

1. Randomly select a number N from the assumed claim count distribution.
2. Select Nclaims X,, X,,..., X, from the assumed claim size distribution.
3. Randomly select a number g from the assumed distribution.

4. Calculate the aggregate loss as T=3(X, + X, +...+Xy).

§. Repeat steps 1 through 4 "many” times.

We note that in the case that b = ¢ = 0, that is, no parameter uncertainty, Algorithm 2.2 simply reduces to

Algorithm 2.1 with an assumed Poisson claim count distribution.

Following Heckman and Meyers we will assume that § has a Gamma distribution. We follow their

caution that this is selected for its mathematical convenience rather than for a specific property of

parameter uncertainty. We refer readers {0 page 31 of [4] for a further discussion of this assumption.

The collective risk model has some useful properties, for example, if we know the moments of the claim
count and claim size distributions, assuming independence of the various distributions, we can determine
the corresponding moments of the final aggregate distribution. These properties hold for both the
formulation in Algorithm 2.1 and the formulation in Algorithm 2.2. In particular under the above

conventions we have:

E(T) = AE(X) @1
Var(T) = AB( X2 }(1+ b) + ZE2(X)(b + ¢ + bc) @2
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Since Algorithm 2.1 is a special case of Algorithm 2.2 with b = ¢ = 0, equations (2.1) and (2.2) will still
hold. In this case, however, the last term in the formula for Var(7) disappears and equation (2.2)

becomes:

Var(T) = AE{x?) 2.3)

The difference between these two variance equations is notable. In the case of equation (2.3), the

variance of the average claim, i.e. Var(%), will approach 0 as i gets large. However, in the case of
equation (2.3), if either b or ¢ is non-zero, Var{%) approaches E*(X)(b+¢ +bc). Thus introduction of
parameter uncertainty introduces uncertainty in the average that cannot be overcome by increasing the
number of claims, or by diversifying the risk. In financial terms, parameter uncertainty in this manner

introduces undiversifyable risk.

Heckman and Meyers present an algorithm for approximating the distribution of 7 in the case that the
cumulative density function for the claim size distribution is a step function. Since any smooth function
can be approximated within any required tolerance by a step function, this is not a restrictive assumption.

We will use that algorithm in the method presented here.

3. Point Estimates of Reserves

Exhibit 1 presents summaries of various medical malpractice loss statistics that were derived from the
data used by Berquist and Sherman [5]. To keep the numbers to a manageable size, all losses and
claim counts in that paper were divided by 10 and the dates were changed to make the exhibits here
appear more current. In addition, page 2 of Exhibit 1 shows projected ultimate reported claims. This
projection is based on a development factor method applied to reported counts using volume weighted
averages as selected factors. Though the data are hypothetical, they do reflect characteristics of actual

loss data.
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In addition, we included another example of our calculations and estimates of probability levels in the
appendix to this paper. That example is based on the data set used in the Advanced Case Study

session of the 1992 Casualty Loss Reserve Seminar.

As pointed out by Berquist and Sherman a comparison of the trends in average case reserves and
average loss payments, as shown in Exhibit 2, indicates a potential change in relative reserve adequacy.

This change, if it is occurring, could affect the incurred loss projections.

in addition, reference to ratios of closed to projected ultimate claims, as shown in Exhibit 3, seems to
indicate a change in the rate at which claims are being closed. This could affect projections based on

paid losses.

Since there appear to be occurrences that can influence forecasts based on either paid or incurred data
we considered two sets of forecasts; one based on the data shown in Exhibit 1 without any adjustment
and the second based on data adjusted in an attempt to remove the influences of these apparent

changes. The resulting adjusted paid and incurred loss data appear in Exhibit 4.

We used methods similar to those presented in [5] to adjust the paid losses for apparent changes In the
rate of claims closing. We calculated the adjusted incurred as the sum of the adjusted paid losses plus
the product of adjusted average reserves times adjusted claims open. We calculated the adjusted

reserves as suggested In 5).

Exhibit 3 also shows the triangle of adjusted closed claims. We obtained this triangle as the product of

the forecast ullimate reporied claims for an accident times the most recent percentage of uitimate claims

closed at that particular valuation point. For example, the estimate of 210 claims closed for 1889 at 38
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months is the product of 42.3%, the percent of ultimate closed at 36 months for the most recent accident

year (1990) times 487, the projected ultimate claims for 1989.

We used four different projection methods on each set of data; paid loss development, incurred loss
development, a severity projection method and a hindsight average outstanding loss method. in both of
the development factor methods we used an exponential curve fit to the difference of selected
development factors minus 1 to estimate development after 96 months. In the severity projection
method we reviewed the average costs per ultimate claim and inherent trends in those averages at the
various stages of development to "square the triangle” of average payments, see, for example [5] for

examples of this technique.

For the hindsight average outstanding loss method we calculated the average unpaid loss per open and
incurred but not reported (IBNR) claim at various stages of development. We calculated these averages
as the ratios of the difference of initial forecast ultimate losses minus paid losses to date divided by the
difference of forecast uitimate claims minus claims closed to date. We used the unweighted average of
the other three projections as the initial selection in this case. We then reviewed these averages and
inherent trends at each stage of development and selected a representative average for the accident
year currently at that age. We then used the product of that average and the number of open and IBNR
claims as an estimate of the future payments for that year. Our ultimate loss projection for this method

was then the sum of this outstanding loss estimated and the amount paid to date.

Exhibit 5 then shows a summary of the various projections and our weighted average selection, based on
the weights shown in the bottom portion of that exhibit. We judgmentally selected the weights shown but
they reflect our view of the extent that the hypotheses of the indicated projection method fit with what has

been occuming in the data.
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We recognize that these methods and selections are based on judgment and that different actuaries may
have different opinions than we do. However, we believe that the method to estimate variation that we
will present is sufficiently adaptable to accommodate different selections or even different underlying

forecasting methods,

If we had estimates of the variances of the different projection methods ancther weighting presents itself.
If we assume the various projections are independent then the weighted average with the least variance
is that which assigns a weight to a random variable proportional to the inverse of its varlance. This is
intuitively appealing since, in this case, uncertain projections, identified by high variances, are given

relatively less weight than more precise ones.

4. Estimate of Process Variation

We will estimate the process variation, that which is due only to random fluctuation, using the unadjusted
collective risk model as described in Algorithm 2.1. Later we will examine an approach to Include

parameter uncertainty in the estimates and to use Algorithm 2.2

Since we will be using the collective risk model we will need estimates of the distributions of the number
of claims and of the size of individual claims. We will use the results of our reserve forecasts as a

starting point.

Columns (1) through (7) of Exhibit 6 shows the caiculation of indicated reserves and resuiting indicated
average loss per outstanding and IBNR claim by accident year. We will assume that the total
outstanding claims have a lognormal distribution and that the loss data, and corresponding reserves,
represent losses at $500,000 policy limits. We make these assumptions to maintain simplicity in the

presentation. In practice the actuary will need to make appropriate estimates for these distributions.
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We have also selected the coefficient of variation (ratio of the standard deviation to the mean) for the
lognormal distribution, as shown in column (8). Though the selections here are judgmental they are

based on two assumptions:

1. In ratemaking for this line of business we have selected a lognormal distribution with a coefficient of

variation of 5.0 In calculating our increased lirits distributions.

2. As time progresses the book of open and IBNR claims become more homogeneous and thus we

would expect the coefficient of variation to decrease.

In practice we would have to derive estimates for these parameters too. One approach would be to
consider the distribution of open and IBNR claims at various stages of development for older accident
years that are completely, or at least nearly completely, closed out. Such a review would provide better

insight in the selection of the coefficient of variation.

We have selected a lognormal distribution here primarily for its computational convenience. All of the
concepts we will present will apply for most commonly used claim size distributions, though some of the

specific formulae we will use may need to be modified.

Also, for convenience, we will assume that open claims and IBNR claims have the same claim size
distribution and that they are independent. A potential refinement would be to separately estimate the
distributions for open and IBNR claims. Again, this could be accomplished by reviewing distributions for

older accident years, but we will not explore this further here.

There may be some argument with the assumption of independence. It is possible that settlement of

open claims, and resulting precedent, may influence the distribution of IBNR claims, or even that of other
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open claims. The inclusion of the mixing parameter by Heckman and Meyers will essentially affect all
claims in the same way, adjusting the aggregate losses either up or down uniformly, thereby building in
some dependence. We recognize that notwithstanding the use of a mixing parameter our assumptions
may slightly understate the spread of reserves if the distributions for open and IBNR claims are not

independent.

Columns (8) and (10) of Exhibit & show the x4 and o parameters for the selected lognormal distribution.
In this case we selected the following parameterization for the lognormal probability density function:

_(hx"'l-')?
27

e
=

With this parameterization, if X is the lognommal variable, 4 and o represent the mean and standard
deviation respectively of the normal distribution of In(X). In addition, the coefficient of variation (c.v.) for

the unlimited distribution and expected loss limited to L respectively are given by:

cv=ve” -1

E(X|L) =i a{'—%d‘—" - 0') + L[1 - ®( ’"LT“‘)]

Here &(X ) denotes the probability that a standard normal variable will not exceed X. This and other

formulae regarding the lognormal distribution can be found in [6] among other sources. We solved the
first of these equations directly for o. Given o, then, we used numerical methods to estimate the value

of x4 that would yield a mean limited to $500,000 equal to the selected average reserve shown in column

{7). Many commercially available sofiware and spreadsheet packages contain such algorithms, one
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could also write a simple algorithm using interval halving since the function E(X|L) is an increasing

function of x4 for a fixed L.

Exhibit 7 shows the selected step function approximations for the claim size distributions. Since these
distributions will be used as input for the Heckman and Meyers atgorithm, the probability for an indicated
amount does not correspond to the probability that the limited mean will not exceed that amount. Rather
these represent step function approximations for the lognormal distribution which have means equal to

the expected limited losses.

We will assume that the number of open claims is certain, that is, it has 0 variance. This is equivalent to
a contagion parameter c=-J. We will assume that the IBNR claims have a Poisson distribution.
Claims that close without payment may add some technical complexity to the selection of these
distributions. We can include this in a number of ways. Probably the most straight-forward would be to
include a positive probability of $0 losses in the claim size distribution. We note that the positive
probability of a $0 loss may present problems with the algorithm presented in {4]. This practical problem
can be overcome by using a small loss amount such as $0.01 instead of $0 for the claim size distribution
input. Again, in order to keep these discussions relatively simple we will not make this refinement here,

although the example we present in the appendix to this paper does deal with such a situation.

Another potentially complicating factor with these assumptions is the presence of reopened claims. We
have assumed that the claim count data includes a reopened claim as a separate count and we have
thus included provision for reopened counts in our estimates for IBNR claims. Again, we could adjust the
claim count distribution for open claims to accommodate reopens. Another option would be to model

reopened claims separately, similar to the way we treat IBNR claims.
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We note another option in representing the combined distribution of open and IBNR claims. Let 1,
denote the number of open claims and 2, the number of expected number of IBNR claims. We have
assumed that the number of open claims is certain and that the number of IBNR claims has a Poisson
distribution. Then the number of combined claims has mean i, + 4, and varance A,. We see that a

claim distribution with mean 1, + A, using contagion parameter

Ao
(4o +’11)2

will also have varlance equal to Z,. This is one potential short-cut in the calculations. If one assumes
that open and IBNR claims have the same distributions then this assumed claim count distribution could

replace the two separate distributions In the calculations.

We note, however, that this vaiue of ¢ is negative, resulting in the use of a binomial distribution which
has a maximum number of possible claims. This may be undesirable in applications. However, we
calculated aggregate loss distributions using both this single distribution and using separate distributions

for open and IBNR claims and we found no discemible difference in the results.

Making use of the algorithm in [4] we calculated the resulting distribution of aggregate reserves for each
accident year separately. We then used the same algorithm to calculate the aggregate distribution for all
years combined, using the output of the algorithm to estimate the aggregate reserves for individual
accident years. In this case we assumed 1 "claim" and used contagion factors of -1 for each year

(implying a zero claim count variance) to estimate the distribution for aggregate reserves.

The user of this algorithm should be aware that the output provides estimates of the value of the

cumulative density function at selected values of the aggregate reserves. These comespond to the
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valuation of that function at those points. Though this is valuable information, it does not directly provide
a step function approximation to the aggregate reserve function that maintains expected values. We
thus modified the output, similar to the modification for the individual claim size distributions, to obtain
better step function approximations to the indicated cumulative density function before using them as

input for the final calculations.

Exhibit 8 shows the estimated distribution of aggregate reserves for each accident year and for all
accident years combined. To facilitate comparison between the years we show the estimated probability
levels for various multiples of the expected values (shown in the first line). Heckman and Meyers refer

to these ratios as "entry ratios.”

As can be seen from this exhibit, the distributions of reserves for earlier accident years appear to be
more disperse than those for later years. In addition, the distribution of aggregate reserves for all
accident years is quite tight. This is a result of the law of large numbers. Even with this substantial
narrowing of the ranges, in this case random fluctuation alone could result in reserves of more than
110% of the expected value approximately 5% of the time, with an approximate 0.1% chance of
exceeding 120%. In this case roughly 90% of the aggregate reserve distribution falis between +10% of
the expected value. We stress that only accounts for random fluctuations assuming all our hypotheses

are correct. We have not yet addressed uncertainty in these assumptions.

5. Estimate of the Contagion Parameter

We first address uncertainty in the expected claim count parameter, 2. For this we consider projected

ultimate frequencles by accident year as shown in Exhibit 8. A review such as this may be conducted in

conjunction with a periodic rate review and all factors considered in such a review should be included in
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these projections. Here we selected an average annual frequency trend of 2.3% as indicated by an

exponential fit through the frequencies for all years.

Assuming that 1993 will have an estimated 8,700 eamed exposures column (€) shows the indicated 1993
claims assuming the respective historical frequencies, adjusted to 1993 level using the 2.3% assumed
trend. We see that this resulls In an average of 518 claims per year with an unbiased estimate of the
variance of 3,158 as compared with the expected variance of 516 if the distribution were Poisson. We
thus assume a contagion parameter of 0.6099 by solving the equation 3,158 = 516 + ¢ x 5162 for . We
will then assume that the distributions of IBNR claims for all accident years have this same factor to

reflect parameter uncerainty.
8. Estimates of Mixing Parameters

Returning to our ultimate loss, and hence reserve, selections described in section 3 (Point Estimates of
Reserves) we note that our selected weights can be thought of as providing our subjective judgment
regarding the likelihood that the underiying assumptions for the various methods are met in this particular

data set. This may be thought of as a form of Bayesian &-priori probability estimate.

Foliowing this thought, we can calculate the variance of the projection methods about the weighted
average, using the same weights as used in the selections. in particular, if, for a fixed accident year, Z;

denotes the projection for method | and w, denotes the relative weight given to method i then our

selection and corresponding variance can be calculated as:

EZ)=3wz,

i=1

vma=im&rﬂﬂy
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These estimates are shown in column (8) of Exhibit 10. If we then assume that the methods that we
applied consider all different sets of alternative hypotheses then the variance in the methods is an

indication of the overall variance of the estimates, and hence reserves, for a particular year.

As indicated above, we can explain a portion of the variance experienced by process variation and in
uncertainty in the claim counts. In particular, using formula (2.2) separately for open and IBNR claims

we derive:

Var(Z, )= 4o (E(X3|L)-E2(X,|L))

®.1)
var(z,) = 4, E(X?|L) + c2E3(x,|)

The first of these equations assumes a contagion parameter ¢ = — ){lo, and both follow directly from

equation (2.2) with b = 0. With our assumption that the reserves for open and IBNR claims are

independent then the total variance is the sum of the variances.

Columns (1) through (5) of Exhibit 10 summarize estimates from Exhibits 1 and 8. Column (6) shows the

value of E(X 2 |L) using the following formula (see, for example, [6]):

et {2

Using these values and equations (6.1) we calculated the amount of variance that can be explained by

process variation and the contagion parameter. This explained variance is shown in column (7).

As can be seen there, the explained variance exceeds the variance in the selection in accident years

1985 and 1986, but is less for the other years. Thus there is variance in the projections that is not
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explained by process variation or by uncertainty in the claim count projections. We will assume that this
remaining uncertainty is explained by a non-zere mixing parameter, b. For this, we solve the following

equation for b:

var(T) =Y + b4, E(X3|L)+ dol4o - VEX(Xo |t )+ 4, E(X2IL)+ B+ DE(X,|L)] (6.2

Where Var(T) denotes the variance in selected in column (8) and Y denotes the explained variance in
column (7). Column (9) shows the resulting b values. The b values we selected to estimate uncertainty

in the expected value are shown in column (10).

We note that the indicated b parameter increases from 1985 through 1991 but decreases in 1982. This
is primarily due to the decrease In the variance in the selected between 1891 and 1992 because of the
wider range of forecasts for 1991 than 1992. Though it may seem counterintuitive for parameter
uncertainty to decrease, it is possible that the wider range in 1991 may indicate that changes that appear

to have influenced the 1991 forecasts more.

These b parameter estimates provide for parameter uncertainty regarding severity within each accident
year. As yet unanswered is the question of uncertainty affecting all accident years. For this we chose an

approach similar to that taken in estimating the ¢ parameter.

As is often done in ratemaking applications, we used the trend inherent in the historical pure premiums to
adjust historical pure premiums to present separate “observations” of 1993 pure premiums, We then
used the variation inherent in these "observations" as an indication of the amount of overali uncertainty
we have in the 1993 severity estimate. We then assumed, as in our estimates of the contaglon

parameter, that this uncertainty will apply to our total reserve estimates for historical years.
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Calculations shown in Exhibit 11 derive estimates similar to those in Exhibits 9 and 10. Column (1)
shows the limited severity implied by our projections while column (2) simply repeats our assumption that
the losses will have a coefficient of variation of 5.0. Of course, if there were reason to believe that this
coefficient will change over time we could modify the values in column (2). Column (3) then shows the
unlimited severity for a lognormal distribution with the coefficient of variation shown in column (2) that

would yleld the severities limited to $500,000 shown in column (1).

Column (4) shows our selected frequency as shown in Exhibit 9 and column (5) shows the indicated
unlimited pure premium. We then calculated an annual pure premium trend of 18.6% based on all
observations of unlimited pure premiums in column (5). Similar to the analysis in Exhibit 8 we adjusted
these observed pure premiums to our expected 1993 Jevel using this indicated 18.6% trend. We elected
to base our projections on the unlimited pure premium due to the damping effects of a fixed limit on

limited severities.

We note that the usual arguments of additional variability in the unlimited averages that are cited as a
reason for basing ratemaking analysis on limited data do not necessarily apply here. Since the unlimited
loss estimates are based on the limited losses and a smooth distribution that does not change drastically
from year to year, there is little additional fluctuation introduced in considering unlimited losses in this

case.

Column (7) then shows the various indications of 1993 total losses, using the assumed 8,700 exposures
as used in Exhibit 9. Using the estimated 518 claims for accident year 1993 from Exhibit 9, we derive
the indicated unlimited severities shown in column (8). Column (9) then shows the resulting 1993 level
severities limited to $500,000 per claim, again using the lognormal distribution, the coefficients of

variation in column (2) and the unlimited means in column (8).
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Finally the various observations of indicated 1993 total limited Josses are shown in column (10). Based
on these observations we expect $13,054 thousand in losses in 1993 with a variance of 3,082,167
million, assuming the observations are independent. This corresponds to an average of $25,288 per
claim limited to $500,000 and an unlimited average of $29,346. This latter amount is the unlimited
severity necessary for a lognormal distribution with coefficient of variation 5.0 to have a mean limited to

$500,000 equal {o $25,298.

These assumptions, including our selected contagion parameter, then result in an expected variance of
4,027,361 million. This in turn results in a negative value for b when we solve equation 6.2. Thus we
conclude that our assumptions are sufficient to account for observed variation in these estimates and we

will select an overail b parameter equal to zero.

As with calculations without parameter unceriainty, we calculated the aggregate distributions for reserves
for each year separately. In this case we used the selected contaglon parameter and selected b
parameters shown in Exhibit 10. We then convoluted the resulting distributions with a mixing parameter

set to zero.

Similar to Exhibit 8, Exhibit 12 shows the estimated distributions of reserves including these estimates of
parameter uncertainty. Comparing these two exhibits shows the significant impact of Including
parameter uncertainly as described here. For example, without parameter uncertainty 97% of the
estimated 1991 reserves fall within 30% of the expected value whereas less than 58% fall in this range if

parameter uncertainty is included,

A similar observation, though not as dramatic, also holds for the aggregate distributions. Without

parameter uncertainty 80% of losses are within 10% of the expected. With parameter uncertainty only

51% of the losses are in that range. Another comparison shows that the 80% probability level is
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approximately $45 million without parameter uncertainty but is approximately $50 million when
parameter uncertainty is considered. Exhibits 12 and 13 graphically show this comparison for the

cumulative density functions and probability density functions respectively.

7. Conclusions

Now that our presentation is complete, we once again point out that the methodology we presented does
not depend on the choice of the underlying claim size distribution, nor does it require the use of the same
distributions for both open and IBNR claims. Of course, calculations of the limited mean and variance

would change with different claim size distributions but ali concepts and methodology stili apply.

We note that this methodology attempts to recognize uncertainty arising from the process, in the
selection of parameters, and, to some extent, in the selection of reserve forecasting model. We aiso
recognize that much more work is necessary before we have a comprehensive approach to measure all
these sources of uncertainty, However, echoing, Meyers and Schenker, we conclude that parameter

uncertainty can be have a significant impact on the distribution of reserves.
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Exhibit 1

Page 1 of 2
EXAMPLE MEDICAL MALPRACTICE DATA
Incurred Losses
Accident Months of Development
Year 12 24 36 48 60 12 84
1985 $290 $516 $1,0M $1,461 $1,666  $2,090 $2,289  $2,351
1968 483 1,071 1,691 2,284 2,621 3,197 3,222
1987 546 1,194 2,073 3,003 4,240 4,838
1988 a3 1,863 3,214 5,720 6,114
1989 1,123 1,997 5,014 7,373
1990 871 3,348 6,348
1991 1,293 4,890
1992 1,579
Cumufative Paid Losses
Accident Months of Development
Year 12 24 36 48 60 72 84 96
1985 $13 $41 $144 $299 3447 $818  $1,264  $1.582
1988 4 53 202 364 752 1,430 1,898
1987 30 115 248 507 1,140 1,771
1988 5 79 381 977 1,852
1989 21 83 360 1,129
1990 17 159 627
1991 21 157
1992 21
NOTE:

1. Ali dollar amounts are in thousands.
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Accident

Year

1985
1986
1987
1988
1989
1990
1991
1992

Accident

—Year

1985
1986
1987
1988
1989
1980
1991
1892

Exhibit 1

Page20f2
EXAMPLE MEDICAL MALPRACTICE DATA
Reported Claim Count
Months of Development Projected
12 24 =36 48 60 72 84 Ultimpate
107 168 219 252 256 259 261 263 263
102 185 231 269 275 278 280 282
130 251 314 375 387 392 398
135 273 352 421 448 458
138 283 367 467
138 277 362 483
155 279 459
160 500
Cumulative Closed Claim Count
Months of Development
12 24 36 48 60 72 84
32 84 119 137 153 182 208 227
36 89 116 134 165 202 226
42 118 142 195 244 286
31 117 169 232 294
29 144 213 279
33 135 196
41 132
40
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Accident

Exhibit 2

COMPARISON OF AVERAGE PAYMENT AND AVERAGE RESERVE TRENDS

Average Reserve per Open Claim

Year
1985
1986
1987
1988
1989
1990
1991
1992

Indicated
Trend

Accident

Year
1985
1988
1987
1988
1989
1990
1991
1992

Indicated
Trend

Months of Development
24 36 48 60 72 84 96
$3,6903 $5655 $9,270 $10,104 $11,835 $16,519 $19,240 $21,361
7258 10,604 12,948 14222 16,991 23250 24,519
5,864 8,113 10,610 14,367 21,678 28,934
8,346 11,436 15481 25,085 28,039 }
10,110 13,770 30,221 33,213
8,291 22444 34,464
11,158 32,197
12,983
15.6% 29.5% 31.1% 34.3% 32.7% 32.3% 26.8% 1
Average Payment per Closed Claim
Months of Development
0-12 12-24 24-36 36-48 _48-60 _60-72 72-84 84-96
$402 $539  $2.9M $8,620 $9,199 $12669 $17,084 $16,634
110 919 5,487 9,120 12403 18452 19,533
706 1,115 5,644 4,928 12,994 14,948
161 862 5,782 9,477 14,085
724 541 4,003 11,709
518 1,394 7,635
517 1,494
525
12.9% 12.0% 11.5% 6.7% 14.2% 8.6% 14.3%



EXAMPLE MEDICAL MALPRACTICE DATA

Ratios of Closed to Projected Ultimate Claims

Exhibit 3

Accident Months of Development
Year. 12 24 36 48 60 72 84 96
1985 12.2% 31.8% 45.2% 52.1% 58:2% 69.2% 79.1% 86.3%
1986 12.8% 31.6% 41.1% 47.5% 58.5% 71.6% 80.1%
1987 10.6% 29.6% 35.7% 49.0% 61.3% 71.9%
1988 6.8% 25.5% 36.9% 50.7% 64.2%
1989 5.8% 29.0% 42.9% 56.1%
1990 71% 29.2%
1991 8.9% 28.8%
1992 8.0%
@ Adjusted Cumulative Closed Claim Count
[
Accident Months of Development
Year 12 24 38 48 80 72 84 96
1985 21 76 111 148 169 189 211 227
1986 23 81 119 158 181 203 228
1987 32 115 168 223 256 286
1988 37 132 194 257 294
1989 40 143 210] 279
1990 37 133 196
1991 37 132
1992 40
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EXAMPLE MEDICAL MALPRACTICE DATA

Cumulative Paid Losses Adjusted for Closure Rates

Exhibit 4

Accident Months of Development
—Year 12 24 36 48 60 12 84
1985 $2 $34 $11 $396 $623 $919  $1,317 $1,582
1986 0 32 210 620 966 1,417 1,898
1987 7 106 354 817 1,287 1,17
1988 6 123 554 1,272 1,852
1989 24 82 337 1,129
1690 19 163 627
1991 12 157
1992 1
Incurred Losses Adjusted for Closure Rates and Reserve Changes
Accident Months of Development
Year 12 24 36 48 60 72 84 96
1985 $422 $1.315  $1,982  $2371 $2,.227  $2450  $2,383 $2,351
1986 443 1.697 2,417 3,044 2,959 3,304 3,222
1087 640 2,610 3,663 4,634 4,481 4,838
1988 733 3,108 4871 8,008 6,114
1989 861 3,490 5,042 7,373
1990 991 4,185 6,348
1991 1,344 4,890
1992 1,578
NOTE:

1. All doilar amounts are in thousands.
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Accident

Year

1985
1986
1987
1988
1989
1990
1991
1992

Accident

Year

1985
1988
1987
1988
1989
1990
1991
1992

NOTE:

EXAMPLE MEDICAL MALPRACTICE DATA

Ultimate Loss Projections

Unadjusted Methods

Adjusted Methods

Development

Severity Hindsight

Development

Incurred Paid __ Projection _Method Incurred Paid _ Projection _Method _Average
$2,414  $2,300  $2,300 $2,351 $1,902  $1,901
3,399 3,454 3,354 3,180 2,741 2,674
5317 4,536 4,885 4,649 3,519 3,714
7.979 8,149 7,586  $6,797 6,438 5,254 5249  $5413
11,222 9,697 9,818 8,862 7,631 4,878 6,107 6,430
14,746 13,215 11,247 11,049 8,671 7,326 6,877 6,838
22,083 12250 13,372 14,924 9,814 7,591 7,763 8,126
19,360 10,141 17,740 20,673 12,419 9,964 8,717 10,273
Selected Weights
Unadjusted Methods Adjusted Methods
Development Severty Hindsight Development Severity Hindsight
incurred Paid __ Projection _Method Incurred Paid  Projection _Method
2 1 1 2 1 1
2 1 1 8 4 2
2 1 1 9 6 3
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8

1. Ali dollar amounts are in thousands.

Exhibit 5

Severity Hindsight Weighted

$2,242
3,075
4,278
5,806
6,783
7.999
9,263
11,335
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ESTIMATED TOTAL RESERVES
1) @ 3} “) (5) ©) @ ®)
Indicated

Open & Indicated Selected
Selected Losses Indicated Estimated Claims IBNR  Average Coefficient

Accident  Ultimate Paid Reserves Ultimate Closed Claims Reserve of
Year Losses _to Date 1) - (2) glalms to Date . _(4) - (5) {3)/(6)  Varialion
1985 $2,242  $1,582 227 36 $18,333 34
1986 3,075 1,898 1 177 282 226 5 21,018 36
1987 4,279 1,71 2,508 398 286 112 22,393 38
1988 5,806 1,852 3,954 458 294 164 24,110 40
1989 6,783 1,120 5,654 497 279 218 25936 4.2
1890 7,999 627 7,372 463 196 2687 27610 4.4
1991 9,263 157 9,106 459 132 327 27,847 46
1992 11,335 21 11,314 500 40 460 24,596 4.8

Total $50,782  $9,037 $41,745

NOTE:
1. Amounts in columns (1), (2), and (3) are in thousands of dollars.

©®

Exhibit 6

(19)

indicated
Lognormal Parameters

L o

8.59985 1.5908
8.7009 1.6238
8.7279 1.6544
8.7702 1.6832
8.8152 1.7104
8.8520 1.7360
8.8204 1.7602
8.6557 1.7832



Loss
Amount

$50
100
250
500
750
1,000
1,250
1,500
2,000
2,500
3,500
5,000
6,000
7.500
8,500
10,000
12,500
15,000
20,000
25,000
35,000
50,000
60,000
75,000
85,000
100,000
125,000
150,000
175,000
200,000
225,000
250,000
275,000
300,000
350,000
400,000
450,000
500,000

SELECTED CLAIM SIZE DISTRIBUTIONS

Accident Year

Exhibit 7

1985 1986 1087 1988 18989 1900 1991

0.00138
0.00548
0.02612
0.08697
0.10693
0.14405
0.17806
0.21001
0.26564
0.31402
0.39369
0.48100
0.52587
0.58142
0.61120
0.65070
0.70072
0.74028
0.79521
0.83318
0.88178
0.91994
0.93492
0.95108
0.95822
0.96685
0.875¢8
0.98167
0.98559
0.98837
0.99043
0.99200
0.99321
0.99421
0.99583
0.99858
0.99727
0.99777

0.00138
0.00535
0.02476
0.08290
0.10021
0.13495
0.16888
0.19894
0.24955
0.29555
0.37188
0.45649
0.50043
0.55520
0.58482
0.82430
0.67482
0.71518
0.77194
0.81180
0.86369
0.90547
0.92224
0.94053
0.94876
0.95877
0.96956
0.97640
0.98119
0.98464
0.98722
0.98921
0.99076
0.89204
0.99390
0.99517
0.99610
0.99677

0.00156
0.00590
0.02602
0.08446
0.10155
0.13588
0.16730
0.10682
0.24837
0.29337
0.36799
0.45082
0.49391
0.54772
0.57690
0.81584
0.66585
0.70595
0.76270
0.80280
0.85546
0.89839
0.91583
0.93497
0.94366
0.95429
0.96586
0.97328
0.97852
0.98232
0.98519
0.98741
0.98915
0.98061
0.99273
0.99419
0.98526
0.99605

0.00169
0.00625
0.02657
0.086461
0.10097
0.13452
0.165168
0.19392
0.24413
0.28795
0.36071
0.44171
0.48399
0.52693
0.56573
0.80425
0.65394
0.89396
0.75097
0.79156
0.84533
0.88977
0.90804
0.92822
0.93748
0.94885
0.96136
0.96947
0.97525
0.97947
0.98268
0.98519
0.08716
0.98882
0.99128
0.99295
0.99421
0.99514
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0.00181
0.00853
0.02688
0.06435
0.09990
0.13282
0.16247
0.18047
0.23933
0.28201
0.35297
0.43222
0.47373
0.52585
0.5542¢0
0.59242
0.84182
0.68178
0.73903
0.78009
0.83495
0.88087
0.89996
0.92117
0.93099
0.94311
0.95656
0.9853¢
0.97171
0.97838
0.97985
0.98275
0.98497
0.98685
0.98962
0.99156
0.89302
0.99410

0.00194
0.00685
0.02737
0.06453
0.09952
0.13162
0.16085
0.18824
0.23603
0.27775
0.34718
0.42489
0.46570
0.51703
0.54512
0.58283
0.63186
0.67164
0.72896
0.77030
0.82593
0.87299
0.89274
0.91480
0.92509
0.93784
0.95211
0.96155
0.96836
0.97343
0.97732
0.98039
0.98283
0.98491
0.98800
0.99018
0.99182
0.89305

0.00229
0.00786
0.03002
0.06895
0.10488
0.13775
0.16740
0.19508
0.24310
0.28484
0.35397
0.43097
0.47128
0.52191
0.54959
0.58671
0.83494
0.87406
0.73043
0.77110
0.82590
0.87238
0.89195
0.91385
0.92410
0.93881
0.95109
0.88057
0.98745
0.97256
0.97851
0.97963
0.98213
0.98425
0.98742
0.98966
0.99136
0.99263

0.00346
0.01125
0.03951
0.08585
0.12719
0.16384
0.19840
0.22644
0.27766
0.32148
0.39280
0.47050
0.51050
0.56031
0.58723
0.82315
0.66931
0.70839
0.75921
0.79886
0.84700
0.88888
0.90832
0.92573
0.93475
0.94589
0.95833
0.96854
0.97246
0.97685
0.98022
0.98288
0.88500
0.98680
0.98948
0.99137
0.99281
0.99388



ESTIMATED PROBABILITY LEVELS FOR RESERVES

Without Parameter Uncertainty

Exhibit 8

Accident Year
1885 1986 1987 1988 1988 1960 1891 1992  Total
Expected Reserve
$860 $1,177 $2,508 $3,954 $5654 $7,372 $9,106 $11,314 $41745
Ratio fo
Expected Estimated Probability Level
0.3 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.4 0.0195 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0519 0.0202 0.0017 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
0.6 0.1322 0.0743 0.0174 0.0051 0.0004 0.0007 0.0003 0.0001 0.0000
0.7 0.2424 0.1710 00748 00376 0.0005 0.0123 0.0075 0.0031 0.0000
0.8 03635 0.2955 0.1918 0.1386 0.0710 0.0792 0.0626 0.0421 0.0006
0.9 04794 04278 03567 03134 02491 02576 0.2378 0.2095 0.0479
1.0 0.5815 05541 05359 05281 0.5200 0.5200 0.5179 05162 0.5074
1.1 06670 066865 06960 07213 0.7667 07596 0.7749 07981 0.9452
1.2 0.7375 07599 08182 0.857¢ 09140 09070 0.9230 0.8434 (.9990
1.3 0.7962 0.8330 09001 0.9369 09757 09719 0.9805 0.0892 1.0000
14 0.8445 0.8874 09492 0.9753 0.8946 0.9932 09962 09985 1.0000
1.5 0.8842 0.8262 0.9760 09914 0.9990 0.9987 0.9994 09999 1.0000
18 0.9150 0.9530 09894 0.9973 0.9999 0.9998 0.9999 1.0000 1.0000
1.7 0.9384 09708 09956 09992 1.0000 1.0000 1.0000 1.0000 1.0000
1.8 0.9558 0.9823 0.9983 ©.8998 1.0000 1.0000 1.0000 14.0000 1.0000
1.9 0.8685 0.9896 09993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 09777 09938 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.1 0.9844 09965 098998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.2 0.9862 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
23 0.9926 0.9989 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000
24 0.9950 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9967 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
286 0.8978 0.8898 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
27 0.9985 0.9898 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
238 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
29 0.9994 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3.0 09986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
31 0.9997 1.0000 1.0000 1.0000 4.0000 1.0000 1.0000 1.0000 1.0000
32 0.9968 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 14.0000 1.0000
33 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
NOTE:

1.

Reserve estimates are in thousands.
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ESTIMATE OF CONTAGION PARAMETER

M @

Estimated
Accident Ultimate

Year Claims__ Exposures__ (2)/(3) Frequency (5)x8,70

1985 263
1986 282
1987 398
1988 458
1989 497
1990 463
1991 459
1992 500
Indicated Trend
Arithmetic Average

Variance Estimate

Indicated ¢ Value

&)

5,007
4,965
7,719
7,922
11,361
7,525
8,376
8,649

@)

®)

Indicated Selected

4.45%
5.68%
5.16%
5.78%
4.37%
6.15%
5.48%
5.78%

2.3%

Eamed Frequency On-Level

§.34%
6.66%
§.91%
6.48%
4.79%
6.58%
5.73%
5.91%

Exhibit 9

®
Indicated
1993
Claims

579
514
564
417
572
499
514

516
3,158
0.0099
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ESTIMATES OF PARAMETER UNCERTAINTY FOR MEANS

) @
Indicated Lognormal
Accident Parameters
—Year W . O
1985 8.5995 1.5908
1986 8.7009 1.6236
1987 8.7279 1.6544
1988 8.7702 1.6832
1989 8.8152 1.7104
1990 8.8520 1.7360
1991 8.8204 1.7602
1592 8.6557 1.7832
Selected Contagion Parameter:
NOTE:

() “@ 5)
Estimated Expected
Number of Claims  Average
Qpen IBNR Reserve
36 0 $18,333
54 2 21018
106 6 22,393
152 12 24,110
188 30 25,936
166 101 27,610
147 180 27,847
120 340 24,596
0.0099

1. Amounts in columns (8), (7) and (8) are in millions.

®
E(x2|L)

sr—————

2,267
2,920
3,322
3,821
4,366
4,890
5,044
4,280

) &
Vartiance
Explained in

Exhibit 10

Variance  Selected _bvalue _bvalue

69,526 40,192
138,662 71,526
319,139 373,623
539,092 746,201
831,265 2,277,671

1,256,128 4,180,470
1,784,293 9,390,867
2,588,688 8,436,800

® (10)
implied  Selected
-0.0581  0.0000
-0.0477  0.0000
0.0091  0.0091
0.0147  0.0147
0.0574  0.0574
0.0074  0.0974
01742  0.1742
00720  0.0720
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ESTIMATE OF OVERALL MIXING PARAMETER

@)
Indicated
1993

@®)

Indicated
1993

Exhibit 11

(10)
Indicated
1993
Limited

Severity Limited Loss (4)x
Level ~ (6)x8,700 _(7)/516__Severty _(9)x516

$26,202
36,562
27,591
31,007
21,483
32,992
29,502
29,915

4] @ @ “ &) ©) )
Indicated Unlimited Indicated
Unlimited  Pure 1993
Indicated Selected Indicated Pure Premium Unlimited Uniimited
Accident Limited Coefficient Uniimited Selected Premium at 1993 Loss
Year _ Severity of Varation _Severity Frequency _ (3)x(4)
1985 $8,525 5.0 $8,913 4.45% $397 $1,554  $13,520
1986 10,904 5.0 11,572 5.68% 657 2,168 18,866
1987 10,751 5.0 11,399 5.16% 588 1,636 14,237
1988 12,677 5.0 13,605 5.78% 786 1.844 16,046
1989 13,648 5.0 14,736 4.37% 644 1,274 11,085
1990 17.276 5.0 19,081 6.15% 1,173 1,957 17,024
1991 20,181 50 22,692 5.48% 1,244 1,750 15,223
1992 22,670 50 25882 5.78% 1,496 1,774 15,436
Indicated Trend 18.6%
Average (000)

Variance Estimate (000,000)

Average Limited Severity

Cormesponding Unlimited Severity
£{x*|t) (000,000)
Selected 1993 Claim Counts

Explained Variance (000,000)
Implied b value

Selected Overall b value

NOTE:

1. Columns (7) and (10) are in thousands.

$22,916
30,547
23,976
26,599
19,219
27,987
25,415
25723

$11,825
15,762
12,372
13,725
9,817
14,441
13,114
13,273

$13,054
3,082,167
$25,208
29,346
4,536

516
4,027,361
-0.00542
0



Ratio to

1.2

D) b owd ed o md b b

2.1

NOTE:

ESTIMATED PROBABILITY LEVELS FOR RESERVES

Exhibit 12

With Parameter Uncertainty
Accident Year
1985 1988 1987 1988 1989 1990 1991 1092 Total
Expected Reserve
$660 $1,177 $2,508 $3,954 $5854 $7,372 §$9,106 $11,314 $41,745
Estimated Probability Level

0.0008 0.0001 0.0000 00000 0.0000 0.0001 0.0008 0.0000 0.0000
0.0115 0.0024 0.0001 0.0000 0.0008 0.0026 0.0117 0.0008 0.0000
0.0519 0.0202 0.0037 00015 0.0083 0.0211 0.0541 0.0101 0.0000
0.1322 00743 00264 00151 0.0439 0.0779 0.1382 0.0502 0.0001
0.2424 01710 0.09368 00686 0.1284 0.1798 0.2527 0.1400 0.0052
0.3635 0.2955 ©0.2152 0.1851 0.2597 0.3120 0.3775 0.2733 0.0638
04794 04278 03749 03549 04137 04511 04965 04248 0.2630
0.5815 0.5541 0.5421 05401 05630 05789 0.8007 0.5688 0.5476
0.6670 06885 06899 07028 06898 06851 06874 06800 0.7769
0.7375 07508 0.8043 0.82390 0.7879 0.7708 0.7570 0.7840 0.9051
0.7962 0.8330 0.8840 0.9032 0.8589 0.8347 0.8118 0.8527 0.9826
0.8449 0.8873 0.8350 09500 0.9080 0.8818 0.8543 0.9011 0.9856
0.8842 09282 0.9852 09755 0.9409 0.9159 0.8870 0.9341 (0.9944
0.9150 0.9530 09822 09885 0.9623 0.9402 09122 0.9564 0.9977
09384 0.9708 09912 09948 09761 09575 0.9315 09712 0.9990
0.9558 0.9823 0.9958 0.9977 0.9849 0.9697 0.9484 09810 0.9995
0.9685 09805 09980 09950 0.9904 0.9783 0.9578 0.9874 0.9998
0.9777 09939 09981 09996 0.99039 0.9845 0.9667 0.9916 0.8999
0.8844 09965 09996 09998 09961 09888 0.9735 09944 0.9999
0.9892 0.9981 0.9998 09999 09975 0.9919 09788 0.992 1.0000
0.9926 0.9989 0.9999 1.0000 0.9984 09941 0.9830 0.9975 1.0000
0.9950 09994 1.0000 10000 09990 0.9957 0.9863 0.9983 1.0000
0.9867 0.9967 1.0000 1.0000 0.9093 0.9968 0.9889 0.9988 1.0000
0.9978 09998 1.0000 1.0000 09998 09976 0.9910 0.9892 1.0000
0.9985 0.9999 1.0000 1.0000 0.9997 0.9982 0.9926 0.9994 1.0000
0.9980 1.0000 1.0000 1.0000 0.98998 0.9987 0.9939 0.9996 1.0000
0.9994 1.0000 1.0000 1.0000 0.9999 09930 0.9950 0.9987 1.0000
0.9996 1.0000 1.0000 1.0000 0.9999 0.9992 0.8959 0.9998 1.0000
0.9987 1.0000 10000 10000 09999 09934 0.9966 0.9999 1.0000
0.9998 1.0000 1.0000 1.0000 4.0000 0.9986 0.89971 09999 1.0000
09999 1.0000 1.0000 10000 10000 0.9997 09976 0.9998 1.0000

1. Reserve estimates are in thousands,
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Estimated Aggregate Reserve Cumulative Densities

Exhibit 13

Aggregate Reserve (000,000)

Without Parameter Uncertainty With Parameter Uncertainty
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Exhibit 14

Estimated Aggregate Probability Density Functions

333

Reserve Amount (000,000)

With Parameter Uncertainty

- Without Parameter Uncertainty




APPENDIX

This appendix summarizes the analysis of another data set using the methods presented in this paper.
The data used are those provided to the panelists for the Advanced Case Study session of the 1992
Casualty Loss Reserve Seminar, as summarized in Exhibit A-1. The first two pages of that exhibit give a
summary background information regarding the data source while the last three pages give summary
triangles and exposure information. Included are eighteen years of development for eighteen accident
years including data on paid and outstanding losses, claims closed with payment, reported claims, open

claims and eamed exposures.

Qur analysis indicated that there seemed to be changes in the percentage of reported claims that are
paid for the various accident years. It appears that the court decision cited in the background material
resulted in a higher proportion of reported claims being paid than the levels prior to that decision. We
noted other changes in these ratios in the data. We thus selected paid counts, as opposed to reported,

as the denominator in calcutating severities in our severity and hindsight projection methods.

We used four projection methods to estimate ultimate reported counts, The first two were development
factor methods applied to historical paid claims and historical incurred claims (paid claims plus
outstanding claims). The third method estimated ultimate paid claims as the product of the number of
ultimate reported claims and the forecast percentage of ultimate claims that will be paid. We used
development factor methods applied to the historical ratios of paid to closed (defined to be reported
minus open) claims. We considered trends in both the resulting reported frequencies and indicated
percentages paid to temper the leveraging effect of development factor methods for more immature

years,

The fourth method was a hindsight method based on frequencies. This method is similar to what we

used to estimate losses, as described in the main portion of this paper.
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Exhibit A-2 summarizes these prolections and shows our selections and various diagnostics. These
profections indicate an increase In estimated ultimate reported frequency in 1987 after a general
decrease in prior years, as shown in column (12), and a marked increase in the percentage of reported

that are estimated to be paid as shown in column (13).

After an analysis simitar to that for the sample medical malpractice data, we noted that there appears to
be a change in the rate at which clalms are being closed. We thus considered loss projections based on
paid loss data adjusted to remove this apparent change, Exhibit A-3 then shows a summary of our

uitimate foss projections similar to Exhibit 5.

Exhibit A-4 then summarizes the assumptions we used to estimate the distribution of aggregate reserves
before consideration of parameter uncertainty. In this case we assumed that claims closing with
payment would have lognormal distributions with unlimited means equal to the average reserve per
estimated future paid cfaim, shown in column (3). We assumed that all claims closing with payment
would have a coefficient of variation equal {0 1.25 and judgmentally scaled this back as shown in column
(7). Though 1.25 may seem arbitrary and possibly low, its selection was based on discussions with the

source of these sample data.

We have also elecled to combine accident years 1984 and prior. This is due primarily to the relative

scarcity of data for those years and the resulting "noise” in estimates for individual accident years.

As with the analysis in the main section of this paper, we assumed that open and IBNR claims both had
the same loss distribution. Agaln, this is more of a convenience than a requirement of this approach. in
this case, however, we assumed that the distribution of claims closing with payment would be lognormal
and included $0.01 losses in the input distribution with the complement of the probability of a claim
closing with payment. We then adjusted the remaining distribution accordingly. Exhibit A-5 shows an

example using accident year 1888.
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Exhibit A-6 shows the resulting aggregate distributions for the reserves without consideration of
parameter uncertainty, similar to Exhibit 8. As can be seen from this exhibit, the rather large number of
claims results in relatively litle variation in aggregate amounts. Virtually all of the distribution is within

5% of the expected value of $203.2 million.

Exhibit A-7 corresponds to Exhibit 9 and resuits in an estimate for the overall contagion parameter of
0.0097. As shown in Exhibit A-2, however, due to changes that appeared in the data we used several
different forecasting methods to estimate ultimate paid claims with variance among the methods as

shown in column (10} of Exhibit A-2 and summarized in column (2) of Exhibit A-8.

Assuming our forecasts of the percentage of ultimate reported claims that will be paid, we can transiate
these variance estimates for ultimate paid claims to variance estimates for reported claims, as shown in
column {4) of Exhibit A-8. We calculated the amount shown for 1984 and Prior as the sum of the

corresponding amounts for the individual accident years.

We then solved for the contagion parameter, using the ultimate reported count estimates in column (1)
and the variance estimates in column (4) to derive the estimates in column (5). In most accident years,
the variance in the estimates is greater than what would be expected from a Poisson distribution. In
addition to this variance for individual accident years, there is additional variation from year to year as
shown in Exhibit A-7. We thus selected our contagion parameters as the sum of the indicated

parameters in column (5) and the overall indicated parameter shown in Exhibit A-7.

Exhibit A-9 shows our estimates of the mixing parameters for the individual years. Since we assume
that the josses are uniimited we can easily determine the indicated standard deviation, and hence
variance using the unlimited mean and assumed coefficient of variation. Column (10) then shows the
variance explained using the selected contagion parameters from Exhibit A-8 and the claim counts and
claim size variances. Column (11) shows the variance among methods and shows that, except for

accident years 1985 and 1991, the variance in methods exceeds what can be explained by our other
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assumptions. Column (12) gives the resulting implied values for the mixing parameter b while column

(13) shows our selections.

As with Exhibit 11, we also calculated the variation in ultimate losses over the accident years, shown in
Exhibit A-10. In this case the observed variance exceeds the amount that can be explained with the
overall contagion parameter and our estimates of claim count and claim size distributions. This then

implies an additional mixing parameter of 0.00089 shown at the bottom of Exhibit A-10.

We then calculated the individual distributions for each of the accident years separately, using the
estimates of contagion and mixing parameters shown in Exhibits A-8 and A-8. We used the overall
mixing parameter from Exhibit A-10 to reflect additional uncerainty in our final convolution of the

distributions for individual accident years.

Exhibit A-11 then presents a summary of our estimates for the individual years and for the aggregate
reserves. As with the analysis in the main section of this paper, the infroduction of parameter uncertainty
markedly widens the aggregate distribution. Whereas without parameter uncertainty, 90% of the losses
were within 2.5% of the expected, with parameter unceriainty this percentage drops to 33%. Without
parameter uncertainty 99.9% of the reserves were within 5% of the expected while with parameter
uncertainty 60% fall in this range and we would have 1o widen the range to 20% to capture more than

99% of the indicated values. Exhibits A-12 and A-13 show these comparisons graphically.
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Exhibit A-1
Page 1 of 5

BACKGROUND INFORMATION RELATING TO SAMPLE DATA

These data are based on actual bodily injury liability experience for an insurer,
though we havs randomly disturbed the true data to protect the identity of the
insurer. The liability coverage is not particularly long-tailed and does not contain
exposure to continuing damage or latent exposure claims such as asbestos or
pollution.

For your information, the incremental paid counts and amounts and the
incremental reported counts as well as outstanding counts and amounts were all
multiplied by values selected randomly from a lognormal distribution. The
corresponding normal distribution [that of In(X)] had a mean of O and a standard
deviation of 0.05. Thus the data should be close to "real." The exposures
shown have also been modified from the actual data, however the underlying
frequencies and pure premiums remain unchanged from that which would have
arisen from the randomly perturbed data.

We have included five summary triangles:

1. Cumulative Paid Losses. Total loss payments at annual valuations for each
accident year.

2. Outstanding Losses. Carried case reserves, without any actuarial or butk
adjustments, valued at successive year-ends.

3. Cumulative Paid Claims. Total claims closed with payment at annual
valuations.

4. Outstanding Claims. Total claims open at year-end valuation dates whether
or not the claim subsequently closes with payment.

5. Reported Claims. Total claims reported to the insurer, whether or not the
claim subsequently closes with payment.

The accident years shown are real. Losses included are total direct losses and
the insurer has experienced some drift to higher policy limits over time. This drift
has been gradual and somewhat consistent over the time period under
consideration. The exposure counts are not inflation-sensitive but do not reflect
changes in the mix of exposures between lower and higher risk insureds that
may have occurred over time. Similar to the drift in policy limits there has been a
general, and gradual, drift to a greater proportion of lower risk insureds in this
book.

The exposures are relatively homogeneous over time and contain no claims from
outside the United States. There have been no changes in the overall mix of
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Exhibit A-1
Page20f 5

legal jurisdictions affecting these claims. There was, however, a notable legal
decision near the end of 1986 affecting claims under this coverage. You can
assume that this change made it easier to initiate claims and more difficult for
the insurer to settle those claims early as compared to the situation prior to that
time.

You may note a decrease in payments and reported claims during calendar year
1891. This is not the result of the random disturbances we introduced in the
data but is present in the actual data. The Company is unable to provide a
specific explanation as to the reason for this decrease.
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Accident

—Year
1974
1975
1976
1977
1978
1979
1980
1881
1882
1983
1984
1985
1986
1887
1988
1989
1990
1991

Sample Data for Advanced Case Study Exhibit A-1
Page3of S
Cumuiative Paid Losses
Months of Development
12 24 36 48 3] 72 84 96 108 120 132, 144 156 168 180, 192 216
$267 $1,975 $4567 $7,375 §$10,661 $15232 $17,888 $18541 $18937 $19,130 $19,189 $19,208 $19,234 $19234 $19,246 $19246 $19246 $19,246
310 2,809 5,686 9,386 14884 20654 22017 2528 2772 2821 23042 23,060 BT BT B2 W27 23159
370 2,744 7.281 13287 19773 23888 25174 25819 26049 26180 26268 26364 2637 26379 26397 26,397
577 3877 9,612 16,962 23,764 26,712 28393 20656 29839 29944 29997 29,999 29,999 30,049 30,049
509 4,518 12,067 21,218 27,184 29617 30,854 31,240 31598 31,888 32002 31,947 31,965 31,966
630 5,763 16,372 24,105 29,091 32,531 33878 34185 34200 34420 34479 34,498 34,524
1,078 8,066 17518 26,091 31,807 33,883 34820 35482 35607 35937 35957 35962
1,646 9,378 18034 26652 31,253 33376 34287 34985 3512 35161 35172
1,754 11256 20,624 27,857 31,360 33,331 34,061 34227 34317 34,378
1,997 10,628 21,015 29014 33788 36329 37446 37,571 37,681
2,164 11,538 21548 29,167 34440 36528 36950 37,009
1,922 10,939 21,357 28468 32982 35330 36,059
1,962 13,053 27,869 38560 44,461 45,988
2320 18086 38,099 51,953 58029
3343 24806 52054 66203
3847 34a7v 9232
6,090 33,392
5,451
Claims Closed with Payment
Months of Devel
12 24 36 48 60 72 84 96 108 1 1 144 168 1 192 216
268 607 858 1,090 1,333 1,743 2,000 2076 2,113 2129 2137 2141 2143 2143 2145 2,145 2,145 2145
294 681 913 1,195 1,620 2076 2,234 2,283 2,320 2,331 2,339 2341 2343 2343 2,343 2,343 2,344
283 €42 961 1,407 1,984 23715 2,504 2,549 2,580 2,590 2.59% 2,600 2602 2,603 2,603 2603
274 707 1176 1,688 2,295 2,545 2,689 2777 2,809 2,817 2824 2,825 2,825 2826 2626
269 €58 1,28 1,819 2,217 2,475 2613 2,671 2,691 2,706 270 2,711 2,714 217
249 7 1,581 2,101 2,528 2816 2,930 2,961 2973 2,979 2,986 2,988 2,992
305 1,107 1,713 2316 2,748 2942 3,025 3,049 3,063 3.077 3,079 3,080
343 1,042 1,608 2,260 2,596 2734 2801 2,835 2,854 2,858 2,860
350 1,242 1922 2407 2,661 2,834 2,887 2,902 2911 2915
428 1,257 1841 2,345 2,683 2,853 2,908 2,920 2925
201 1,004 1,577 2,054 2,406 2,583 2,622 2,636
303 1,001 1,575 2,080 2,444 2,586 2,617
318 1,055 1,906 2524 2874 2958
343 1,438 2,384 3172 3,559
391 1,671 3,082 3771
433 1,841 3,241
533 1923
339
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Sarnple Data for Advanced Case Study Exhibit A-1
PagedolS
Cumulative Reported Claims
Months of
12 25 K] 48 1) 12 84 96 108 120 132 144 156 168 180 192 216
1912 3, 3.945 4,057 4,104 4,149 4,155 4,164 4,167 4,169 4,169 4,168 4,170 4170 4170 4170 4,170
2,219 3,302 3Ns 4,462 4,618 4,673 4,696 4,704 4,708 4711 4712 4,716 4,716 4,716 4,716 4,716 417
2347 3,702 4,278 4,768 4918 4,983 5,003 5,007 5012 5012 5013 5014 505 5,015 5015 5,015
2,983 4,348 5,055 5,696 5818 5,881 5,684 5802 5,896 5,807 5,900 5,900 5,900 5,900 5,900
2,538 3,906 4,633 5123 5,242 5,275 5,286 5,292 5,288 5,302 5,304 5304 5,306 6,306
3,548 5,196 5,779 6,206 6313 6,329 6,339 6,343 6,347 6,347 6,348 6,348 6,348
4,583 6,106 6,656 7.032 7128 7,139 7447 7.180 RAL] 7,153 7154 7154
4,430 5,967 6510 8,775 6,854 6,873 6,883 6,889 6,892 6,894 6,895
4,408 5,848 6,264 6,526 6,571 6,588 6,594 6,566 5,600 6,602
4,861 5437 6,969 7134 7196 7,206 721 7212 7.214
4,229 5645 6,053 6,419 6,506 6,523 6529 6,531
3727 4,830 53 5M7 5,177 5,798 5,802
3,561 5,045 5,656 6,040 6,096 6111
4,259 6,049 6,767 7,206 7282
4,424 6,700 7548 8,105
5,008 7407 8,287
4,889 7314
4,044
Qutstanding Claims
Months of Development
A2 4 % 48 60 0 2 0 g4 96 108 120 132 _isd 196.. 168 180 1% 204 216
1,384 1.33% 1,462 1,660 1,406 772 406 191 b ] 57 3 13 3 4 0 o ] 0
1,289 1,727 1,730 1913 1,310 649 358 167 73 30 9 6 4 2 2 1 1
1,605 1977 1,947 1,708 1,006 540 268 166 79 48 32 18 14 10 10 T
2,101 2,159 2,050 1,735 988 582 332 139 €6 38 14 21 21 8 3
1,855 1,943 1817 1,384 830 450 193 93 56 3 15 9 T 2
2,259 2025 1.548 1273 752 340 150 68 3B 24 18 13 4
2,815 1,991 1,558 1,307 540 28 88 55 28 14 8 6
2,408 1873 1,605 954 480 28 115 52 7 15 1
2,388 1,838 1,280 819 354 163 67 44 2 10
2,641 1,765 1.082 663 335 134 62 M4 18
2417 1,654 896 877 284 20 42 15
1,924 1,202 o941 610 268 o8 55
1810 1,591 956 648 202 o4
2273 1,792 1,059 626 242
2,403 1,966 1,166 693
2,471 2,009 1,442
2642 2,007
2,366
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Sample Data for Advanced Case Study

Exhibit A-1
Page5of 5

$6,967
11,306
11,064
14318
15,070
16,470
16,351
15,012
16,218
16,958
15,806
15,384

24 146
26,947
30,574
34,128

Accident

—Year _12_ 24
1974
1975 6 617
1976 7,658
1977 8,735
1978 8,722
1979 9,349
1980 11,145
1881 10,933
1982 13,323
1983 13,899
1984 14,272
1585 13,901
1988 15,952
1987 2772
1968 25,216
1989 24,961
1990 30,389
1991 28,194

Accident  Eamed

—Year Exposures
1974 11,000
1975 11,000
1976 11,000
1977 12,000
1978 12,000
1979 12,000
1980 12,000
1981 12,000
1962 11,000
1983 11,000
1984 11,000
1985 11,000
1985 12,000
1987 13,000
1388 14,000
1989 14,000
1990 14,000
1991 13,000

13,773
13,655
14,807
15,257
14,320
14,636
14,728
12,676
12,414
10,156
12,539
16,018
18,397
17,950
19,621

$12476 $11.919

14,386
13,352
12,678
11,188
10,574
1,273

__@_.ﬂ__.L_ﬁ_JE_JN__QLJﬂ_J&._Jﬁ__M.JﬂL_EA__ﬂL

$8,966
10,593
7592
7,741
5,959
6,561
5,159
5,107
3,355
4,112
3,604
3,808
2929
3373

$5,367
4234
4064
4,355
3,473
2,864

$3,281
2,110
1,895
2,132
1,531
1328
1,290
1,400
613
576
379
627

Outstanding Losses
Months of Development
$1,524 $667 $348
1,051 436 353
1,003 683 384
910 438 r<]
942 547 286
784 424 212
573 405 134
564 %68 120
388 192 11
426 331
159

Page S

$123
93
216
176
177
146
81
a3

$18
10
Le]
101
67
38

5
57
32

7

5
50
14

33

3



Exhibit A-2
SAMPLE BODILY INJURY UABILITY LOSS DATA

Projections of the Ultimate Number of Ciaims Closed with Payment

N @ @) “ ©) ©) @ ® @) (10)
Indicated
Selected Welgh Variance
Accident Devel Percent  Hindsight ] t Percent Hindsight Weighted in Selected

_Year _Paid rmcuged Paid E&M Eagd Incurred Paid = Freguency Average Methods

1974 2,145 2,145 2,143 1 0 ] 2,145 00
1975 2,344 2,345 2,345 1 0 0 2,344 0.0
1976 2,603 2,610 2,608 1 1] [ 2,603 0.0
1977 2,826 2827 2,828 1 0 [ 2,826 Q0.0
1978 2,718 2,715 2,716 1 1] 0 2,718 0.0
1979 2,994 2987 2,996 1 0 Q 2,994 0o
1980 3,085 3,075 3,083 1 1 1 3,081 18.7
1981 2,865 2,857 2,864 1 1 1 2,862 127
1982 2,924 2,907 2911 1 1 1 2,915 53.7
1983 2,941 2,819 2930 1 1 1 2,930 80.7
1984 2,661 2,820 2640 2,647 1 1 1 1 2,642 2185
1985 2,660 2,626 2,643 2,639 1 1 1 1 2,642 1475
1986 3,056 2,978 3,023 3,018 1 1 1 1 3,019 766.8
1987 3,879 3,676 3,813 3,728 1 2 2 3 3755 45966
1988 4718 4,279 4,585 4373 1 2 2 3 4,446 23,0489
1989 5233 4,540 5,014 4641 1 2 2 3 4,783 60,9765
1990 5,398 4516 5,137 4,821 1 2 2 3 4,896 84,230.1
1991 3,903 3,990 4,574 4,447 1 2 2 2 4,275 769720
{11) (12) {13) {14) {15} (16) (17 (18) (19)
Future
Indicated  Percent
Estimated indi d indicated Number Number Number  Future Paid

Accident Ultimate Reported Percent Reported Number IBNR Paid Paid (18y

Year  Reporfed Fregquency _ Paid to Date Open = (11)-(14) _toDate  (9-{17) KI5}+(16)]
1974 4,170 0.379 51.4% 4170 Q [+] 2,145 0 -

1975 4,719 0.429 49.7% 4717 1 2 2,344 0 0.0%
1976 5,016 0.456 51.9% 5,015 7 1 2,603 0 0.0%
1977 5,904 0.492 47.9% 5,900 3 4 2,826 0 0.0%
1978 5,308 0.442 51.2% 5306 2 0 2,717 1 50.0%
1678 6,348 0.529 47.2% 6,348 4 ] 2,992 2 50.0%
1980 7,154 0.596 43.1% 7.154 6 0 3,080 1 16.7%
1981 §,900 0.575 41.5% 6,895 11 5 2,860 2 12.5%
1982 6,602 0.600 44.2% 6,602 10 0 2,915 ] 0.0%
1983 7216 0.656 40.6% 7214 18 2 2,925 5 25.0%
1984 6,534 0.594 40.4% 6,531 15 3 2,636 6 33.3%
1985 5,808 0.528 45.5% 5,802 55 1] 2617 25 41.0%
1986 6,120 0.510 49.3% 6,111 94 9 2,958 61 59.2%
1987 7,319 0.563 51.3% 7,282 242 37 3,558 166 70.3%
1988 8,232 0.588 54.0% 8,105 693 127 377 675 82.3%
1989 9,002 0.643 53.1% 8,287 1,142 718 3,241 1,542 83.0%
1990 8918 0.637 54.9% 7,314 2,007 1,604 1,923 2,973 82.3%
1991 7,982 0614 5§3.6% 4,044 2,366 3,938 339 3,938 62.4%
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Exhibit A-3
SAMPLE BODILY INJURY LIABILITY LOSS DATA

Projections of the Uitimate Losses

Paid Methods Adjusted
Unadjusted Paid Methods [ncurred for Claims Closing Chang
Accident Devel  Severity Devel- Devel-  Severity Weighted
_Year  opment  Method Hindsight opment _opment Method Hindsight Average
1974 $19,246 $19,245 $19,246 $18,246 $19,245 $18,246
1975 23,159 23,159 23,162 23,161 23,159 23,160
1976 26,397 26,397 26,430 26,400 26,397 26,406
1977 30,049 30,049 30,054 30,061 30,063 30,057
1978 31,996 31,994 31,971 32,021 32,023 32,003
1979 34,559 34,563 34,510 34,572 34,572 34,554
1980 36,012 36,023 35955 36,012 36,011 35,999
1981 35,221 35,231 35131 35,224 35217 35,198
1982 34,478 34,464 34,344 34,426 34,423 34,416
1983 37,941 37,864 37,811 37,768 37,765 37,812
1984 37,474 37,371 36,979 37,214 37,205 37,205
1985 38,715 36,505 $36,409 36,543 36,394 36,407  $36,429 36,463
1986 47,818 47,338 47,044 46,916 47,083 47,054 47,055 47,117

1987 63,861 62,577 62,799 60,585 61685 61571 62,844 62,173
1988 83,555 80,717 79,763 74,708 78,748 78,001 79,268 78,809
1989 99,338 94,800 50,936 84444 91348 89375 91514 90,845
1990 110,157 105,279 94,068 92617 102640 95848 96,509 98,101
1991 127,250 104,212 94,090 87,770 312,670 91,947 96,203 94,044

Selected Weights

Paid Methods Adjusted Indicated

Unadjusted Paid Methods incurred for Claims Closing Changes Variance
Accident Devel  Severity Devel- Devel-  Severity in Selected

Year opment Method Hindsight opment _opment  Method Hindsight Methods
1974 1 1 2 2 2 0
1975 1 1 2 2 2 2
1976 1 1 2 2 2 194
1977 1 1 2 2 2 31
1978 1 1 2 2 2 453
1979 1 1 2 2 2 659
1980 1 1 2 2 2 655
1981 1 1 2 2 2 1,547
1982 1 1 2 2 2 2,102
1983 1 1 2 2 2 3,455
1984 1 1 2 2 2 25,279
1985 1 1 2 2 2 2 3 7,936
1986 1 1 2 2 2 2 3 50,268
1987 1 1 2 2 2 2 3 876,278
1988 1 1 2 2 2 2 3 4,889,756
1989 1 1 2 2 2 2 3 13,592,826
1990 1 1 2 2 2 2 3 26,807,766
1991 0 1 2 2 0 2 3 20,489,727

1. Dollar amounts are in thousands.
2. Varlance amounts are in millions.
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1) @ 3 @ ]
indicated
Indicated Average
Fulure Claimto
Accident indicated Paid be Paid Total Number
Year  Reserves _Claims (W2 _Open IBNR
1984 &
Prior $404 17 $23,765 77 17
1985 404 25 18,160 55 -]
1986 1,129 61 18,508 94 9
1987 4,144 196 21,143 242 37
1988 12,606 675 18,676 693 127
1888 31,613 1,542 20,501 1,142 715
1990 64,708 2973 21,766 2,007 1,604
1991 88,593 3,938 22,508 2,366 3,938
Total $203,198 9,408 $21,598 6,599 6,436
NOTE:

SAMPLE BODILY INJURY DATA

Summary Reserve and Claim Indications

1. Amounts in column (1) are in thousands.

345

6)
Selected
Percent
fo be
Paid (2)/
[(4)+(5}]

18.1%
41.0%
59.2%
70.3%
82.3%
83.0%
82.3%
62.4%

72.2%

Exhibit A-4

M

Selected
Coefficient
of
Variation

1.060
1.075
1.100
1128
1.150
1475
1.200
1.225



Exhibit A-S
SAMPLE BODILY INJURY DATA

Severity Input for Accident Year 1986

Selected
Input
Step Function Distribution
Loss Approximation 408 +
Amount  for Lognormal 592 x (1)
$0.01 - 0.40800
950 0.00007 G.40804
2,316 0.02575 042324
4,358 0.11754 047758
7.147 0.26685 0.56598
10,625 0.43325 0.66454
14,909 0.58465 0.75411
19,994 0.70653 0.82627
25,902 0.79769 0.88023
32,651 0.86274 0.91874
40,258 0.90778 0.94541
48,743 0.93837 0.96352
58,118 0.95890 0.97567
68,399 0.97260 0.98378
79,598 0.98170 0.98917
91,728 0.98774 0.99274
104,801 0.89176 0.99512
118,828 0.99444 0.99671
133,822 0.99623 0.99777
149,791 0.99743 0.99848
166,746 0.99824 0.99896
184,696 0.99879 0.99928
203,651 0.99916 0.99950
223,619 0.89942 0.99966
244,608 0.99959 0.99976
266,629 0.99971 0.99983
289,687 0.99980 0.99988
313,791 0.99986 0.99992
338,949 0.99990 0.99994
365,168 0.99993 0.99996
392,455 0.99995 0.99997
420,817 0.99996 0.99998
450,261 0.99997 0.99998
480,793 0.99998 0.99999
512,420 0.99999 0.99999
545,148 0.99999 0.99999
578,984 0.99999 0.99999
613,932 0.99999 0.99999
650,000 1.00000 1.00000
NOTE:

1. The amounts in column (1) are based on
a lognormal distribution with mean 18,508
and coefficient of variation 1.100.
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Ratio to
Expected
0.300
0.500
0.600
0.700
0.750
0.800
0.825
0.850
0.875
0.800
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.280
1.275
1.300
1.350
1.400
1.500
1.600
1.800
2.000
2.500
3.000

NOTE:

1. Dollar amounts are in thousands.

Estimated Probability Levels for Reseves Without Parameter Uncertainty

SAMPLE BODILY INJURY DATA

Exhibit A-8

Accident Year
1984 &
Prior 1985 1988 1987 1988 1989 1980 1991 Total
Expected Reserve
$404 $404 $1,129 $4,144 $12808 $31,813 $64,700 $88,593 $203,198
Estimated Probability Leve!

0.0030 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0433 0.0117 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0986 0.0445 0.0020 00000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1864 0.1189 0.0208 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.2398 0.1703 0.0502 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
0.2878 0.2342 C.1024 0.0088 0.0000 0.0000 0.0000 0.0000 0.0000
0.3281 0.2693 0.1383 0.0205 0.0000 0.0000 0.0000 0.0000 0.0000
0.3580 0.3062 0.1813 0.0424 0.0005 0.0000 0.0000 0.0000 0.0000
0.3903 0.3443 0.2305 0.0792 0.0034 0.0000 0.0000 0.0000 0.0000
0.4217 0.3833 0.2849 0.1348 0.0166 0.0013 0.0000 0.0000 0.0000
04530 0.4228 0.3433 0.2008 0.0584 0.0132 0.0013 0.0013 0.0000
0.4842 0.4622 0.4048 0.3028 0.1533 0.0727 0.0242 0.0242 0.0009
0.5149 0.5014 0.4668 0.4079 0.3116 0.2388 0.1685 0.1665 0.0458
0.5451 05398 05285 05177 05404 0.5089 0.5050 0.5050  0.4851
0.5744 0.5770 0.5883 0.6238 0.7019 0.7683 0.8340 0.8340 0.9488
0.6028 0.8130 0.6449 0.7187 0.8462 0.9222 0.9715 0.9715 0.9994
0.8303 0.8475 0.6973 0.7985 0.9329 0.8818 0.9975 0.9875 1.0000
0.6557 0.6802 0.7449 0.8618 0.9752 0.9970 0.9999 0.9999 1.0000
0.6820 0.7110 0.7876 0.9080 0.9921 0.9997 1.0000 1.0000 1.0000
07063 0.7397 0.8251 09422 0.9979 1.0000 1.0000 1.0000  1.0000
0.7291 07685 0.8572 009846 08995 1.0000 1.0000 10000  1.0000
0.7507 0.7913 0.8846 0.9792 0.9999 1.0000 1.0000 1.0000 1.0000
07710 08140 0.9077 0.9880  1.0000 1.0000 1.0000 1.0000  1.0000
0.7902 0.8348 0.9268 0.8933 1.0000 1.0000 1.0000 1.0000 1.0000
0.8082 0.8537 0.9423 0.9964 1.0000 1.0000 1.0000 1.0000 1.0000
0.8250 0.8709 0.9540 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000
0.8548 0.9002 0.9730 0.8995 1.0000 1.0000 1.0000 1.0000 1.0000
0.8803 0.9236 0.9842 0.9899 1.0000 1.0000 1.0000 1.0000 1.0000
0.8202 0.9563 0.9948 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
09478 08757 098984 10000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8786 0.9928 0.99%9  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
0.9915 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9991 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Exhibit A-7
SAMPLE BODILY INJURY DATA
Selection of Overali Contagion Parameter
indicated Indicated

Ultimate Selected 1992
Accident Reported On-Level Claims

_Year  Frequency Frequency (2)x13,000
1874 0.379 0.57T1 7423
1975 0.429 0.831 8,203
1976 0.456 0.656 8,528
1977 0.492 0.892 8,908
1978 0.442 0.608 7.904
1979 0.529 0.711 9,243
1980 0.598 0.783 10,179
1981 0.575 0.738 8,594
1982 0.600 0.753 9,789
1083 0.658 0.805 10,465
1984 0.594 0.713 9,269
1985 0.528 0.619 8,047
1986 0.510 0.585 7,805
1987 0.563 0.631 8,203
1988 0.588 0.644 8,372
1989 0.643 0.688 8,044
1990 0.837 0.667 8,674
1991 0.614 0.628 8,184

Indicated

Trend 2.3%
Arithmetic Average 8,756
Estimate of Variance 753,387
Indicated Overall Contagion

Parameter 0.0097
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Accident
Year
1984 &
Prior
1985
1986
1987
1988
1988
1880
1991

O

Estimated
Ulitimate
Reported

65,869
5,808
6,120
7,319
8,232
9,002
8,918
7,982

SAMPLE BODILY INJURY DATA

Selected Contaglion Parameters

ed
Indicated

@

Variance Estimated
in Selected Proportion Reported Contagion Conlagion
Methods Paid  {2YI(3)x(3)] Parameler Parameter

384.2
1475
766.8

4,596.6

23,048.9

60,976.5

84,230.1

76.972.0

45.5%
49.3%
51.3%
54.0%
53.1%
54.8%
53.6%
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@
Estimated
Variance
in

1,338.7
7125
3,154.7
17,4664
79,042.8
216,258.8
279,462.0
267,918.8

&

Indicated
Individual

0.0000
-0.0002
-0.0001

0.0002

0.0010

0.0028

0.0034

0.0041

Exhibit A-8

®

Selected

0.0087
0.0008
0.0098
0.0088
0.0108
0.0123
0.0131
0.0138



SAMPLE BODILY INJURY DATA

Estimates of Mixing Parameters

Exhibit A-9

) @ (&)] “) ®) ® Y]
Estimates Based on Claims With Payment e(x?)
Selected Indicated Based on
Estimated Coefficient Standard  Indicated Indicated Reported
Accident Average of Deviation Variance E(X®}  Percent Claims
Year . _Reserve Varation _(1)x(2) (3x(3) . (H+(1)x(1) _ Paid {5)x(6)
1984 &
Prior  $23,765 1.050  $24,953  622.665 1,187.440 18.1% 214.927
1985 16,160 1.075 17,372 301.786 582.932 41.0% 230.802
1986 18,508 1.100 20,359  414.481 757.027 59.2% 448.160
1987 21,143 1.125 23,786 585,768 1,012.794 70.3% 711.994
1988 18,678 1.150 21,477 461.279 810.072 82.3% £666.689
1989 20,501 1.1475 24,089  580.264 1,000.555 83.0%  830.461
1990 21,766 1.200 26,119 682.213 1,155.971 82.3% 951.364
1991 22,508 1.225 27,572 760.232 1,266.842 62.4% 790.509
® ©) (10) a1 (12 (13)
Estimated Variance
Accident  Number of Claims  Explained in Implied  Selected
Year Open IBNR Variance Selected b Value _bValue
1984 &
Prior 77 17 18,830 34,377  0.1161 0.1161
1985 55 6 11,680 7,936 -0.0256  0.0000
1986 94 9 34,969 50,268 0.0138  0.0138
1987 242 37 148,177 876,278 00544  0.0544
1988 693 127 423,955 4,889,756  0.0379  0.037¢9
1989 1,142 715 3,027,679 13,592,826 0.0200  0.0200
1990 2,007 1,804 13,618,136 26,807,766 0.0062  0.0062
1991 2,366 3,938 46,708,007 20,489,727 -0.0062  0.0000
NOTE;

1. Amounts in columns {4), (5), (7), (10), and (1 1) are in millions.
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Accident
_Year
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1884
1985
1986
1987
1988
1989
1980
1991

SAMPLE BODILY INJURY DATA

Estimate of Overall Mixing Parameter

Q) @ 3)

Indicated
Estimated Pure

Ultimate Eamed Premium
Losses Exposures (1)}
$19,248 11,000 $1,750
23,160 11,000 2,105
28,406 11,000 2,401
30,057 12,000 2,505
32,003 12,000 2,687
34,554 12,000 2,880
35,999 12,000 3,000
35,199 12,000 2,033
34 416 11,000 3,129
37,812 11,000 3,437
37,205 11,000 3,382
38,463 11,000 3315
47,117 12,000 3,926
62,173 13,000 4,783
78,809 14,000 5829
90,845 14,000 6,489
88,101 14,000 7,007
94,044 13,000 7,234
7.8%

A. Indicated Trend
B. Average (000)
C. Variance Estimate (000,000)
D. Estimated 1992 Claims Reported
E. Indicated Severity (000) (A/C)
F. Selected Coefficient of Variation
G. Indicated Standard Deviation (000) (ExF)
H. Indicated Variance (000,000) (GxG)
1. indicated &(x ?}{000,000) (H+EXE)
J. Selected Overail Contagion Parameter
K. Explained Variance (000,000)
L. Indicated Overall Mixing Parameter
M. Selected Overall Mixing Parameter

)
Estimated

Pure
Premium

at 1992

_Level
$6,764
7,547
7,985
7,728
7,633
7,648
7,388
8,701
8,831
8,757
6,168
5,608
8,161
8,063
7602
8,129
8,143
7.798

Exhibit A-10

®

Indicated
1902
Loss

4

$87,932
98,111
103,805
100,464
98,229
99,308
96,044
87,113
86,203
87,841
80,184
72,804
80,0983
90,519
98,826
105,877
105,859
101,374

$93,421
93,442,417
8,758
$10.869
1.250
$13.33¢
177.84¢9
201.877
0.0087
87,317,281
0.00069
©.00089

1. Amounts in cofumns (1) and (5) are in thousands of doliars.
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Ratlo to

0.300
0.500
0.600
0.700
0.750
0.800
0.825
0.850
0.875
0.800
0.928
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.178
1.200
1.225
1.250
1.275
1.300
1.350
1.400
1.500
1.600
1.800
2.000
2.500
3.000

1. Doliar amounts are in thousands.

Estimated Probability Leveis for Reseves With Parameter Uncertainty

SAMPLE BODILY INJURY DATA

Exhibit A-11

Accident Year
1984 &
Prior 1985 1986 1981 1088 1989 1880 1991 Total
Expected Reserve
$404 $404  $1,128  $4,144 $12608 $31,613 $64,700 $83,593 $203,198
Estimated Probabilily Level

0.0128  0.0001 0.0000 00000 0.0000 ©0.0000 0.0000 00000 0.0000
0.1059  0.0118 00005 0.0016  0.0001 0.0000 0.0000 0.0000  0.0000
0.1925  0.0446  0.0081 0.0182 0.0039 0.0002 0.0000 0.0000 0.0000
02840 04170 0.0486 00848 00375 00084  0.0001 0.0000  0.0000
0.3468 0.1705 00930 0.1425 0.0817 0.0202 0.0014  0.0001 0.0000
0.3893  0.2344 0.1573 02152 0.1488 0.0758 0.011¢ 0.0021 0.0000
04252 02885 0.1963 02558 0.1904 01118 00250 0.0071 0.0009
04508 0.3084 0.2307 02988 0.2367 0.1581 0.0502 0.0194  0.0033
0.4754 03445 0.2864 03428 0.2866 0.2089 0.0908 0.0455 0.0127
0.5001 03834 03357 03874 0.3388 02686  0.1494 0.0825 0.0394
0.5236 0.4228  0.3885  0.4321 0.3924 0.3335 02259 0.1858  0.0982
0.5487 0.4623  0.4380 04761 0.4462 04013 03175 02657 0.2007
0.5690 0.5014 0.4893 05190 04993 04700 04187 03859 0.3449
0.5904 0.5398 0.5395 05603 0.5508 0.5374 05225 05150 0.5113
06115 05770 0.5877 05998 05995 0.8017 06219 06395 08715
0.6310 06130 06338 06371 0.6454 08616 0.7113 07484  0.8018
0.6505 06475 06768 06722 06880 0.71860 0.7875  0.8351 0.8927
06885  0.8801 07169 07049 07273 0.7646 0.8489 08985 0.9478
0.6862 0.7109 0.7533 0.7352 0.7626 0.8070  0.8861 0.9413  0.9770
0.7030 07386 07866 0.7830 0.7948 0.8434 0.9308 0.9673  0.8807
0.7188 0.7664 0.8164 07885  0.8231 0.8742 09552 0.9834  0.9966
0.7344  0.7911 0.8429 08117  0.8481 0.8998 0.9718 09915 0.9988
07486 08138 08662 0.8326 0.8703 08210 09828 0.9980 0.9996
0.7827  0.8347 0.8867 0.8515 0.8896  0.9381 09898 09980  0.8998
0.7755 08536 09045 08836 0.9063 09519 09940 09990 1.0000
0.7880 0.8708 09198 08839 09208 0.9629 09966  0.9990 1.0000
0.8109  0.8001 0.9442 09088 0.9437 08783 08990  1.0000 1.0000
08315 09235 09617 09303 0.9604 00875 0.9997 1.0000 1.0000
0.8665 0.9562 09826 09588 0.8808  0.9961 1.0000 1.0000 1.0000
089042 09756 0.9924 09758 0.9909 09988 1.0000 1.0000 1.0000
0.9334 09827 00986 09918 09980 09999 1.0000  1.0000  1.0000
09578 09978 09998 0.9972 0.9998 1.0000 1.0000  1.0000 1.0000
0.9859 0.9999 1.0000 0.9098 1.0000 1.0000 1.0000 1.0000 1.0000
0.9949 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000
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Exhibit A-12

Estimated Aggregate Reserve Cumulative Densities
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~ Without Parameter Uncertainty




Exhibit A-13

Estimated Aggregate Probability Density Functions
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