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On Hierarchy of Actuarial Objects: 

Data Processing from the Actuarial Point of View 

Aleksey S. Popel~ukhin. Ph.D. 

Introduction 

Like all professionals in the information era. actuaries need computers to automate non-creative 
activities and to relieve them from the burden of repetitive actions. 

Actuaries need a system which shields them from the complexities of computer architecture and 
provides an abstraction and generalization exactly at the level of the common denominator of all 
actuarial functions. 

From the actuarial point of view, an ideal data processing solution is a (a) transparent to users(b) 
highly efficient(c) storage/retrieval system for(d) structured actuarial data (objects) with (e) an 
extremely flexible(f) computationallycomplete (g) open (h) calculation engine. In short, a 
system which speaks actuarial language and makes it very easy to express actuarial algorithms 
and very hard to make mistakes. The paradigm where goals of abstraction, flexibility, simplicity 
and reliability can easily be achieved is the Object-Oriented (00) model 

In order to “teach” an object-oriented data processing system to “speak actuarese” actuaries need 
to structure and categorize their data as well as formalize their algorithms. A well-defined 
hierarchy of actuarial objects creates an environment for the effortless expression of actuarial 
business rules and algorithms. 

Figure I 

To perform their professional duties, actuaries operate with chunks of structured data. each chunk 
with its ovvn set of properties (see Figure I .) Some properties (line of business. location) help to 
distinguish one chunk of data from another, while other properties (loss vs. ALAE, dollars vs. 
counts) describe “actuarial nature” of the data and help determine which actuarial operation is 
appropriate to perform on them. It is intuitively clear that different kinds of properties differ in 
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their origin and their effects on actuarial calculations. It is also immediately apparent that proper 
use of these properties in the actuarial data processing system may significantly increase the 
system’s effectiveness and significantly reduce mismatch between data chunks and the algorithms 
applied to them. Let us formalize these findings and make evident that the distinction between 
different kinds of properties lies as deep and is as fundamental as the difference between ohjecr 
categorization and L./US hierarchy in an object-oriented model. Let us also demonstrate how this 
knot\ ledge can be communicated to 00 system designers and used to build effective and reliable 
actuarial data processing solutions. 

Object Orientation’ 

Object Orientation is a preferable paradigm for 

. red work/ nrodcliuq 

. cwurim of rereohlc. c.r~cwddde trrnl m~ir~~nimrhlr .wft~we con~por~cvrrs 

. COI~WIIC/~O~I ofrclitrhle mu/ co~r~i.~~rvtt ~rpplictrriom 

The 00 paradigm facilitates communication bet\\een the user/actuary and the system designer. 
For example. compare the same calculation expressed in spreadsheet slntas and in 00 fashion. 

= (sumiC35:1^39) -maxfC35:C391 -min (C35:C39) )/3 (Spreadsheet) 

AgeToAgeFactors.Average(Type:=ExclHiLo, LastDiagonals:=5/ (00) 

The former expression does not communicate to the user the purpose of calwlation. and is prone 
to errors. Nor is it the best possible algorithm: indeed. in requires 3 passes through the array 
C35:C39 (l‘or .swn. max and min) instead ofsingle pass. On the other hand. as latter expression 
demonstrates. 00 approach creates an intuitive environment for the user (when he needs an 
average. he just requests so) and leaves the freedom of implementation to the system designer. 
When an algorithm gets updated due to improvements or error corrections. user‘s code remains 
intact contributing to consistent and self-documenting actuarial application. 

In a properly designed 00 application. the only wa) to manipulate the data encapsulated within 
the object is h! calling methods of (sending mes~ges to) that object. Not only does such an 
approach protect data. maintaining the whole data structure in-sync. it also contributes to 

l An evxllcnt inrroduclion to 00 concepts and methods can be found in [I]. Martin [2] in a highly 
conceptual fashion discustes the theoretical foundation of00 technology. while [;] - [5] fully cover 
subject of 00 databases. 
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l Usability: hiding implementariotl of rhe methods and complexity of Ihe data s~~cture. rhe 
00 design provides means/or proper and effective use of objeci.7 

The central notion in the object-oriented model is (surprise!) an object* - an entity, which 
contains both structured data elements (properties/attributes) and code (methods/operations) - for 
manipulations with the data. A set of objects with the same structure and behavior is declared and 
implemented through classes, Class contains both the description of the data structure and 
implementation of the methods. Thus. class is implementation of the object. while object is an 
instance of the class. 

In order to model complexity of real life objects and variety of their relationships, 00 approach 
relies on 

. encapsulation (data hiding and abstrtrcrion) 

. inherirance (likeliness) and 

l polymorphism (overloading) 

Encapsulation is a mechanism of binding data and operations on that data into single entity. One 
cannot access encapsulated data directly-all the manipulations on the data are done exclusively 
through operations associated with the data. Encapsulation, as a way to hide (and. thus. protect) 
data and privatize (and, thus, abstract) implementation of the object’s behavior. shields the user 
from the object’s internal complexity and allows operations with objects as whole entities rather 
than fractional structures. 

inheritance is a mechanism that facilitates the reuse of the program code from class to its 
ascendants (subclasses). Through this “class-subclass”relationship, inheritance naturally imposes 
a hierarchical structure on the collection ofthe classes. Inheritance, as a way to model “is like” 
relationship between objects, provides users with the ability to express structure and behavior of 
complex objects through the simpler ones and, on the other hand. reuse the code and derive new 
objects from the existing ones. 

Polymorphism is a mechanism for declaring multiple operations with same name applicable to 
arguments of different types. Polymorphism models our real life ability to notice similarities 
between actions on different types of objects and our desire to use the same verb to name these 
actions. Polymorphism, as a way to apply the same operation to different classes of objects, 
contributes heavily to the generalization of algorithms and, thus, helps to avoid unnecessary 
repetition and duplication of errors, 

Example 1. For illustration, let’s consider an actuarial triangle as an object. A triangle is 
the most intriguing actuarial object and the quality of its implementation may greatly 
affect the effectiveness of the whole actuarial system. Let’s start with the storage 
structure. While it is most intuitive to store elements of the triangle as cells of the 
encompassing two-dimensional matrix, it may be not the best approach: first of all, 
almost half of the storage space would be wasted 011 empty cells and. secondly. not 

’ Authors of different books on 00 subjects define major 00 terms somewhat differently. “Object 
technology has its own vocabulary. which is /arge and complex. In its present state, it is unfortunately also 
mconrirfenr” (see [6]). For precision we cite exact definitions from [6] in the Glossary section. 
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every computer language and development environment supports variable size 
(dynamic) 2-D arrays. The most economical way to store a triangle would be Cantor- 
inspired enumeration of its elements into one-dimensional array (see Figure 3.) : 

element (i, j) ofthe friangle maps into elemenr k = (i + j - 2)(i + j - 1)/2 + i of the I-D orray* 

Figure 3 

Not only does such a technique yield the most space-conscious arrangement of 
triangle’s elements, it also provides an opportunity to place a whole triangle as a single 
record in the database, and it makes appending (and extraction) of the last diagonal as 
trivial as adding (reading) several consecutive elements at the end of the array. 

Thanks to encapsulation, as long as in response for the message “RetriveTriangle”our 
object will return a familiarly looking half-empty matrix, user won’t notice that 
elements ofthe triangle are stored in somewhat unusual way. Thanks to inheritance, we 
may derive different classes of triangles (like those with missing first diagonals, or 
those with only integer elements for representing “counts”) without rewriting mapping 
formulas. And thanks to polymorphism, we may need to implement some basic 
manipulations on the triangles (like addition or trending) only once despite the 
existence of several different classes of triangles. 

The natural desire to store objects in some organized fashion triggered the development of 00 
Databases. 00 Databases introduced such fundamental notions as Persistence and Identity. 

Persistence refers to availability of the objects across executions. Unlike temporary variables in 
the computer memory, persistent objects do not disappear when the program stops -they are 
stored for the future access. 

Identity is a mechanism for distinguishing objects and a guarantee for their uniqueness. To insure 
uniqueness 00 databases rely on the object identifiers (OID.) - values, which are unique, 
permanent and indifferent to the properties of the object. A good example of OID is a Social 
Security Number: it is unique, permanent and indifferent to the owner - one cannot describe a 
person lookingjust at SSN. In real life, however, we do not use an OID for identifying an object, 

l For”non-isosceles” triangles k =ceil ((i*s/ope +j -slope - l)(i*slope + j - 1)1(2*s/ope)), where slope 
is the ratio of interval between rows over interval between columns and ceil(o) is a minimal integer not 
smaller than a. 

223 



rather we use a list of properties to describe the object we want - e.g., name, age and address 
which are propertiesof the “person” object and the most used identifiers, but not a person’s OID. 

Object Categories 

No system can be called object-oriented unless it supports data encapsulation. inheritance and 
polymorphism. 00 databases add requirements for object persistency and identity. Inheritance 
and polymorphism call for clas.s (“internal”) hierarchy, while the identity required by an 00 
database calls for objrci (‘external”) hierarchy! 

Every insurance/re-insurancecompany has amassed a set of actuarial data arrays (triangles, rows. 
columns, diagonals. etc.) and preferred actuarial analysis techniques. Availability of established 
sets of actuarial categories and algorithms both simpltfies and cnmplicates 00 Analysis and 00 
Design procedures for the 00 actuarial data processing system. Simplification comes from the 
fact that most of the existing categories cat, probably be reused m the 00 hierarchy and many of 
the algorithms can probably be wrapped into 00 functional classes. Complications arise when 
00 Design requirements demand new categories to be introduced (or existing ones to be 
reshuffled) and algorithms to be adapted for the newly established object classification. 

Every time an actuary attempts to tell apart different data arrays he has to introduce a (or USC an 
existing) category with members describingthese data arrays properties. Any distinction. which 
contributes to the criteria of identity (i.e., every property. which helps to distinguish one data 
array from others). generates new category or new member of an existing category. 
Category/member structure applied to the universe ofall data arrays is called clnrzificntion. 

It is crucial to realize that an existing data array can be considered as the data portion of an 
actuarial object, and that an object also may store (among other things) information about what 
member of which category this object is. In essence. one can think of an actuarial object as a 
matrix with genealogy. or even simpler. “a triangle. who knows who he is” (see Figure 4.) 

Not all categories were created equal. While some categories reflect an “actuarial nature” of the 
object, others are used just to distinguish similar objects ofthe same “nature”. 
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There are 4 major kinds of categories: 

1. Those which define on object ‘splace in n class hierarchy (clrrss orrribures) 

2. Those which de3ne on object ‘s S/o/e 

3. Those which serve idenriJico/ion purposes klimerrsions4) 

4. Those usedfor grouping within dimen.viorl (generotiotrs) 

A good example of the I” kind of category would be ‘Shape.” Indeed, members of this category 
belong to different classes, possibly inherited one from another: a Triangle (a member of this 
category) is a Matrix (another member) with half of the cells being empty and some additional 
specific functionality discussed below, a Diagonal (one more member) is a Triangle with even 
more empty cells and some more specific functionality, etc... A category“AccumulationType” 
would perfectly illustrate the 2”d kind ofcategories: members of this category (Cumulative, 
Incremental) define an object’s state. “Line of Business” and “Location” are primary examples of 
the 31d kind ofcategories, while “Groups of LOB’s” and “Regions” with members like “All 
Liabilty”, “All Property”, “ NorthEast” and “SouthWest” perfectly reprcscnt the 41h kind of 
categories. 

Figure 5 

Categories of the first two kinds affect the way calculations are performed on the object’s data, 
and thus affect object behavior; they reflect the inner actuarial “nature” of the object and in that 
sense they belong to the “internal” hierarchy. The remaining categories are imposed by the 
database requirement, which calls for every object to be uniquely identified; they describe an 

l See Figure 5. For precise definitions of dimensions. generations and members o/dimension see Glossary 
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object and affect the structure of the external (relative to the object) entity - an 00 database - and 
in that sense they belong to “external” hierarchy. 

To summarize, classification of the objects (within a class) serves two main purposes: 
identification and selection in 00 database, whilegenerations provide convenient means for 
grouping. This is significantly different from the purposes of the clars hierarchy, which defines 
inheritance and affects behavior of the objects. 

Figure 6’ 

The internal hierarchy includes categories which affect and are affected by the algorithms. The 
external hierarchy is the set ofall objects factorized by internal hierarchy. Factorization is similar 
to packing items into the bags: each bag may contain several items, possibly, with their own 
classification, but factorization helps to classify bags themselves, ignoring what’s inside (see 
Figures 5-6). 

To build an 00 data processing system, actuaries, during the 00 Analysis stage of development, 
have to clearly define and segregate all 4 kinds of categories. II is important to realize that a 

l There exist many different notations for expressing relationships between classes: Booth, Rumbaugh. 
OMT and, most notably. Universal Modeling Language UML (see [7]. [8]). But for Figure 6 we used none 
ofthem, because Figs. 5-6 illustrate the notion of factorization ra$er than a particular 00 design. 
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decision to place a category into an internal or external category will deeply affect the 
architecture and functionality of the resulting 00 system. There is no single recipe for all 
companies: the same category could be internal in one company, external in another one and not 
exist at all in the third one. What is true for every company, however, is the fact that the 
classification can not be designed separately from the algorithms collection! 

I” rule oflhunrb. To determine which hierarchy (internal or external) an actuarial category 
belongs to, one should take into account the following considerations: 

l (u) whether or non diJferent members of this cafegoty need dif/erent algorithms IO process 
them (“Counts” and “Dollars” as members of the “Amounls ” category usually need 
differem algorilhnrs, while “NY. ” “NJ” and “CT” as members of the “Location ” category 
are usually treated the same way). 

l (b) wherher or no1 d#erent members of Ihis caregory affect Ihe way algorithms are applied 
(rhe “Cumulative” and “Incremental”members ofthe “AccunrulaIionType ” caregoty require 
somewhat d$ferent calculations). 

l fc) whether or not members of Ihe calegoty are used IO de/ine groups for possible 
aggregation into subtorals (/he “NorrhEasr region *’ and “South West region” members of 
“Regions” cafegorycan be defined through rhe groups of members from anorher caregor): 
“Locations ” nrrd (he-v do ,101 serve idenrijication purposes directly). 

Categories for external hierarchy should be defined in such a way, that two main activities- 
selection and aggregation (grouping)- be optimized. This approach may help to eliminate 
unnecessary levels in the hierarchy. If there is no intent to summarize amounts (data or results) 
across the members of a particular category, it may be blended with other categories, thus 
simplifying hierarchy. For example, the categories “Line of business” and “Sub-line” ran be 
combined for something like (“Fire”, “WC Med”, “WC Ind”, “GL BY’, “CL PD”}. However, if 
category members simplify the selection process, then a category should be created. For example, 
category “DAC” with members {“Direct”, “Assumed”, “ Ceded”} may significantly simplify 
selection of objects for “Gross vs. Net” actuarial analysis. 

Another consideration for determining categories serving as dimensions in an external hierarchy 
is density. A multi-dimensional array is dense (as opposed to sparse) ifa relatively high 
percentage of the possible combinations of its dimension members contain data values. Some 
categories may be combined in order to avoid impossible combinations of its members. For 
example, if only few lines of business have tail coverage, it make perfect sense to combine the 
“Line of Business”category with the “Tail 1ndicator”category (unless, of course, there are 
special algorithms for processing lines with tail coverages: in that case the “Tail Indicator” 
category belongs to internal hierarchy). 

The analogy with currently available actuarial systems lies in the fact that sets of existing 
spreadsheets (different for different data types) are roughly equivalent to the categoriesofthe I” 
kind; parts of the labels/descriprions for the ranges in these spreadsheets approximate categories 
of the 2”d kind; some of the fields in the existing actuarial database almost correspond to the 
categories of the 3’d kind; and groupings of items in the summary of results affect selection of the 
categories of the 41h kind. 
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Implementation Issues 

All 00 theory can be irrelevant if one cannot implement or emulate an actuarial data processing 
system as an Object-Oriented application. Fortunately. it is not only possible, but it has been 
already done: there exist several 00 actuarial systems. including a fe\% designed and 
implemented by the author. 

Possible approaches to the design of such a s!stcm may include the following major tasks: 

Classes in 00 application may have different beha\ ior and thus can be used for different 
purposes. Classes with the principal responsibility of maintaining data information are called 
abstract data types or data managers. Classes with the principal responsibility of assisting in the 
execution of complex tasks called functional classes or facilitators. The distinction between 
abstract data types and functional classes is somewhat similar to the distinction behreen nouns 
and verbs in a sentence. 

An abstract data type is a logical extension ofa programming language’s built-in data ty pcs 
(integer, boolean. character) with a clear separation of the external interface and internal 
implementation. Abstract data type is a class dedicated to the representation of the complex data 
structures along with necessary additional functionality for storage. retrieval and transformation 
of the data. A good esamplr of an abstract data type \rouId be “Date”: it doss not matter ho\\ 
“Date” is stored in that class as long as users have an ability to request date to bc displayed in any 
given format. retrieve year. month or day and perform date arithmetic. 

Functional class is a natural extension of the programming language’s butlt-in functions and 
operators. Packing several functions. associated M ith some hind of real-life actit ity. along with 
shared data, hmcttonal classes can be compiled into actiw components sometimes called engines, 
Good examples of functional classes would be the simnlation engine of”gRisk”. the 
optimization engine of “Sol\cr” and the calculation engine nf”EscelL 

If triangles (rows, columns and diagonals) are essentially data manager classes. that is. abstract 
data types, then encapsulated actuarial algorithms (actuarial methods) are functional classes. 
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Y’rule o/rltw&. To decide which actuarial operation belongs IO the data manager class (i.e.. has 
to be implemented as a method in the abstract data type) vs. functional class. one should consider 
the following aspects of rhe algorithm: 

l (c, whether or mu ir i.5 zacr ituerr~rp/ibla Itruronrtrtic “urrtrcriorr of /he Itr.c/ ditrgomd” KY. 
“l0.t.s c/Lwlopltw”/ /wfhocl”. which rqrriws II.V~ .5cl~~-rou) 

In short. if an algorithm is a standard simple transformation of an object. it is most probably a 
method ofthe data class. and convers+. if an algorithm constitutes an actuarial method. it most 
probably belongs to the functional class. 

Esamole 2. It makes a lot of sense to inherit Triangle. Vector and Diagonal actuarial 
classes from the Matri\ class. Matrix implementation in existing spreadsheets or 
ActiveX components is extremely rich with properties). The 00 designerjust has to 
implement a fe\i methods to create an algebra for triangles: the base transformations 
\\hich would reduce operations on triangles to well-defined operations on matrices 
(inheritance at its best): 

. DiagonalsToColumns 

. DiagonalsToRows 

. RowsToDiagonals 

. ColumnsToDiagonals 

. DiagonalToVector(DiagonalNumber) 

. VectorToDiagonaliDiagonalNumber) 

. LastDiagonal 

For example. applying calendar year inflation to the triangle can be performed as a 
triad: 

Triangle.DiagonalsToRows <- 
Matrix.MultiplyByVector(InflationVector) <- 
Triangle.RowsToDiags. 

in more conventional notation: 

Triangle.DiagonalsToRows.MultiplyByVector(InflationVector) 
.RowsToDiagonals 
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Or, even less intimidating, taking the average of the last 3 diagonals can be reduced to 
the average of the last 3 rows in the matrix ifTriangle. DiagonalsToRows is 
implemented (see Figure 7.) 

Note that because Triangle inherits froni the Matrix, it can use operations available to 
Matrix, in particular, multiplication by vectors and taking the average of its rows. Most 
of actuarial algorithms can be expressed through a very limited set of basic triangle and 
matrix operations; for the rest of algorithms users always have access to matrix 
elements. 

Figure 7 

Example 3. A simple Chain-Ladder method rewritten in an 00 fashion 

. Step1 = InputTriangle.AccumulateIfromFirst. 
byAddi tionl; 

. Step2= Stepl.Shift(toLeft, by:= lI/Stepl; 

. Step3= 
StepZ.DiagonalsToRows.RowsAverageiSelectedAveragel; 

. Stepl= UserSelectedVectoriStep3); 

. StepS= Step4.AccumulateffromLast, byMultiplication); 

. Step6= Stepl.LastDiagonalfasColumn! * Step5.Invert; 

Or even shorter (assuming the Input Triangle is cumulative). 

EstimateOfUltimate = InputTriangle.LastDiagonal (asColumn) + 
UserSelectedFactorsldefault:= 
InputTriangle.AgeToAgeFactors.AverageiMedial, 511 

A complete actuarial system has to extend its classification to include objects used by all types of 
actuarial activities: reserving, pricing and finances. Policy objects highly structurired entities 
which store several dates along with the list of coverages and vectors of limits and attachment 
points-can be arranged in a hierarchy of their own (in such a hierarchy, finite reinsurance policy 
class can be derived from quote-share treaty class by adding aggregate limits property.) Vectors 
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of inflation rates, sets of statistical distribution parameters and a simulation engine - these are the 
primary examples of actuarial objects to be included in the system. 

An important implementation consideration is the links to the actuarial Data Mart or equivalent 
source of actuarial data. The structure of that data depository may impose restrictions (and 
requirements) on the availability of some desired categories and members in a hierarchy, and, 
therefore, the structure of the existing Data Mart should be a very important consideration in 00 
Analysis. It would be wise to build into the system an ability to anticipate future changes in the 
structure of available actuarial data and adapt its hierarchical organization to it, in other words, to 
build support for dynamic (data driven) hierarchy. 

Currently pure 00 databases and languages are not as ubiquitous as their relational and 
functional counterparts: Oracle, SQL Server and Sybase (the most ubiquitous databases) do not 
support inheritance and to call Visual Basic (one of the most ubiquitous programming 
environments) Object-Oriented is a very big stretch. Nevertheless, these impure 00 
environments support enough 00 features for building applications and systems based on the 
main 00 principles. In instances, when particular 00 feature is not natively supported, it usually 
can be effectively emulated, so users and designers can reap all the benefits of 00 applications 
today. In fact, a pure 00 implementation of the actuarial system is less important than thorough 
and systematic 00 Analysis of the actuarial workflow; that is, rethinking the whole actuarial 
process in terms of objects, methods, hierarchies and classifications. 

Note how important the selection of a proper hierarchy is: we started discussing actuarial data 
chunks’ categories and suddenly all the industry buzzwords like “Data Mart,” “Object-Oriented 
Analysis and Design, ” “client-serverarchitecture”and “data-driven technologies” came into play. 

With the advent of 00 databases, which store objects and thus have to store data along with 
operations, there are even more places for execution of the programming code. Indeed, where to 
implement object’s functionality: on the server or on the client, inside the database or outside? 
Standard transformation routines, which are not subject to frequent modifications and user 
interruption, that is, abstract data types methods, are better placed on the server. Indeed, why 
request a triangle and then accumulate it on the client - let the powerful server accumulate it and 
transfer the result; or why request the whole triangle when only last diagonal is needed - let the 
server extract it before transferring the result. As for functional classes (actuarial methods) they 
also may take advantage of the server through request brokers like CORBA or DCOM. So, the 
system designer can build a distributed multi-user application using these tested and optimized 
actuarial procedures (implemented as methods of the functional classes) as construction blocks. 

The author does not believe in a single monolithic application simultaneously suitable for pricing, 
reserving and financial analysis - he rather prefers a suite of applications each highly optimized 
for particular purpose, but founded on a base of comprehensive yet coherent set ofcommon 
components (classes). Proper design and classification of actuarial objects, both abstract data 
types and functional classes, will enable actuaries to build such applications themselves. 
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Conclusion 

Inheritance. a necessary requirement for any Object-Oriented system, naturalI> generates an 
internal hierarchy of the actuarial objects. while the database’s requirement for identity of every 
object imposes an external hierarchy on the actuarial objects. This duality of the hierarchy reflects 
the fact that some categories in classification are used to determine which actuarial algorithm to 
use and represent differences in an object’s internal structure and behavior. while other categories 
exist only to distinguish similar objects and define groups for aggregations. In other words. the 
external hierarchy is just a factorization of all actuarial objects by internal hierarchy. A deep 
understanding of these two distinct sources of hierarchies helps to optimize categoriration of 
actuarial objects for their intended use - actuarial anal+. and also provides a basis for more 
effective and robust Object-Oriented actuarial applications. 
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Appendix 

Code samples are for illustration purposes only. 

Example I. The following text is a fragment of”LinearStorage”class implementation. Placed in 

1 

I 3nd Function 

<class LinearStorage> 

Private DynaStoreO As Variant 
Private nRow.s As Integer 
Private nCols As Integer 
Private nSize As Integer 

Public Sub StoreTriangle(ByRef InputTrig As Variant) 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer 

nRows = UBoundtInputTrig, 1) - LBoundlInputTrig, 1) + 1 
nCols = UBound(InputTrig, 2) - LBoundtInputTrig, 2) + 1 
nSize = (1 + nCols - 2) l (1 + nCols - 1) / 2 + nRows 

ReDim DynaStore To nSize) 

For j = 1 To nCols 
For i = 1 To nCols - j + 1 

k= (i+j - 2) * (i+j -1) /2+i 
DynaStore = InputTrig(i, j) 

Next i 
Next j 

End Sub 

Public Function RetrieveTriangle As Variant 
Dim i AS Integer 
Dim j As Integer 
Dim k As Integer 
Dim Output0 As String 

ReDim Outputt To GROWS, 1 TO nCo1.s) 

For j = 1 To ncols 
For i = 1 To nCols - j + 1 

k= (i+j - 2) l (i+j - 1) /2 +i 
Output(i, j) = DynaStore 

Next i 
Next j 

ShowTriangle = Output 
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the VBA class module, this code will define an abstract data type called LinearStorage that will 
immediately become available along with VBA built-in data types. 

Option Explicit 

Function test0 As Variant 

Dim TrigAsObject As New 
Dim TrigAs2DArra.y As Var 

TrigAsObjest.StoreTriang 
. . . 

TrigAsZDArray = TrigAsOb 

&;'TrigAsObject = Nothi 
. 

End Function 
l-. ~__- 

It’spzrhlic functions (“methods”) and subroutines (“properties”) w ill be available to all instances 
of this class. 

Option Explicit 

Function test0 AS Variant 

Dim TrigAsObject As New LinearStorage 
Dim TrigAs2DArray As Variant 

TrigAsObjest.StoreTriangle (ActiveSheet.Range("AAA")) 
. 

TrigAsZDArray = TrigAsObject. 

Set TrigAsObject = Nothing 
B AccumulateTnangle 

B DlagonalsToColumns 

End Function b DiagonalsToRows 

I&? NumberOfColumns 
~-__ 

~-__ & NumberOfElements 

Encapszddon. Note, that LinearSforage class includes both data (nRow nLbl.r. n.Sire, e/c..j and 
operations (SloreTriangle. RefrieveTriangle. erc..). External programs will not have direct access 
to any variables we store in the class as well as to any operations we designate as Private: When 
the designer wants external programs to access some data (e.g.. UR~JW) he will implement a 
dedicated operation (e.g.. NunrberOjRows), where class will have a chance to validate input and 
perform necessary transformations of related items (e.g.. rr.Ce.) 
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Glossary 

A list of the most popular and influential variants of definitions for the most important 00 
concepts (mostly from [6] and [IO]). Items are listed in the order of appearance in this article. 

object n. 5.(a) any instance of one or more classes or types.. 2.(b) any encapsulation of 
properties (e.g., data) and behavior (e.g.. operations). l.(c) any real or abstract thing 
about which we store data and the operations to manipulate those data.. 2.(a) any 
identifiable, encapsulated entity that provides one or more services that can be 
requested by a client. I .(a) any abstraction that models a single thing.. 9. any person, 
place or thing... 

Synonym: INSTANCE 

class II. 5. any set of objects that share the same or similar features... 4.(b) any implementation of 
a type ofobjects, all of the same kind.. 2. any possibly generic factory of instantiation 
of instances... 7. the unit of modulation, data hiding, and encapsulation... 1 .(b) any 
concept that has members,. I .(a) any uniquely-identified abstraction (i.e., model) of a 
.SCI of logically-related instances that share the same or similar characteristics... 

Qmnynr TYPE 

encapsulation n. I.(b) the packaging of operations and data together into an object type such that 
the data are only accessible through messages to the object... I .(a) the physical 
localization of features (e.g., properties, behaviors) into a single black-box abstraction 
that hides their implementation behind a public interface.. 

Synonynr: INFORMATION (DATA) HIDING 

inheritance u. I .(b) the construction of a definition by incremental modification of other 
definitions. ._ 3.(b) a mechanism that permits classes to share characteristics.. 

polymorphism n. 2. the ability of a single name to refer to different objects (i.e., objects of 
different classes)... Ithe abilityofa single name to refer to different things having 
different forms... 

hierarchy rr. I. any ranking or ordering of abstractions into a tree-like structure.. 

object identilier (OID) n. 1. the simple identifier permanently assigned to each object that is a) 
unique within some scope (i.g., an application), b) independent of the object’s 
properties and state, c) constant during the existence of the object.. 

identity n. I the use of identifiers rather than keys* to uniquely identify objects. 

l keys (fields) is a notion from the Relational Database vocabulary 

235 



persistence ,I I. the ability of an object to continue lo exist aficr the execution of the program. 
process. or thread that created it.. 

object-oriented programming ~1. I, any application specific programming resulting in programs 
that consist of collection of collaborating object>. \rhich have a unique identit). 
encapsulate propenies and operations. cwnmunicate via message passing. and are 
instances of classes related by inherirance. polymorphism and dynamic (run-time) 
binding... 

dimension )I. 7. an index for identifying values within a I~~~~lti-dil~~e~~\i~~111;11 array. I. A 
dimenGorl is 3 wuctuwl attribute ofa Intrlti-dimrr,sionaI arm) that is a libt of members. 
all ot’\rhich are of a similar r) pe in the user’s perception of the data. 

E.~lrtr~~r~~/c. months. quarters. !cars. etc.. make up a time dlmcnsion: <itics. regions 
countries. etc.. make up a grograph! dimension. 

dimension member 11. I. a discrete name or ldcntlticr uwl to identiiy a data iwm’s position and 
dexription within a dimension... 

member combination ~1. I. an e\act description of a unique cell in a nlultl-dilnellciollal array. 
cunbi>ting ofa spccilic member selection 111 each dimension of the array.. 

generation )I. 2. in a hierarch}. the distance from the top. I. Imembers vf 3 hiernrch) have the 
same generation if they have the same number of ancestors leading to the lop. 

EWW~I/C in a time dimension ycnrs are generation I. quancrs are generation 1, etc 

le\,el II. 2. in a hicrarch). 1111’ tlihtancc linm the hottorn.. I. rncmhcrs of a dlmcnsiorl \< ith 
hierarchies are at the same Ic\cI if. ~ithln their hwrarch), the> hate the name maximum 
number ofdescendants in any single path helo\r 

236 



Sibliography 

[I] David Brown. An Inrroducrion IO Object-OrienredAnolysis. Objecrs in Plain English. 1997, 
Wiley 

(21 James Martin, James 1. Odell. 00 Methods. 1998, Prentice Hall 

[3] Mary ES. Loomis. Object-OrienredDaiabases: The Essenrials. 1995. Addison-Wesley 

[4] Douglas K. Barry. The Object Database Handbook. 1996, John Wiley&Sons 

[S] Michael Bhala, William Premerlani. Objecr-Oriented Modeling and Design for Do/abase 
Applications. 1998, Prentice Hall 

[6] Donald G. Firesmith, Edward M. Eykholt. Dicrionoryof Objecf Technologv The Dejinitive 
Desk Reference. 1995, SlGS Books 

[7] Murray R. Cantor. Object-OrientedProjecr Management with (/ML. 1998, Wiley 

[8] Grady Booth. Object-OrientedAnalysis and Design with applications. 1994, Addison-Wesley 

[9] Aleksey S. Popelyukhin. The Big Picture: Actuarial Processfrom rhe Dora Processing Poim 
of View. 1996, Library of Congress 

[IO] OLAP and OLAP Server Definitions. 1997, OLAP Council 

237 



238 


