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IBNR RESERVE UNDER A LOGLINEAR
LOCATION-SCALE REGRESSION MODEL

Abstract

In this paper, we develop models for known claims, when the data are grouped into the
usual triangle and the goal is to predict IBNR claims. We assume that the payment for
a certain accident and development year is composed of a deterministic part and a multi-
plicative random error. We use a loglinear location-scale regression model for the amount
of claims. The parameters are estimated by maximum likelihood methods, so that their
asymptotic properties are well known. The regression model presents many advantages
over the chain ladder method: it has fewer parameters, and does not underestimate the
reserve. Moreover, it will be possible with a simulation to establish a reserve with a certain
level of confidence (for example 80%).

The logarithm of the error is assumed to follow certain known distributions (normal,
extreme value, generalized loggamma, logistic and log inverse gaussian). We derive certain
theoretical properties of these distributions and prove that the MLE’s of the regression
and scale parameters exist and are unique, when the error has a log-concave density.

In conclusion, we advocate the use of regression models over the chain ladder method,
since they take into account both the error involved in the estimation of the parameters
and the statistical error inherent in the prediction of future claims, the fit of the model
can be tested statistically and confidence intervals for the reserve can be derived.

Keywords: Chain-ladder method; Weibull-extreme value regression; maximum like-
lihood; prediction; generalized loggamma; logistic: inverse gaussian; consistency.
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1 Introduction

1.1 IBNR claims

All insurance companies registered to do business in Canada are required by the
regulatory authorities to set up reserves for claims which have been incurred but have not
yet been reported as of their financial statement date, usually December 31. In determining
the liabilities of the insurance company, the valuation actuary must also estimate the
liabilities generated by claims incurred but not enough reserved (IBNER), (also called
reported but not settled (RBNS)).

The distinction between these two parts of the loss reserve, the IBNR part and the
IBNER part, is not always made in practice, especially when the data are aggregated. In
this paper, by IBNR reserve, we will refer to both types of claims.

The primary purpose of those reserves is to ensure the protection of the policyholders:
when the insurance company is notified of these claims, it will have the reserves, backed
by sufficient assets, to pay those claims.

The delay in reporting the claim may depend on the type of claim (for example, asbesto-
sis may take more than 10 years to manifest itself in a worker). The long delay observed
in the settlement of certain claims is sometimes due to the fact that some of them are
resisted by the insurance company, putting into motion a long judiciary process. In other
cases, there will be a long delay before the ultimate cost of a claim can be determined

exactly (in workers’ compensation for example, the insurance company will have to wait
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for an annuity to terminate).

The 1987 Loss Development Study, undertaken by the Reinsurance Association of
America, compares the development of losses for various lines of business. Automobile
liability was the line where the claims got developed the fastest, while Workers' Compen-
sation was slower to develop. General liability, excluding asbestos claims, had a develop-
ment pattern similar to Workers” Compensation, but a little bit slower initially. Medical
malpractice experienced the slowest development among those lines of business.

Due to this long reporting and settlement lag, it will be extremely important for the
valuation actuary to develop adequate statistical models to project known losses to ultimate

losses.

1.2 The chain ladder method and its deficiencies

By grouping the claims by accident year (year in which the accident giving rise to the
claim occurred) and development year (number of years elapsed since this accident year),
the data can be presented in a trapezoidal array.

In this paper, to illustrate the various models proposed, we will use the data in table |
(taken from CIA Proceedings, Volume 20 no 1, p.183), which represents the liability claims
in thousands of dollars incurred by a Canadian insurance company over the ten-year period
1978-1987. We will do the analysis with the incremental claims (in table 2), obtained by
differencing successive cumulative amounts.

The problem of estimating IBNR claims consists in predicting, for each accident year,
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Table 1: Claims Incurred

Development year

Accident year 1 2 3 4 § 6
1978 8489 | 9785 | 10709 | 11289 | 11535 | 11661
1979 12970 | 14766 | 16201 } 17060 | 17714 | 17979
1980 17522 | 20305 | 21774 | 22797 | 23220 | 23872
1981 21754 | 24338 | 25501 | 26284 | 27171 | 27526
1982 19208 | 21549 | 22769 | 23388 | 24229 | 24932
1983 19604 | 22073 | 23296 | 24543 | 25155
1984 21922 | 24233 | 25374 | 26882
1985 25038 | 28401 | 30545
1986 32532 ] 37006
1987 39862

the ultimate amount of claims incurred. The amount paid by the insurance company
for those claims is then subtracted, leaving the reserve the insurer should hold for future
payments. To calculate the reserve, all methods or models usually assume that the pattern
of cumulative or incremental claims inrcurred or paid is stable across the development
years, for each accident year. Since for the last accident year, only ore amount will be
available, the reserve will be highly sensitive to this amount. Moreover, because of growth
experienced by the company, it will be bigger than any other amount in the data set, hence
the importance of verifying that the development pattern of the claims has not changed
over the years.

One of the earliest methods, and now most commonly used in the actuarial profession,
is the chain ladder method. Assuming that for each accident year, the development pattern

remains stable, development factors are calculated by dividing cumulative paid or incurred
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Table 2: Incremental claims incurred

Development year

Accident year 1 2 3 4 5 6
1978 8489 | 1296 | 924 | 580 | 246 | 126
1979 12970 | 1796 | 1435 | 859 [ 654 | 265
1980 17522 {1 2783 | 1469 | 1023 | 423 | 652
1981 21754 | 2584 | 1163 | 783 | 887 | 355
1982 19208 | 2341 | 1220 | 619 | 841 | 703
1983 19604 | 2469 | 1223 | 1247 | 612
1984 21922 | 2311 | 1141 | 1508
1985 25038 | 3363 | 2144
1986 32532 | 4474
1987 39862

claims after j periods since incurral by the cumulative amount after j — | periods. These
factors can be weighted by the amount each year. The year-to-year development factors
are then applied to the most recent amount for each accident year, i.e. the amounts on
the right-most diagonal.

Using the weighted approach with the cumulative claims of table 1, we obtain the
development factors of table 3. Projecting the claims incurred to ultimate amounts with

those development factors, we obtain a reserve estimate of 23,919.

Table 3: Loss Development Factors

Year | Development factors
1.2 1.13079
2-3 1.06479
3.4 1.04545
4-5 1.02922
5-6 1.02023
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Many variations have been presented for the basic chain ladder method just introduced;
a linear trend or an exponential growth may be assumed to be present among the devel-
opment factors. Instead of taking their weighted average, they w-ould be extrapolated into
the future. The chain ladder method can also be adjusted for inflation.

However, the chain ladder method suffers from the following deficiencies:
1- it implicitly assumes too many parameters (one for each column).

2- it does not give any idea of the variability of the reserve estimate, or a confidence

interval for the reserve.

3- as will be shown in section 2, it is negatively biased, which could lead to serious

underreserving, a threat to the insurer’s solvency.

We will therefore develop a stochastic model, which involves only 5 parameters. With
this model, we will be able to calculate an amount such that there is an 80% probability
that the reserve will be sufficient to cover the liabilities generated by the current block of

business.

1.3 The general model

In this paper, we will consider loglinear location-scale regression models of the form

Zi=lnY;=X;f+o0€¢, Y>>0
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where Y; is the ith element of vector Y (the data), of dimension n,

X is the regression matrix, whose first column contains 1's,
and whose ith row is the vector denoted by X
and (i, 7) element is denoted X,

Jel is the vector of unknown parameters to be estimated,
of dimension p,

X8 is the location parameter for Z;,

o is the scale parameter,

and € is a random error with known density f(e).

The loglinear location-scale model has been used extensively in reliability theory and in
survival analysis (see for example, Kalbfleisch and Prentice (1980), Lawless (1982), Cohen
and Whitten (1988), Bain and Engelhardt (1991)). It is easily shown that the random

variable Z; will have density

lI(Z.‘—X.ﬂ
a

)y, —o0 < 2 < oo.
4

As in Zenwirth (1990), for the location parameter, we willuse a + Slnj+vj+ i+ j—-2),
where ¥ is the accident year and j, the development year. Taylor (1986) cautions not
to use cumulative claims amounts, but incremental claims in the analysis; otherwise, the
estimates obtained would be biased, because of the non-independance of the cumulative
amounts.

We will assume that Y; > 0. To model negative values of Y;, Cohen and W hitten (1988)

614




use modified moment estimators and Cohen (1988), local maximum likelihood methods.

1.4 OQutline of the paper

Section 2 considers the lognormal linear regression model and presents the results
of a simulation study showing that the chain ladder estimate of the reserve is negatively
biased. Other choices possible far the distribution of the random error are the extreme
value distribution, leading to the Weibull-extreme value regression model (section 3), the
generalized loggamma (section 4), the logistic (section 5), and the log inverse gaussian
distribution (section 6). We derive certain theoretical properties of these distributions,
such as their moment generating function and moments. We show how the actuary can
establish a reserve with a certain level of confidence (for example 80%), with a simulation.

In section 7, we show that the MLE’s of the regression and scale parameters exist and
are unique when the error € in the loglinear location-scale regression model has a log-
concave density. Under misspecification of the error distribution in a linear location-scale
model, the MLE's of the regression parameters are shown to be consistent (section 8), while
we present a sufficient condition for the consistency of the MLE of the scale parameter,

when the postulated model has lognormal errors. Finally, we present some remarks.

2 Lognormal linear regression model

When it is assumed that ¢; are independent and identically distributed N (0, 1) random

variables, we obtain the lognormal linear regression model. Doray (1992) has studied
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Table 4: Frequency distribution of the IBNR reserve under the normal error assumption

Amount | MLE | CLE Amount ([ MLE |CLE

< 13000 0 0 | 30000-31000 165 152
13000-14000 4 2 | 31000-32000 150 126
14000-15000 12 i1 | 32000-33000 103 80
15000-16000 33 30 | 33000-34000 96 68
16000-17000 62 72 | 34000-35000 76 47
17000-18000 126 131 | 35000-36000 50 40
18000-19000 191 199 | 36000-37000 36 26
19000-20000 253 301 | 37000-38000 28 16
20000-21000 323 376 | 38000-39000 20 5
21000-22000 372 391 | 39000-40000 14 2
22000-23000 149 441 | 40000-41000 13 10
23000-24000 449 498 | 41000-42000 8 2
24000-25000 393 443 | 42000-43000 7 3
25000-26000 366 436 | 43000-44000 7 0
26000-27000 342 375 | 44000-45000 2 2
27000-28000 334 274 | 45000-46000 2 1
28000-29000 285 231 | 46000-47000 6 0
29000-30000 214 207 > 47000 9 2

extensively this model, taking into account the estimation error on the parameters and
the statistical prediction error in the model. He has derived various estimators for the
IBNR reserve, among them the maximum likelihood estimator and the uniformly minimum
variance unbiased estimator (UMVUE), as well as an expression for the variance of the
latter estimator. The variance of the IBNR reserve is also calculated. The joint distribution
of the amounts in each cell of the lower triangle is shown to follow a multivariate lognormal
(M LN) distribution.

To compare the traditional chain ladder estimator of the reserve with the MLE, a

simulation was performed, assuming the model InY¥;; = a, + 8, + ¢, is the true model.
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Figure 1

IBNR reserve for log-normal regression
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Five thousand sets of realizations of Y;; in the trapezium were randomly generated.
where each Y;; is independent LN (&; + ﬁj,z';’), where the values of 3 and 0?2 are the MLE’s
of the parameters. For each set, we calculated the chain ladder estimate (CLE) and the
MLE of the predicted value of IBNR claims using the multivariate lognormal distribution
(see appendix 10.1 for the algorithm used for the simulation). The results of the simulation
are summarized in table 4 and figure 1. We see from those results that the reserve has
a distribution skewed to the right, which comes from the lognormal assumption. The
reason why the chain ladder estimate. generally used by actuaries to determine insurance
company reserves, underestimates the expected liability, is that it does not capture this
long-tail behaviour, as is apparent from table 4.

The MLE of the reserve gives 25,262, while the CLE gives 23,919. The reserve for IBNR
claims the insurance company will hold could be set at, for example, the 80-th percentile of
the predicted distribution of IBNR claims, that is at 29,019 in our example. The actuary
could then state, that in his or her opinion, there is an 80% probability that the reserve
will be sufficient to meet the liabilities of the current block of business.

Asymptotically (i.e. as the upper trapezium of data gets larger), the various variables
to be predicted will become independent, and from that perspective, we can consider an
asymptotic confidence interval for the reserve, using the central limit theorem. The lower
bound for the 80% asymptotic confidence interval of the reserve is 29,514, which can be
compared with the amount of 29,019 obtained in the simulation.

A provision for adverse deviation could also be defined as equal to the 80-th percentile
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of the predicted distribution of IBNR claims minus the UMV UE of the reserve (24,403).

This gives 4616 as the PAD for the claims of section 1.2.

3 Weibull-extreme value regression model

In this section, we examine the Weibull-extreme value regression model. Let us assume
that ¢ follows a standard type I extreme value (or Gumbel) distribution with
probability density function (pdf) J(€) = exp(e —ef), -0 < €< 00,
cumulative distribution function (cdf) F(€) =1 — exp(—e®),
moment generating function (mgf) M (t)=T(1+1¢), t> —1,
mean E(e) = —y = -0.5772156649015329... .,
where vy is Euler’s constant

and variance Var(e) = x2/6.

The extreme value density is skewed to the left. The probability that a standard normal
random variable take a value greater than 1.96 is 0.025, while the corresponding probability
for the standard extreme value is only 0.0008256. Lawless (1982, p. 17-19) and Johnson
and Kotz {(1970) discuss the properties of the extreme value distribution.

Under this assumption for the density of ¢, Y; has the pdf

AR vi \*
aeXd (cx'”) exe 1= (CX.-B) v vi> 0,

which will be recognized as that of a Weibull random variable (Hogg and Klugman (1984)).

-

Under this parametrization, the shape parameter is equal to 1/0 and the scale parameter

619



to eX'?, The hazard rate will be increasing if ¢ < 1, decreasing if ¢ > 1 and constant if
o =1, in which case the Weibull distribution reduces to the exponential distribution. The

mean and variance of Y; are:

E(Y) *Pr(1 + 0)

Il

Var(Y;) e P[P(1 4+ 20) =T (1 +0)}.

A proof of those results is contained in Lawless (1982).

The likelihood function based on the data z, = lny;, is

L(B,0) = ﬁ%exp [ﬁ%m — exp (Z'—aﬂ)] ,

=l

and the log likelihood is

I(ﬂ.d) = i [— Ine 4+ z'__axﬁ —exp (Z.“'X.'ﬂ)] )

i=1 L4

Let us define w; = (z; — X;8) /o.

The first and second partial derivatives of / with respect to §; and o are

o _ 1f:x--+li‘x--e'"- =1
ap; - 9 =1 N 9 =1 e IE Dk
al L 1 &
— = ———=) wit =) we™
de o ag g
%l 1 & w
W = —;—,m/\.,’(ut , hk=1,...,p
az, n 72 B 2 1 - 1 & 2w
257 = ;—5+?§w;—a—;§w;e '—;iz:;w;e ',
3 . 1 & [
— = =) Xij-=)_ Xje"-— gwie™, j=1,...,
800 o2 Y a,g:"(,: a’EX’we i=1 p

In appendix 10.2, we have listed some asymptotic properties of MLE's. The terms in

the observed information matrix can be simplified by using the fact that the MLE’s for
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B; and o satisfy the equations 3‘%’- = % = 0. The observed information matrix [o then

becomes
n Tlnj i Yiti-2 LR
Tlnj Z(in j)Fe Tillnjled  T(i+j-2(0njle?  T(lnj)ies
;,—lz i 3 (In e > il i+ )= 2)e™ et
Ti+ji-2 Sl+j-2nie® Tili+j-2e®  F(i+j-%%  T(i+j—-2ige®
n+ 3ty T(In j)ise Tjwje” T(i4 ) = 2bie™ n+ T wfe

where w; = (2; - X.-ﬁ)/&.

The asymptotic variance.covariance matrix of the parameters is equal to the inverse of
Iq, and could be found using a symbolic computational language like MAPLE, or evaluated
numerically. The expected information matrix can also easily be obtained (ref. Lawless
(1982), p. 301-302).

Maximizing the log likelihood with the data of section 1.2 by using the Newton-Raphson
algorithm or the SAS (1985) LIFEREG procedure, we find the MLE’s, estimated standard
errors and correlation matrix appearing in table 5. In section 7, we show that for certain
location-scale models, the MLE's exist and are unique; this is true in particular for the
Weibull-extreme value regression model.

All parameters are highly significant (at the 0.0001 level). It should also be noticed that
the scale parameter estimator & is not independent of the location parameter estimator, as
is the case in normal regression. This complicates somewhat the estimation of the [BNR

reserve.
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Table 5: Weibull-extreme value regression

parameter MLE std. error correlation matrix
a 9.02897 | 0.11505 1 0.429 -0.515 -0.461 -0.017
Jil -3.26637 | 0.25407 | 0.429 1 -0.972 0.214 0.0004
b 0.40378 0.10372 |-0.515 -0.972 1 -0.280 -0.006
L 0.10811 | 0.01641 |-0.461 0.214 -0.280 1 0.011
o 0.02459 0.00642 | -0.017 0.0004 -0.006 0.011 1

A Q-Q plot of the residuals appears in figure 2. [t shows no evident departure from
the extreme value distribution. It should be noted that the above standard errors and
correlation matrix of the parameters are based on the joint asymptotic multivariate normal
distribution of the MLE’s. This approximation will be appropriate only when the aumber
of cells in the trapezium of data is large enough {in our example, we have 45 cells).

How large is large enough? Bain and Engelhardt (1991) considered this problem for
the Weibull distribution, but without covariates in the location parameter. They provide
a table giving the bias of the MLE of the shape parameter of the Weibull distribution
for different sample sizes. With a sample size of 40, the MLE overestimates the shape
parameter by only 3.5%. If the sample size is only 10, care should be taken, since the
bias is then around 15%. Those factors were obtained by a simulation study. We will not
correct for the bias in our analysis, but we should remember that this might be a good
idea for small sample sizes.

To test for o = 1 (test of exponentiality of Y;), we can use the asymptotic normality
of the MLE’s; unless the sample size is large, Lawless (1982) cautions that the normal

approximation might not be very good. A likelihood ratio test can also be performed
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Figure 2: Extreme value Q-Q plot of residuals
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using the test statistic

L(4.1)

A T v
L(8,5)

—2log

where 3 is the MLE of # under Hg: ¢ = 1; the likelihood ratio statistic A has an asymptotic
x(zl) distribution. Performing a simple normal test leads us to reject the hypothesis Hg:0 =
1. A Weibull distribution is therefore more appropriate for the data than an exponential
distribution.

We now turn our attention to the problem of predicting the IBNR reserve. In a log-
linear location-scale model, the total error in the log predicted amount Zy is composed
of two parts: an estimation error on the parameters and a statistical prediction error.
We saw earlier that in the Weibull-extreme value regression model, the estimators of the
parameters have an asymptotic multivariate normal distribution, while the process error
has an independent extreme value distribution.

Let Yy denote the random variable for the amount to be predicted in accident year k
and development year I, and let us define Zy = In Yi. The random variable Zy being
equal to Zy = a + Blnk + ¥k + i(k+1—2)+ ¢, we can appreciate the difficulty involved
in trying to get its exact distribution. For this, we would need to find the distribution of
the product of a normal and an extreme value random variable (¢ and ¢) and convolute
this with a non-independent normal random variable. To get the distribution of Yy, the
distribution of Zy is then exponentiated. It is highly doubtful that such a distribution
would have a simple density. [nstead of trying to accomplish this task, we will perform a

simulation study to evaluate IBNR reserves. This will make it possible to find a confidence
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interval for the reserve.

Table 6: Frequency distribution of the IBNR reserve under the extreme value error as-

sumption

Amount Frequency

< 15000 0
15000-16000 1
16000-17000 12
17000-18000 54
18000-19000 144
19000-20000 357
20000-21000 664
21000-22000 904
22000-23000 982
23000-24000 791
24000-25000 605
25000-26000 285
26000-27000 142
27000-28000 46
28000-29000 8
29000-30000 4
30000-31000 1

> 31000 0

In appendix 10.1, we show how to generate a multivariate normal distribution, using
the Choleski decomposition method. To be able to simulate the random variable Yy, we

just need to show how to generate a standard extreme value random variable ¢, with cdf

Ple <) = 1 —exp(—e®), —00 < ¢g < 0.

This cdf is easily inverted, yielding

e=In(~-In(1-V)), 0<VU <1,
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where U is a uniform random variable on the interval [0,1]. Note that 1 — {/ is also uniform
on [0,1], simplifying the algorithm.

Table 6 and figure 3 contain the results of a simulation of 5000 values for the IBNR
reserve. The mean of the IBNR claims is 22,402 and the standard deviation of this estimate
is 2011. The 80-th percentile for the simulated distribution of the IBNR reserve is 23,980.

Comparison of the extreme value and the normal distributions shows that the former
has a heavier left tail and a lighter right tail than the latter. The estimation error on the
regression parameters is of the same order in both models, while the stochastic error is

smaller in the extreme value case.

4 Generalized loggamma regression model

The regression model used in this section will be the following
Zi=hY;, = X0+ o0¢,

where ¢; has a loggamma distribution with pdf

Jg)
F(¢~)

07 explg~}(ge — e™)], —co < € < oo,

fleiq) =
and the shape parameter g can take any non-zero value (ref. Lawless (1982), p. 322-328).

Under this parametrization, as ¢ tends to 0, we obtain the normal distribution with pdf

exp(—e€?/2), —00 < € < co.

1
€) =
"= 7=
The following special cases for the random variable V; can be obtained for certain

values of the parameters ¢ and a: Weibull (¢ = 1), exponential (¢ = ¢ = 1), lognormal
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(¢ = 0) and reciprocal Weibull (¢ = —1). The density is negatively skewed for ¢ > 0,
with absolute skewness and kurtosis increasing as ¢ increases; it is positively skewed for
g > 0. A likelihood ratio test can be performed to test for the appropriateness of a certain
member of the family.

Prentice (1974) and Farewell and Prentice (1977) have studied the properties of this
generalized distribution. If we define the parameter £ = ¢~7, then it has moment gener-
ating function [(k + ), ¢t > —k, mean ¥(k) and variance ¢'(k), where ¥(-) and ¥'(-) are
respectively the digamma and trigamma functions, the first and second derivatives of the

gamma function. The series expansion for these two functions are:

n-1
1
P(n) = —v+ -, for an integer n > 2
(n) Elk g
o o]
viz) = d(z+R7 2 #£0,—1,-2,...
k=0

The log likelihood function gives

1(B,0,9) = Y_In f(wi;q) ~Ino,
=1

where w; = (2; — X.8)/o and

In f(wirg) =In | q ] —2¢ % Ing = InT(¢™?) + ¢"}(qu; — e™).

The first and second partial derivatives of [ with respect to § and o gives

ol N

25 - Z;;’[exp(qw,)-—l]. j=1l....p.
J i=l

al W, 1

7 - g{;{ew(qw.—)—l]—;}
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ol n -1
= ZX.','X.'k(;,—)exP(qwi)

aﬂjaﬂ" =l
311 ~ 1 2 2uw;
9a7 E ;5[1 —w{ exp(quw;)] - F[exp(qw‘) ~1]
o o 1
90 § X.';(F)[w;exp(qw.-) + ;I'(exp(qw'-) —1).

Again, using the fact that the MLE’s satisfy g—; = %—’ = 0, we can simplify the last two
partial derivatives and obtain

a

1 . .
a7 |8 = ~aln+ 3 o exp(qwi)]

and
2
5[%% I(;},a) = _%inﬂi’i exp(qu;).

To find the MLE's of the parameters, we can use the approach suggested by Farewell
and Prentice (1977). The parameter q is fixed at a value go and the profile log likelihood is
maximized using the Newton-Raphson algorithm over the regression parameters J and the
scale parameter o. This gives the estimates (ﬁ(qo), (g0)). This procedure of maximizing
the profile log likelihood is repeated for many values of go, until an overall maximum of
the log likelihood over gq is attained. This value gives the MLE §.

The SAS package fits generalized loggamma regression models. Using the SAS LIFEREG
procedure for complete data, we find the results appearing in Table 7.

The default convergence criterion used by SAS is that 2 maximum is assumed to have
occurred if the relative change in the parameters is less than 0.001. However, as can be
seen from table 8, the likelihood keeps increasing beyond this value of §. The convergence

criterion we used is that the score statistic with respect to each parameter should be of
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Table 7: Generalized loggamma regression (SAS program)

parameter { MLE | std. error correlation matrix
a 9.32243 0.02789 1 0.469 -0.521 -0.160 -0.497 0.497
8 -3.12566 | 0.07028 0.469 1 -0.991 0.645 -0.150 0.150
~ 0.35670 0.02969 | -0.521 -0.991 1 -0.626 0.124 -0.123
¢ 0.10058 0.00357 | -0.160 0.645 -0.626 1 -0.087 0.086
4 0.04035 0.03187 | -0.497 -0.150 0.124 -0.087 1 -0.981
q 9.99342 7.63421 0.497 0.150 -0.123 0.086 -0.981 1

the order of 10~%. Past the value of g = 31.623 (corresponding to k = g5 = 0.001), some
elements of the information matrix become so large that it cannot be inverted and the

standard Newton-Raphson algorithm fails.

Table 8: Generalized loggamma regression for various values of qq

a(qo) B(g0) 7(q0) i(g0) a(qo) {(g0)
8.97986 | -3.14641 | 0.30881 | 0.12298 | 0.31380 | -11.70862
9.02897 | -3.26637 | 0.40378 | 0.10811 | 0.24588 | -8.66845
9.15105 | -3.19165 | 0.38375 | 0.10369 { 0.17552 | -7.82173
9.24020 | -3.13178 { 0.35787 | 0.10264 | 0.12742 | -7.23110
9.27974 | -3.12132 | 0.35336 | 0.10188 | 0.09803 | -6.64823
9.30818 | -3.12572 | 0.35608 | 0.10088 | 0.06590 | -5.68347
9.31835 | -3.12611 | 0.35666 | 0.10061 | 0.04950 | -5.03186
9.32308 | -3.12419 | 0.35609 | 0.10063 | 0.03964 | -4.62194
9.33019 | -3.11565 | 0.35296 | 0.10088 | 0.01986 | -3.87515
9.33340 | -3.11023 | 0.35061 | 0.10092 | 0.01324 | -3.68571

@ N =
S S S s wN e~ o8

A few remarks should be made here.

1- the likelihood is so flat that it makes the standard error of § (7.63421), calculated
assuming asymptotic normality, totally unreliable. Bain and Engelhardt (1991, p.

393) report that the asymptotic normal distribution for k& will not be very accurate
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unless the sample size is greater than 200 or 400. Farewell and Prentice (1977) note
that the skewness in the § distribution is related to an asymptotic variance that
increases rapidly as || increases. To get a confidence interval for ¢, a likelihood ratio

test would be preferable. This interval for ¢ would include all the values gq satisfying

-2(1nl(4,5.4) — Ini(go, B(g0). 5(g0)] < 3.841.

2- the correlation between & and § almost equal to —1 should be noted. From table 8,
we can see that as gp increases, d(qo) decreases. Cox and Hinkley (1968} have shown
that in the general regression model Z = a + X8+ 0¢(q), (&, 7, §) are asymptotically

independent of 8, if the columns of X add to zero.

3- The regression parameters (a, 3, v,t) for any fixed value of go are very close to those
obtained in the normal and extreme value regression, and so is their standard error

and their correlation matrix,

It should be remembered however that, although the MLE § cannot be found accu-
rately, we know that it exists and is unique, because of the log-concavity of the loggamma
distribution (see section 7).

If the exact value of §, was available, this would make the estimation of E(IBNR
claims) much more complicated than in the normal or extreme value cases, because of the

non-independence of ¢ with 5 and &. In this model, Yy is equal to

Yu = eam Ink 44k i(ksi~2)+2e(d)
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Figure 4: Loggamma (q=10) Q-Q plot of residuals
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and we can see that the estimation error on the parameters is not independent of the
process error €(§), since f, & are estimated using the same set of past data which is used
in estimating ¢.

To assess the adequacy of the loggamma regression model, we fitted that model with
a fixed q value, ¢ = 10. Figure 4 presents the corresponding Q-Q plot. Since the left tail
of the distribution is too short, we will not simulate the IBNR reserve; however, Devroye

(1986) presents many algorithms to generate gamma random variables.

5 Logistic regression model
The logistic linear model is
Zi=InY; = X8+ o¢;,

where ¢ has a standard logistic distribution with (see Lawless (1982), p. 46)

pdf Je) = qhar » —0< €<,
cdf Fle)=1-(1+e97?,
mgf  T(1+0T(1-1),[t]<,

mean E(¢)=0,
variance Var(e) = x2/3.
The density of the logistic distribution somewhat looks like the standard normal density.
The symmetry of the pdf around € = 0 implies that there is probability 1/2 that the amount

Y; be understated or overstated. The probability that a standard logistic random variable
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exceeds 1.96 is 0.12347. The logistic distribution has thick tails, which behave like that
of the exponential distribution. The loglogistic is a special case of the Burr distribution,
with the parameter a equal to 1 (ref. Panjer and Willmot (1992), p. 120).

The random variable Z; has density

1 exp[-'—-‘—"'ax 2]

fz(zi) = oLt exp(iXy’ ~® < 7 < o0,

4

and Y; has the loglogistic density

it 1-?
1 Vi )v ( Yi )v
—  —— 1 + e , P > 0‘ 5.1
ceXiB (ex.u [ Py v (5.1)

%8 is the scale parameter and 1/o the shape parameter. In proposition 5.1,

where again e
we derive the moments of order k of a loglogistic random variable with density 5.1 and
show that its moment generating function does not exist.

Proposition 5.1: If Y has density

61/0 yl/a-l

frly) = TW.

y>0,

then
E(Y*) = 6+=+D[y — g(k + 1)}x cosec[ro(k + 1)},

for all k£ such that % —-l<k< f — 1, and the moment generating function of Y does not

exist.

1/e=1

Proof: E(Y*) = [3* y* &2 by,

By letting y1/° = v, we obtain

o golk+1)=1
ky _ g1/0 v
.y / L du
EYD b L7 aveopi
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Using the formula

00 Prtal) d 1—-p
'[) (l+ﬁz)’ T = 5n X cosec uw,

the result is easily obtained. The integral will have a finite value iff
-l1<(k+1l)e—-3<1

or
; -l<k< ; -1
The moments of all positive orders do not exist; therefore, the moment generating
function of Y does not exist. [w]

The likelihood function is

L3y < T L _oxelo)

—_——————— . =0 i < 00,
i o [T exp(w]? v

where w; = 5'—‘,&2. from which we get the log likelihood

i(B,0)= 3 [wi—2In(1 +e*) —Ino].

i=1
For first and second order partial derivatives with respect to the parameters, see
Kalbfleisch and Prentice (1980; p. 54-57). The SAS procedure LIFEREG was used to
fit a logistic regression model to the data of section 1.3. The MLE's of the parameters,
their estimated standard error and the estimated correlation matrix appear in table 3.5.
A Q-Q plot of the residuals in figure 5 shows that the logistic distribution does not
provide a very good fit for the right tail. We will therefore not attempt to predict the IBNR
reserve, but just indicate how it could easily be done by simulation, if it was appropriate

to do so.
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Table 9: Logistic regression

parameter MLE std. error correlation matrix
a 8.94023 | 0.13799 1 0.437 -0.516 -0.540 0.039
B -3.31681 | 0.30143 | 0.437 1 -0.964 0.078 0.072
b 0.38904 0.12058 -0.516 -0.964 1 -0.169 -0.083
L 0.11789 | 0.02004 | -0.540 0.078 -0.169 1 0.025
-4 0.17957 | 0.02203 | 0.039 0.072 -0.083 0.025 1

The loglogistic model for Yy is Yy = eS+0Inktiktilkil-2)+0e

The joint asymptotic
distribution for (B,&) is multivariate normal with parameter estimates given in table 9

and can be easily simulated (see Appendix 10.1). Inverting the cdf of the logistic random

variable ¢ yields

1-U

€ = In( ), where U is uniform [0,1].

The value of is then exponentiated to give Y.

6 Log Inverse Gaussian regression model

The inverse gaussian regression model for Y, is ¥; = eX8+4  where the multiplicative
error e° is assumed to have a standard inverse gaussian (IG}, or Wald distribution, with

density

(v-1)°
2Mv

fr(v) = (2rav®)"Y2exp{- }, v>0, A>0.

This long-tail positively skewed distribution with exponential tails has a shape similar
to that of the lognormal distribution (ref. Cohen and Whitten (1988), p. 77) and is

located between the gamma and lognormal in Pearson’s system of distributions, which
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shows possible regions of variation of the skewness and kurtosis (Jorgensen (1982), p. 19).
To learn more about the inverse gaussian distribution, see Chhikara and Folks (1989) and
Jorgensen {1982). Here are some of its important properties. The mean equals 1 and the
variance A. It is unimodal and a member of the exponential family. If V is /G(1, A), and
a > 0 is a constant, aV is IG(a,a}). The sum of n independent /G(1,A)is IG(n,A).

Taking the log of Y;, we obtain the loglinear model
Z;=hnhY, = X8 + ¢,

where ¢ has a log inverse gaussian (LIG) distribution. The pdf of ¢ is now derived.
Let e = InV, where V is IG(1,A). Then V = e° and dV/de = ‘. It follows that

(e = 1)’]
2Xet

(e -2+ €7

22

f(€) e‘(2rAe®) "2 exp[—

(2x2e)"1? exp[—

]

1
(2#:\)“'“8"”21/'\exp[—:\-cosh €], (6.1)

where coshe = (e + e7%)/2.
In the next two propositions, we derive the moment generating function and the mean
of the LIG distribution.

Proposition 6.1: The mgf of the LIG distribution with pdf (6.1) is
M (t) = (202)7 e P2K (1)),
Proof: Let the constant C = (2rA)""/2¢}/* Then

M.(1)

E(e*) = /m ¢ fe)de

*° t~-1/2 1
C/ =" exp[— = cosh €]d.
-00 A
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Using the formula

/ exp[—az — -}cosh zldz = 2K,(1/2),

on page 309 of Gradshteyn and Ryzhik (1980), we get
M (t) = (272) "3 P2k, (1/0),

for te[—00,1/2], where K,(-) denotes the Bessel function of the third kind of order a. O
Proposition 6.2

1)m(2/A)"

E(e) = e {—=y = 1n(2/2) - f: = }
n=1

n-n!
Proof: We know that E{e) = M(t) |=o-

The reader will appreciate the difficulty involved in taking the derivative of M (t) with
respect to ¢, since we need to differentiate with respect to the order of the Bessel function.

From Abramowitz and Stegun (1972), p. 445, we get

a [=

a_aKa(z) |a=1/2== - E;E.‘(—2I)C‘,
where —Ei(—z) = Ey(z) = [ dt. So

E(¢) (2x2)" 12N 2 fxnj2 Eq(2/ )M

e E(2/2),

where the series expansion for E(z) is

_ o0 (=1)"z"
E(z) = _7—lnz—,§|—-—n~n!
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Let us now consider the estimation of the parameters A and 4. Y, has an inverse

gaussian distribution with parameters (eX# xe%#). The likelihood function is

. . oXiBy2
L(B,)) = He"“’(ﬂr»\e""’y?)-'“-exp{__(y-_ *¥) }

i=1 QACXiﬁyi
and the log likelihood is
n 1 3 (vi - ex.-B)z
= B—-—-lnd-X,8/2—-=lay, - ———5
I(B,A) '_;X.ﬂ oI 812 = Flyi = S
The partial derivatives are
a 2o-1 . Xidy2
RPN
. _eXih
so that A = ) 1”;—:,‘%;)1
al = X X0 X0
—_— = ey i B _ i
35, ; N [A + yie e
o Z": 1 (yi=eXif)?
9N T an A3eXiBy;
il =X, _x8_ X0
81\00; - E 2,\2 [yne - /.'/l]
321 il X,'I'X.'k

-X0 X.8
—_— = —-yie —e i
35,95, ‘_;l TRRL 19
To find the MLE’s of § and A, one could use the Newton-Raphson algorithm. The
log-concavity of the LIG distribution will guarantee the existence of unique MLE's (see

section 7).

The quantiles of this distribution could be obtained from the IG distribution, since

Ple < e = Plet S ] = PIY < e),
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where Y ~ [G. Therefore the ¢ quantile of the LIG distribution is equal to the log of
the ¢ quantile of the IG distribution. Those can be calculated or obtained from a table,
e.g. Koziol (1989). If an inverse gaussian regression model was found to be appropriate,
to simulate Yy = ef+fnk+sktilkti-D4e o would need to simulate e, which is IG(1,A).

Michael, Schucany and Haas (1976) developed an algorithm to simulate such a distribution.

7 Existence and uniqueness of MLE’s

In this section, we show that all the distributions used in this chapter for the error
€ are log-concave. A consequence of this fact is that the MLE's will exist and be unique,
although they need not be finite (ref. Burridge (1981)). When convergence is achieved in
the Newton-Raphson algorithm, this implies that we found a global maximum, not just a
local maximum.

Let us consider the loglinear location-scale model
Z.‘ = ln Y.' = X.B + agE;.
If we reparametrize to ¢ = 1/a, the log-likelihood of the data becomes

{{og,8)=nlng + Z":ln Fwd)

i=1
where w; = (2;— X,;0)¢ and f(-) is the density function of the error ¢;. Since w; is a linear
function of each of the parameters 8 and ¢ and is therefore concave, and the function
In is concave, ! will be concave provided In f(-) is concave (ref. Burride (1981)). We

have therefore shown the remarkable property that, in a loglinear location-scale regression



model, the existence of the MLE's does not depend on the data but only on the log-
concavity of the density of the error . We now show this is indeed the case for the five

distributions used so far.

1- If e~ N(0,1), f(e) = #exp(—e’/Q), and In f(¢) = K — €/2; so a%’,—ln fle)=-1<

0 Ve.
2- If € ~ extreme value, f(€) = exp{e —e*), and In f(€) = ¢ - €*; s0 %’,ln fle) = —et <
0 Ve.

3. If € ~ generalized loggamma,

| q | =29~

r(q_z)q ’exP[q-z(Cq_eqt)]»

fleiq) =

and In f(&9) = K + ¢~ (eq — e™); then :%zyln fleiq) = —e?* < 0, Ve

4- If € ~ logistic, f(€) = (Hf;,) ithenln f(€¢) = e—2In(1+¢°) and b%ln f(e) = Z%‘F <

0 Ve.

5- If e~ LIG, f(e) = (2nfe*)~d exp(ZEZZ L), 50 In f(e) = K — § — 250

8 ’
aln f(¢) _ 1 e —e™¢
2 2 28

and Zin f(e) = —(£457) < 0 Ve,

An example of a distribution for ¢ which does not have the property of log-concavity
for all ¢ is the Student’s ¢ distribution with n degrees of freedom, and density

_a+ 62/‘271)‘("“)/2
1= = 75072.772)
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Then In f(e) = K — }(n + 1)In(1 + €*/n),

2 1o g0 = ~(n 4 Vel + ),

and a—ft’yln fle)=—(n+ l)ﬁ&’v, which is positive for ¢ > \/n or e < —\/n.

8 Consistency of the parameters under error misspecificatic

Gould and Lawless (1988) investigated the consistency of the maximum likelihood
estimators of the regression parameters under misspecification of the error distribution in
a linear location-scale model.

The postulated model is
Z=a+Xf+oe, —00<e€<o00, (8.1)

where ¢ is a scale parameter and ¢ has a specified distribution with density f(¢). They

assume that the true unknown model is given by
Z=po+ Xp+ 1w, —00< w< oo, (8.2)

where w has density g(w). The location-scale structure of the postulated model has the
correct form; only the error distribution is misspecified.

If the following three assumptions are satisfied,

1- the covariates are centered;

2- all the expectations below exist and



3- n~!(X’'X) is bounded as n — oo,

White (1982) proves that the MLE's of (a,3,0) converge in probability to a unique limit
(a*,8°,0%). Gould and Lawless (1988) then show that B = p* and § is therefore a consis-
tent estimator of u. In addition, for & and & to be consistent estimators of up and r, they

must satisly the two equations
Ex( 9 logW)=10
oW og =

and
ET(W-—a—log(W)+ 1)=0 (8.3)
aw
where W = (rw + o —a')-/a' and Er indicates that the expectation is taken with respect
to the true error distribution g(w).

Gould and Lawless (1988) also analyze the asymptotic efficiency of the MLE based on
the correct model. We will derive conditions that g(w) must satisfy in order for @ and &
to be consistent estimators of ug and 7, when the error ¢ in the postulated model (8.1) has
a normal N (0,1) distribution.

Lemma 8.1: Under the assumption of standard normal errors in model (8.1), a sufficient
condition for & and & to be consistent estimators of up and 7 is that E(w) = 0 and
Var(w) = 1.

-a
lezlﬁ

Proof: If f(e) = T , then a%-log f(¢) = —e¢, and the equatiors (8.3) become
Er(W) =0and Ef(W?) = 1.
Since W = (rw+ po—a®)/o°, the condition Ex(W) = O implies that uo = a”ie. aisa

consistent estimator of uo. If Er(W) = 0, then Ex{W?) = Varr(W) = (r/c*)*Var(w) =




1. The condition Var(w) = 1 will imply that 7 = o*, i.e. that & is a consistent estimator
of r. =]
The consistency of & and & therefore depends only on the first two moments of the
distribution of w, when the postulated model is lognormal linear.
We must point out here that one of the assumptions for the above development to be

valid is that n~'(.X'Y) be bounded as n — o0o. This condition is not verified in the model
Viza+Blnj+vj+(i+5—-2)+¢;.

The covariate i would need to be removed from the model, for example by normalizing the

amounts Y;;, in order for n='(X'X) to be bounded as n — oo,

9 Conclusion

In this paper, we have presented an anthology of models differing between them only
in the distribution assumed for the error €. To discriminate between the normal, extreme
value, logistic and loggamma distribution for e, we can assume that ¢ belongs to the

generalized log F distribution (Prentice (1974)), with pdf

F(&) = (my/ma)™e ™ (1 + mye* [ mg]~(m/mD),
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After finding the MLE's (rit;, m3), we can perform a likelihood ratio test for

(my,mq) = (1,1): logistic distribution
(my,mq) = (1,00): extreme value distribution
mg = 00: generalized loggamma distribution

(my, my) — (00, 00) : normal distribution,

to select one particular member of the family. Gould (1986) did an extensive study of the
location-scale model with the error ¢ following the log £ distribution. Her conclusions are
that if one tries to estimate two shape parameters as in the log F family, the precision of
the estimates may be so low as to make them virtually uninformative. However, as we
have also observed, the MLE 4 of the regression parameters is quite robust with respect
to misspecification of the distribution of «.

Numerous other researchers have in the past also encountered difficulty when trying to
estimate the shape parameter of the generalized loggamma distribution. Lawless (1982,
p. 237), observed that, even with sample sizes of 200 or 300, it is not uncommonr for the
Newton-Raphson algorithm not to converge to the MLE's. Because in usual insurance
situations, the trapezium of data contains a small number of cells (in our case, 45 obser-
vations with 5 parameters to estimate), the actuary might encounter problems with this
distributian. According to Prentice (1974}, two distributions in the loggamma family with
very diflerent values of the shape parameter k, will look very similar, creating estimation
problems. The extreme value distribution (g = 1)} is difficult to discriminate from the
normal distribution (¢ = 0), when the sample size is small.

In view of these facts, we therefore recommend that a simple distribution be assumed
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for €, like the extreme value or the normal. After comparing the log likelihood, fit can
be assessed by a Q-Q plot. If a symmetric distribution is needed, the normal distribation
should be assumed for ¢, since it is tile only symmetric member of the generalized loggamma
family. Fitting the normal model is useful for finding initial parameter estimates for the
extreme value model. The estimated IBNR reserve can then be easily calculated under
both assumptions.

The assumption of 2 normal distribution for € presents one advantage over that of the
extreme value distribution. When reserves are to be discounted for interest, we can still
find the distribution of the present value of the future payments. If the force of interest § is
constant over a year, it follows from a property of the lognormal distribution that the joint
distribution of the discounted value of the future payments is also multivariate lognormal.
Stochastic interest rates could also be built into the model and the reserve estimated by
simulation.

In conclusion, regression models present many advantages over the chain ladder method:
they have fewer parameters and do not underestimate the reserve; the properties of the
estimators of the parameters have been well studied; they take into account both the
error involved in the estimation of the parameters and the statistical error inherent in the
prediction of future claims; the fit of the model can be tested statistically by a Q — @ plot;
and confidence intervals for the reserve can be calculated with a simulation. We therefore

strongly advocate the use of regression models.



10 Appendices

10.1 Algorithm to generate a multinormal random variable

To simulate the distribution of the IBNR reserve, we need to generate a MLN(u,Y)

random variable. The following algorithm was used.
1. Generate Z ~ M N(0,[), using the Box-Muller transformation
Zy = (-21nU,)cos(22U,)
Z3 = (=2InU3)cos(27U3),
where U; and U; are i.i.d., uniform on (0,1).
2. Transform Z to Y, a MN(u,Y) distribution:
Y=upup+C2Z,

where 3~ = CC’' and C is calculated from the Choleski factorization algorithm (ref.

Kellison (1975)):

cn = on
i=1

i = —(0y = ) cikckj)
Cii k=1

-1
i = ,'0.-.-—26?;‘
k=1

3. Exponentiate each componentof Y

e’ = (™)~ MLN(u, Y)).
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10.2 Asymptotic properties of MLE’s

If Xi,...,X, is a random sample of size n from the density f(z;8), where § =
(81, ...,0,41) contains the regression parameter vector 8 and the scale parameter o, then

under certain regularity conditions, the following results hold.
1- The MLE § = (,.....6:) exists.

2- It is a consistent estimator of 8.

3- él, - ,é,“ are asymptotically efficient,
. Var(d;)
te. lim —————— =
"~ CRLB(%;)

where CRLB(4;) is the Cramér-Rao lower bound, obtained as l/nE[%Fl]z.
?

4- \/5(0.—0) has an asymptotically multivariate normal M N (0, I;!) distribution where

Ip is the observed information matrix, with element

2

/]
I =~
) 36,08;

log L(8;z1,...,2a) lg:g .
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