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Abstract

Mixed Poisson distributions are widely used for mod-
eling claim counts when the portfolio is thought to be
heterogeneous. The risk (or mixing) distribution then
represents a measure of this heterogeneity. The aim of
this paper is to use a variant of the Patilea and Rolin
[15] smoothed version of the Simar [20] Non-Parametric
Maximum Likelihood Estimator of the risk distribution
in the mixed Poisson model. Empirical results based on
two data sets from automobile third-party liability in-
surance demonstrate the relevance of this approach. The
design of merit-rating schemes is discussed in the second
part of the paper.
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1. INTRODUCTION AND MOTIVATION

In most developed countries, third-party liability automobile
insurance represents a considerable share of the yearly non-life
premium collection (for instance, in Belgium, 26% during the
year 1998). Therefore, many attempts have been made in the ac-
tuarial literature to find a probabilistic model for the distribution
of the number of automobile accidents; for a review of the exist-
ing literature, we refer the interested reader, e.g., to Lemaire [12]
or to Denuit [7]. Most of these models are parametric (i.e., an
analytical expression is assumed for the probabilities that a poli-
cyholder reports k claims during an insurance period, depending
on one or several parameters to be estimated on the basis of the
observations).

In order to see if there exists a universal model for claims dis-
tributions in automobile portfolios, Gossiaux and Lemaire [10]
examined six observed data sets. Those came from five coun-
tries and were studied before by other researchers. Gossiaux and
Lemaire [10] fitted the Poisson distribution, the Generalized Ge-
ometric distribution, the Negative Binomial distribution and a
two-point mixed Poisson distribution to each of the data sets by
the Maximum Likelihood method and the method of moments.
They concluded that no single probability law seems to emerge
as providing a good fit to all of them. Moreover, there was at least
one example where each model got rejected by a chi-square test
(at the level 10%). Seal [18] supplemented the paper by Gossiaux
and Lemaire [10] with an analysis of some automobile accident
data from California. This author concluded that his analyses
supported the mixed Poisson hypothesis for the distribution of
the number of claims.

In this paper, we will work in the mixed Poisson model, but no
assumption will be made about the risk (or mixing) distribution.
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Following Walhin and Paris [23], we first recall the basic fea-
tures about the Non-Parametric Maximum Likelihood Estimator
(NPMLE, in short) of the risk distribution. As pointed out by
these authors, the NPMLE suffers from some serious drawbacks
in the design of Bonus-Malus systems. The problems are mainly
due to its purely discrete nature. Therefore, we will propose a
smoothed version of the NPMLE. In the second part of this paper,
we focus on “Bonus-Malus Systems” (BMS, in short). A BMS
is a particular form of experience rating. It penalizes insureds re-
sponsible for one or more accidents by premium surcharges, or
maluses, and rewards claim-free policyholders by awarding them
discounts, or bonuses. An excellent account of these systems can
be found in Lemaire [12].

Let us consider a portfolio consisting of n policies, numbered
1 to n. Denote as Kij the number of claims incurred by the ith
policyholder during the jth year that the policy is in force. We
adopt the assumptions usually made in credibility theory (e.g.,
claim frequencies vary from policy to policy, claim numbers
for different policyholders are independent, and claim numbers
for one policyholder in different periods are conditionally in-
dependent). Formally, it is assumed that, for fixed i, the Kijs
are conditionally independent and identically distributed given a
random risk parameter £i that represents unknown risk char-
acteristics of the policy. After t years, the available data are
(Ki1,Ki2, : : : ,Kit) and the insurance company wants to use these
data to adjust the premium for year t+1; the premium for year
t+1 is thus a function ª(Ki1,Ki2, : : : ,Kit) of the past claims. Ac-
tuaries have traditionally applied minimization of the expected
quadratic loss in order to determine ª ; that is, ª minimizes
E[ª (Ki1,Ki2, : : : ,Kit)!£i]2, which is interpreted as the expected
difference between the “true” premium £i and the credibility
premium ª(Ki1,Ki2, : : : ,Kit). Henceforth, we assume that the se-
quences "£i,Ki1,Ki2,Ki3, : : :# are independent and identically dis-
tributed; for ease of explanation, we drop the policyholder’s in-
dex i.
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Considering the last paragraph, the very basic elements of a
BMS are as follows:

1. an appropriate premium calculation principle;

2. a conditional distribution for the number of claims, that
is, for the [Kj $£ = µ]s;

3. a distribution for the risk parameter £ to describe how
the conditional distributions vary across the portfolio.

Let us give some details on these aspects. Considering the
premium calculation principle, we use the expected value princi-
ple. This principle requires the insured to pay the pure premium
plus a safety loading proportional to the pure premium. The pure
premium will be the individual claim frequency per year multi-
plied by the average cost of a claim and can be scaled so that it
will be equal to the claim frequency. The problem of the insurer
is to predict, at the renewal of the policy, the claim frequency
of the insured for this new year, given the observations of the
reported accidents in the preceding periods.

Let us now turn to the conditional distribution of the annual
claim numbers. In automobile third-party liability insurance port-
folios, the Poisson distribution provides a good description of the
number of claims incurred by an individual policyholder during
a given reference period (one year, say). The assumptions under-
lying the Poisson counting model indeed provide a good approx-
imation to the accident generating mechanism; see, e.g., Lemaire
[12]. Therefore, in the remainder of the paper, we consider that
the number of claims incurred by a given policyholder during a
reference period conforms to a Poisson distribution.

Now, individual driving abilities vary from individual to indi-
vidual. Consequently, the portfolio is heterogeneous and policy-
holders will have different Poisson parameters. This is indicated
by the rejection of the homogeneous Poisson model when it is
applied to fit data sets from automobile insurance portfolios; for
empirical evidence supporting this assertion, see Gossiaux and
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Lemaire [10]. In order to reflect the different underlying risk
profiles, each policyholder is characterized by the value of his
mean claim frequency µ, and µ is considered to be a realization
of a non-observable random variable £, whose support is con-
tained in the half-positive real line R+ % [0,+&). In other words,
the conditional probability that a driver with annual mean claim
frequency µ is involved in k accidents during the ith year is

P[Kj = k $£ = µ] = p(k $ µ) = exp(!µ)
µk

k!
,

k ' N% "0,1,2, : : :#: (1:1)

The annual number of accidents caused by a randomly selected
policyholder of the portfolio during the jth year is then dis-
tributed according to a mixed Poisson law, that is,

P[Kj = k] = p(k $£) =
!
µ'R+

p(k $ µ)dF£(µ),

k ' N, (1:2)

where F£ denotes the cumulative distribution function (cdf, in
short) of £, assumed to fulfill F£(0) = 0. The mixing distribu-
tion described by F£ represents the heterogeneity of the portfolio
of interest; F£ is often called the structure function. It is worth
mentioning that the mixed Poisson model (1.2) is an accident-
proneness model: it assumes that a policyholder’s mean claim
frequency does not change over time but allows some insured
persons to have higher mean claim frequencies than others.

Sometimes, (1.2) is taken to be a finite mixture model, that
is, the mixing distribution is discrete and puts positive masses
¼1,¼2, : : : ,¼q on only a finite number q of positive real atoms
0< µ1 < µ2 < ( ( (< µq. Then,

p(k $£) =
q"
`=1

p(k $ µ`)¼`, k ' N: (1.3)

The fact that£ has a distribution with q support points means that
the portfolio of interest consists of only q categories of policy-
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holders. The special case q= 2 gives the classical “good risk/bad
risk” model considered in Gossiaux and Lemaire [10]. Note that
the actual reality of the insurance business is a finite mixture
model (by taking q to be the number of policyholders in the
portfolio). In risk theory, the finite mixture model (1.3) was first
proposed by Grenander [8]; see also Grenander [9].

Let us now consider the choice of F£. Traditionally, actu-
aries have assumed that the distribution of µ values among all
drivers is well approximated by a two-parameter Gamma dis-
tribution. This choice is particularly desirable because the class
of the Gamma distributions is the natural conjugate family for
the Poisson and facilitates a Bayesian approach towards updating
mean frequency estimates. The resulting probability distribution
for the number of claims is Negative Binomial. Other classical
choices for F£ include the Inverse-Gaussian (which results in
the Poisson-Inverse-Gaussian law for the number of claims; see,
e.g., Willmot [24] and Tremblay [21]) and Hoffman’s distribu-
tions (see Kestemont and Paris [11] and Walhin and Paris [23]).
However, there is no particular reason to believe that F£ belongs
to some specified parametric family of distributions. Therefore,
we would like to resort to a nonparametric estimator for F£.
This will thus lead to BMS relying on fewer assumptions than
the usual ones.

More precisely, after having recalled some key features of the
model (1.2) in Section 2, we apply the Simar [20] NPMLE of
F£ in Section 3. The Maximum Likelihood approach results in
a finite mixture model (1.3) with relatively few support points
(see (3.1)). As pointed out by Walhin and Paris [23], this model
is undesirable for constructing BMS. Therefore, we propose in
Section 4 to use a variant of the Patilea and Rolin [15] Empiri-
cal Nonparametric Bayesian estimator for F£: this estimator is a
finite mixture of Gamma distributions and can be intuitively con-
sidered as a smoothed version of the NPMLE, with the Gamma
distribution playing the role of a kernel. In Section 5, we examine
the BMS obtained with this model.
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The present paper expands on several previous works. Al-
brecht [1] gave a first account of statistical methods connected
with model (1.2), mainly in a maximum likelihood approach.
More recently, Walhin and Paris [23] compared BMS obtained
with Hofmann’s parametric family and Simar’s NPMLE for F£.
These authors showed that, although the NPMLE is powerful to
evaluate functionals of claim counts, it is not suitable for build-
ing BMS, because it is purely discrete. Our approach consists in
smoothing Simar’s estimator with a Gamma kernel and is thus
comparable with Carrière’s [4] study that smoothed the Tucker-
Lindsay moment estimator with a Log-Normal kernel.

Let us now detail some of the notations used throughout
this paper. We denote as Kµ (resp. K£) a random variable with
probability distribution "p(k $ µ), k ' N# in (1.1) (resp. "p(k $£),
k ' N# in (1.2)). We denote by ¹k, k = 1,2, : : : , the moments EKk£
of K£. Those of £ are the ºks, k = 1,2, : : : , that is, ºk =E£

k. By
convention, ¹0 = º0 % 1. Henceforth, we assume that we have ob-
served an insurance collective consisting of n independent poli-
cies. The data that we have at our disposal are as follows: we
know that nk policies caused k claims during the reference period,
k = 0,1, : : : ,kmax; kmax is the maximal number of claims observed
for a policy. The empirical claim frequencies are#$% p̂(k) =

nk
n
, k = 0,1, : : : ,kmax,

p̂(k) = 0, k ) kmax +1:
These unconstrained estimations reproduce exactly what is ob-
served in the data. Thus, the moments ¹k are estimated with the
help of their sample analogs ¹̂k, given by

¹̂k =
1
n

kmax"
j=1

jkp̂(j), k ' N:

For the numerical illustrations, we used the two data sets pre-
sented in Appendix A. Portfolio 1 relates to Belgium and has
been observed in 1958; it can be found in Gossiaux and Lemaire
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[10]. Portfolio 2 has been kindly provided to us by a large in-
surance company operating in the Benelux; it has been observed
in 1995.

2. BASIC PROPERTIES OF THE MIXED POISSON MODEL

2.1. Estimation of Mixing Functionals

According to Carrière [3], given a function Á : R+* R, the
quantity EÁ(£) is estimable if there exists a function Ã : N* R
such that

EÁ(£) = EÃ(K£): (2.1)

Of course, such a function Ã theoretically always exists. It suf-
fices to take Ã(K£) = E[Á(£) $ K£] so that (2.1) holds, provided
Á is integrable. The actual meaning of (2.1) is that we desire an
explicit expression for Ã. If Á possesses some desirable property,
Ã can be obtained explicitly. This is, for instance, the case when
Á is an absolutely monotone function, i.e., that all the deriva-
tives Á(1),Á(2),Á(3), : : : of Á exist and are non-negative. Carrière
[3] proved that the function Ã involved in (2.1) is then given by

Ã(`) =
"̀
k=0

&
`

k

'
Á(k)(0), ` ' N:

In practice, in order to estimate a quantity EÁ(£), we use

(EÁ(£) = kmax"
k=0

Ã(k)p̂(k):

Carrière [3] proved the asymptotic normality for such estimators.

Let us now examine two simple examples.

EXAMPLE 2.1 Take Á(µ) = exp(tµ); then

Ã(`) =
"̀
k=0

&
`

k

'
tk = (1+ t)`:
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As a consequence, the moment generating function of £ is es-
timable. The knowledge of "p(k $£), k ' N# is thus equivalent
to the knowledge of F£.

EXAMPLE 2.2 For Á(µ) = µk, we get

Ã(`) = `(`! 1) : : :(`! k+1) for `= k,k+1, : : : :

The moments ºk of £ are thus estimable. More precisely, the ºks
are estimated by#))$))%

º̂k =
kmax"
j=k

j(j!1) : : :(j! k+1)p̂(j), k = 1,2, : : : ,kmax,

º̂k = 0, k ) kmax +1:
The estimator º̂k is unbiased and almost surely consistent for ºk.

The fact that the first moments of £ can be estimated from
realizations of K£ will be used at several occasions in the re-
mainder of this paper.

2.2. Testing the Mixed Poisson Hypothesis

The present work focuses on the model (1.2). Considering the
possibility of misspecification, there is a need for a statistical test
to decide whether the model (1.2) is reasonable to fit the data.
To this end, let us present the non-parametric test proposed by
Carrière [3]. The reasoning behind this test is as follows. For any
positive integer k, let ¹[k] be the kth descending factorial moment
of K£, i.e.,

¹[k] = E[K£(K£!1) : : : (K£! k+1)],
and let ¹̂[k] be the sample analogs, i.e.,

¹̂[k] =
kmax"
j=k

j(j!1) : : :(j! k+1)p̂(j), k = 1,2, : : : ,kmax,

and ¹̂[k] = 0 for k ) kmax +1. If K£ has a mixed Poisson distri-
bution then ¹[k] = ºk =E£

k by virtue of Example 2.2. Conse-
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TABLE 2.1

Empirical Factorial Moments Relating to Portfolios 1
and 2

Factorial Moments Portfolio 1 Portfolio 2

¹̂[1] 0.2144 0.0936

¹̂[2] 0.1205 0.0177

¹̂[3] 0.1605 0.0066

¹̂[4] 0.3272 0.0036

quently, ¹̂[k] estimates ºk. From Jensen inequality, we find that

¹[k] ) (E£)k = (¹[1])k

must hold for k = 2,3, : : : , whenever K£ is mixed Poisson. There-
fore, if ¹[k] < (¹[1])

k for some k, then the underlying distribution
cannot be of mixed Poisson type. Based on this fact, Carrière
[3] suggested the test statistic

+
n"(¹̂[1], ¹̂[k])! (¹[1],¹[k])#, that

weakly converges to a bivariate Normal distribution as n*+&.
The factorial moments used in the test statistic for Portfolios 1
and 2 in Appendix A are given in Table 2.1.

Carrière [3] constructed a Bonferroni multiple comparison
test. In its simplest form, this statistical procedure is as follows.
In order to decide whether the number of claims caused by a
policyholder of the portfolio can conform to a mixed Poisson
distribution (i.e., to test the null hypothesis H0 that the underly-
ing distribution is of the form (1.2)), it suffices to compute the
value Tobs of the test statistic

T =

+
n(¹̂2[1]! ¹̂[2])*

4(1! ¹̂[1])(¹̂3[1]! 2¹̂[2]¹̂[1] + ¹̂[3]) + ¹̂[4] +2¹̂[2]! ¹̂2[2]
and to reject H0 if Tobs > z®, where z® is such that

1+
2¼

! z®

t=!&
exp(!t2=2)dt= 1!®:
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Note that this test relies on the asymptotic properties of T so that
n has to be large enough.

On each of the two data sets presented in Appendix A, the
model (1.2) was never rejected on the basis of Carrière’s test. In
both cases, ¹̂2[1] < ¹̂[2] so that Tobs < 0 and the null assumption is
not rejected.

2.3. Poisson vs. Poisson Mixture

Let us now recall some basic facts about the model (1.2).
First of all, it makes sense to study the mixed Poisson model
through F£. As noticed in Example 2.1, there is indeed a one-
to-one correspondence between the mixing distribution and the
resulting mixed distribution, that is, if K£1 and K£2 are identically
distributed, then £1 and £2 also are.

To each of the two data sets presented in Appendix A, we
fitted a homogeneous Poisson distribution to the observations.
These fits, given in column A, were clearly rejected (p-values
smaller than 10!3). This indicates that the two portfolios are
heterogeneous.

Another technique to check for the heterogeneity of the port-
folio is described next. Therefore, let us recall that the model
(1.2) enjoys the following nice property. Let p(k $£) be as given
in (1.2) and "p(k $ º1), k ' N# be the discrete probability density
function of the Poisson distribution with mean º1 = E£, i.e.,

p(k $ º1) = exp(!º1)
ºk1
k!
, k ' N:

For any £ such that Var[£]> 0, the number of sign changes
of the sequence "p(k $£)!p(k $ º1), k ' N# equals 2 (the first
sign being a plus). This result has been established by Shaked
[19]. For the data sets presented in Appendix A, we plot in
Figure 1 the sequence "p̂(k)!p(k $ º̂1), k = 0,1, : : : ,kmax#. We
expect to observe two sign changes if the data come from a
Poisson mixture (1.2). The actual values are "0:0216;!0:0338;
0:0067; 0:0031; 0:0014; 0:0004; 0:0004; 0:0001# for Portfolio 1
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FIGURE 1

Sequence "p̂(k)!p(k $ º̂1), k = 0,1, : : : ,kmax# for the Data
Sets Presented in Appendix A
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and "0:0037; !0:0066; 0:0024; 0:0005; 0:0001; 9 , 10!6# for
Portfolio 2. We notice that the difference between the observed
data and its Poisson fit exhibits two sign changes, as it is bound
to do when the underlying distribution is a mixture of Poisson
distributions. This indicates that the Poisson parameter varies
from individual to individual.

3. NON-PARAMETRIC ESTIMATION OF THE RISK DISTRIBUTION

3.1. NPMLE

In a seminal paper, Simar [20] gave a detailed description of
the NPMLE of F£, as well as an algorithm for its computation.
The NPMLE is a discrete distribution, so that the resulting model
is of the form (1.3). Simar [20] obtained an upper bound for the
size of the support of the NPMLE. This upper bound uses the
quantity ∙ defined to be the number of observed distinct values,
i.e.,

∙= #"k ' N such that p̂(k)> 0#:
In most cases, ∙= kmax +1. To be specific, Simar [20] showed
that the NPMLE F̂£ of F£ exists and is unique. The number of
support points of the NPMLE is less than or equal to

q̂=min
+,
kmax +1
2

-
,∙
.
, (3.1)

where [x] denotes the integer part of the real x; for the data sets
in Appendix A, q̂= 4 for Portfolio 1 and q̂= 3 for Portfolio
2. The solution F̂£ puts probability masses ¼̂1, ¼̂1, : : : , ¼̂q̂ at the
atoms µ̂1, µ̂1, : : : , µ̂q̂. In order to get a first approximation of F̂£, we
resort to the moment estimator for F£ proposed by Tucker [22]
and suitably made precise by Lindsay [13], [14]. The moments
of £ were estimated as described in Example 2.2. MLE’s were
obtained with the help of the numerical optimization procedure
nlm in the software R (S-plus clone; see Ross and Gentleman
[16]). The algorithms implemented in nlm are given in Dennis
and Schnabel [6] and Schnabel, Koontz and Weiss [17].
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The NPMLE fits to each of the data sets can be found in
Appendix A, together with the corresponding observed values
of the Â2-statistics. When q̂) 3, we fitted a model with 2 and 3
components. The results can be summarized as follows:

1. For Portfolio 1, the NPMLE of F£ has at most 4 support
points. It appeared that a 3-point NPMLE gave a satisfac-
tory fit (displayed in Column B), reflected in a p-value
of 51%. The 3-point F̂£ is thus preferred by virtue of
the statistical principle of parsimony. The NPMLE cre-
ates 3 categories of policyholders: the best ones (with a
claim frequency of about 0) representing 41.8% of the
portfolio, the standard ones (with a claim frequency of
33.6%) representing 57.3% of the portfolio, and the bad
ones (with a claim frequency of 254.4%) representing
0.1% of the portfolio. The fit provided by a 2-point F̂£
(displayed in Column C) is rejected since the p-value is
equal to 0.5%.

2. For Portfolio 2, we have q̂= 3 and we fitted the data
with a 3-point (Column B) and a 2-point (Column C)
NPMLE. Since the quality of the two fits is similar (p-
values of 26% and 29%, respectively), we prefer the
2-point F̂£. We thus have a good risk/bad risk model,
with 93.3% of good drivers whose claim frequency is
6.8% and 6.7% of bad drivers with a claim frequency of
44.6%.

3.2. Smoothed NPMLE

The purely discrete nature of the NPMLE of the risk distri-
bution sometimes causes problems in ratemaking (as shown in
Section 4). For this reason, a smoothed version of it is desirable;
it is the aim of this section to propose such an estimator.

In order to estimate F£, Patilea and Rolin [15] suggested
resorting to a finite mixture of natural conjugate priors of the
Poisson distribution; they call this estimator an Empirical Non-
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Parametric Bayesian estimator (ENBE, in short). These authors
proved that the ENBE is an asymptotic Maximum Likelihood
estimator. In other words, it is an estimator that almost maxi-
mizes the likelihood in the sense that the difference between the
maximal value of the likelihood (as a function of F£) and the
value of the likelihood corresponding to the ENBE tends to zero
as the sample size grows to +&. This ensures the consistency
of the ENBE. We propose here a slightly modified version of
the Patilea-Rolin estimator. In order to smooth the NPMLE of
F£, we let the family of natural conjugate priors play the role
of a kernel. This technique is somewhat similar to the approach
followed by Carrière [4], who proposed to smooth the Tucker-
Lindsay moment estimator with a Log-Normal kernel.

The natural way to smooth the NPMLE F̂£ consists in using

q̂"
k=1

¼̂k¡ (µ $ n¼̂kµ̂k,n¼̂k), µ ' R+,

where ¡ (: $ ®,¯) denotes the cumulative distribution function
corresponding to a two-parameter Gamma law with mean ®=¯
and variance ®=¯2, q̂ is Simar’s upper bound (3.1) for the support
size of the NPMLE, and ¼̂ks and µ̂ks are the corresponding masses
and atoms. It is easily seen that the kth component of the mixture
is centered at µ̂k. This corresponds to the intuitive idea that the
NPMLE indicates the number and the locations of policyholder
classes in the portfolio. Then the distribution of the risk param-
eter in these classes is represented by a two-parameter Gamma
distribution, resulting in a mixture of Gammas. However, the
variance of each component equals µ̂k=n¼̂k, which is virtually 0
since the number n of policies is usually very large. As a conse-
quence, the smoothed estimator is more or less indistinguishable
from the NPMLE. In order to avoid this phenomenon, we resort
on an estimator of the form

F̃(µ) =
q̃"
k=1

¼̃k¡ (µ $ n
˜̧
¼̃kµ̃k,n

˜̧
¼̃k), µ ' R+, (3.2)
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where q̃ is taken as small as possible and, in any case, smaller
than Simar’s upper bound (3.1) for the support size of the
NPMLE, where the ¼̃ks, µ̃ks and

˜̧ are maximum likelihood es-
timators. The only difference with Patilea and Rolin’s work is
thus the introduction of the parameter ¸ in order to avoid the
variance of each component of the mixture defining F̃£ to be
virtually zero.

With (3.2), (1.2) reduces to a mixture of Negative Binomial
distributions, i.e.,

p̃(k $£) =
q̃"
j=1

¼̃j

&
n
˜̧
¼̃j µ̃j + k! 1

k

'/0 n
˜̧
¼̃j

1+ n ˜̧ ¼̃j

12n
˜̧
¼̃j µ̃j

,
/0 1

1+n ˜̧ ¼̃j

12k , k ' N: (3.3)

Let us now apply this method to the data sets of Appendix A.
In both cases, we took q̃= 2 in order to avoid overparameteriza-
tion. In Figures 2 and 3, one can find the densities correspond-
ing to the different components involved in the mixture F̃£, as
well as the resulting risk distribution (the continuous line repre-
sents dF̃£ and the dotted line the classical two-parameter Gamma
mixing with parameters estimated via maximum likelihood). The
model proposed is a slight generalization of the good risk/bad
risk model: the portfolio is split into two populations, each one
having its own two-parameter Gamma structure function.

Let us now examine the fits obtained with the 2-component
F̃£:

1. For Portfolio 1, ˜̧ = 0:22. The fit is given in Column E;
it is very accurate and is regarded as satisfactory on the
basis of the Â2-criterion (p-value of 36%). It is worth
mentioning that the Negative Binomial fit displayed in
Column D is clearly rejected. Considering Figure 2, we



job no. 1987 casualty actuarial society CAS journal 1987D05 [17] 08-27-02 2:33 pm

158 SMOOTHED NPML ESTIMATION OF THE RISK DISTRIBUTION

FIGURE 2

Components of (3.2) and Resulting F̃£ for Portfolio 1
in Appendix A
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see that F̃£ puts more mass on large values than the clas-
sical two-parameter Gamma.

2. For Portfolio 2, we get ˜̧ = 0:28. Again, the fit is satisfac-
tory, and better than the Negative Binomial one. Figure
3 illustrates the difference between the Gamma mixing
and F̃£.

4. RESULTING BMS

Let us now examine the merit-rating schemes obtained in
the mixed Poisson model (1.2) using a quadratic loss function
and the structure function F̃£ defined in (3.2). The net pre-
mium for a new insured is given by P1 = E[K1] = E[£]. After
t years of coverage, the amount of premium for the (t+1)th
period is Pt+1(K1,K2, : : : ,Kt). It is determined so as to mini-
mize the expected squared difference between the true premium
£ and the premium Pt+1 charged to the policyholder, i.e., to
minimize E[Pt+1(K1,K2, : : : ,Kt)!£]2. The solution of this op-
timization problem is the posterior mean Pt+1(K1,K2, : : : ,Kt) =
E[£ $ K1,K2, : : : ,Kt]. Given K1 = k1, K2 = k2, : : : ,Kt = kt, denote
k =

3t
j=1 kj . We then get

Pt+1(k1,k2, : : : ,kt)

=
!
µ'R+

µdP[£ - µ $ K1 = k1, K2 = k2, : : : ,Kt = kt]

=

!
µ'R+

µ

4
t5
i=1

P[Ki = ki $£ = µ]
6
dF£(µ)!

´'R+

4
t5
i=1

P[Ki = ki $£ = ´]
6
dF£(´)

=

!
µ'R+

exp(!tµ)µk+1dF£(µ)!
´'R+

exp(!t´)´kdF£(´)
% Pt+1(k):
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FIGURE 3

Components of (3.2) and Resulting F̃£ for Portfolio 2
in Appendix A
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Pt+1(k) appears as the ratio of two Mellin transforms, as expected
from Albrecht [2]. It is interesting to note that the premium
Pt+1 depends only on the total number k of accidents caused
in the past t years of insurance, and not on the history of these
claims. This is a characteristic of the theoretical Bonus-Malus
scales (with an infinite number of levels). In practice, since the
Bonus-Malus scale is upper bounded, policyholders always take
an advantage of concentrating all the claims during a single pe-
riod.

Assume that the first premium paid is 100 and that a given
policyholder reported k claims at fault during t years of coverage.
The Bonus-Malus coefficient is then computed with the help of
the formula

¯(k, t) = 100, Pt+1(k)
P1

%:

In words, ¯(k, t) is the relative level of premium for the (t+1)th
year of coverage for an insured person who caused k accidents
during the first t years.

In Appendix B, we considered Portfolio 2 (two support points
for F̂£ and two components for F̃£). We first built a BMS with
the NPMLE F̂£. The ¯(k, t)s so obtained are given in Table B.1.
A “block” structure is clearly apparent, each block with almost
constant ¯(k, t) corresponding to one support point of F̂£. In Fig-
ure 4, the evolution of the premium for a driver who caused 10
claims during [0, t] is depicted as a function of t ' N. A step
behavior is clearly apparent. The policyholder is first put in
the category µ̂2 = 0:446. Then, the BMS needs several claim-
free years to decide that this individual belongs to the category
µ̂1 = 0:068. Broadly speaking, there is only one discount, the pre-
mium being constant before and after. At first, ¯(10,1) equals
477.8946% (whereas it equals 477.8947% if we know that the
driver is a bad risk), and after that, the premium decreases to
¯(10,70) = 72:8767% (it equals 72.8629% for good risks). Such
a behavior, which is a byproduct of the purely discrete nature
of the NPMLE, is undesirable. In order to avoid this, we need a
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FIGURE 4

Evolution of ¯(10, t) as a Function of t= 1,2, : : : ,70 with
F̂£ for Portfolio 2

smooth risk distribution, as (3.2). The ¯(k, t)s derived from the
estimator F̃£ of the structure function F£ are given in Table B.2,
while Figure 5 is the counterpart of Figure 4. See Appendix B
for the details of the computations. The BMS is now “smooth,”
with continuous variations of the ¯(10, t)s; this can be regarded
as commercially desirable.

To end with, let us mention that the ¯(k, t)s of Table B.2 can be
transformed in a standard table following the method proposed
by Coene and Doray [5].

5. CONCLUSIONS

In this paper, we demonstrated that an adequately smoothed
version of the NPMLE is a good candidate for estimating the
risk distribution in a mixed Poisson model for the claim count.
This estimator is nonparametric; no assumption is thus made on
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FIGURE 5

Evolution of ¯(10, t) as a Function of t= 1,2, : : : ,70 with
F̃£ for Portfolio 2

the mixing distribution. Moreover, as a mixture of Gamma distri-
butions, it is mathematically tractable to elaborate BMS. In that
respect, it performs better than the NPMLE, which is purely dis-
crete and results in “discontinuous” experience rating plans. Of
course, the smoothed NPMLE does not provide accurate fits in
all the cases. For instance, both NPMLE and smoothed NPMLE
yielded poor fits for the data set relating to Belgium 1975–1976
provided in Gossiaux and Lemaire [10].

In a forthcoming paper, the same problem will be considered
when a priori risk classification is enforced. Specifically, we will
examine how to design merit rating plans in accordance with a
priori ratemaking structure of the insurance company.
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APPENDIX A

DATA SETS

The reader will find herein two data sets from Benelux coun-
tries, together with all the fits considered in the present paper.
To measure the goodness-of-fit, standard Â2-statistics are used,
with the following calculation procedure:

Â2obs =!2
kmax"
k=0

nk ln

& (p(k $£)(p(k)
'
:

TABLE A.1

Fits to Portfolio 1

Fitting Technique
k nk A B C D E

0 7,840 7,636 7,840 7,832 7,847 7,839
1 1,317 1,637 1,317 1,337 1,288 1,322
2 239 175 239 213 257 231
3 42 13 42 57 54 48
4 14 1 13 17 12 13
5 4 0 6 4 3 5
6 4 0 2 1 1 2
7 1 0 1 0 0 1
) 8 0 0 0 0 0 0

Â2obs 302.48 2.33 16.85 17.00 4.36
d.f. 6 3 5 6 4
p-value < 10!3 0.51 0.005 0.009 0.36

Column A: expected frequency with homogeneous Poisson
Column B: expected frequency with 3-point NPMLE F̂£
µ̂1 = 0:336, µ̂2 . 0:000, µ̂3 = 2:545
¼̂1 = 0:573, ¼̂2 = 0:418, and ¼̂3 = 0:001
Column C: expected frequency with 2-point NPMLE F̂£
µ̂1 = 0:147, µ̂2 = 1:231, ¼̂1 = 0:938, and ¼̂2 = 0:062
Column D: expected frequency with Negative Binomial
Column E: expected frequency with 2-component F̃£
˜̧ = 0:22, µ̃1 = 0:193, µ̃2 = 0:355, ¼̃1 = 0:869, and ¼̃2 = 0:131
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TABLE A.2

Fits to Portfolio 2

Fitting Technique
k nk A B C D E

0 102,435 102,026 102,435 102,435 102,442 102,435
1 8,804 9,544 8,805 8,811 8,774 8,806
2 714 446 712 703 746 710
3 65 14 68 76 63 70
4 12 0 10 8 5 9
5 1 0 2 1 0 1
) 6 0 0 0 0 0 0

Â2obs 365.67 1.25 3.78 8.18 1.94
d.f. 5 1 3 4 2
p-value < 10!3 0.26 0.29 0.09 0.38

Column A: expected frequency with homogeneous Poisson
Column B: expected frequency with 3-point NPMLE F̂£
µ̂1 = 0:132, µ̂2 = 0:829, µ̂3 . 0:000
¼̂1 = 0:651, ¼̂2 = 0:009, and ¼̂3 = 0:340
Column C: expected frequency with 2-point NPMLE F̂£
µ̂1 = 0:068, µ̂2 = 0:446, ¼̂1 = 0:933, and ¼̂2 = 0:067
Column D: expected frequency with Negative Binomial
Column E: expected frequency with 2-component F̃£
˜̧ = 0:28, µ̃1 = 0:083, µ̃2 = 0:145, ¼̃1 = 0:835, and ¼̃2 = 0:165
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APPENDIX B

THEORETICAL BMS

Table B.1 contains the Bonus-Malus coefficients ¯(k, t) com-
puted with the NPMLE F̂£ of F£. Its counterpart B.2 is based on
the smoothed NPMLE F̃£. These quantities are computed on the
basis of Portfolio 2, 2-point F̂£ and 2-component F̃£. In Table
B.1,

¯(k, t) =

q̂"
j=1

exp(!tµ̂j)µ̂k+1j ¼̂j

q̂"
j=1

exp(!tµ̂j)µ̂kj ¼̂j
, 100

q̂"
j=1

µ̂j ¼̂j

:

Let us briefly detail the computational aspects of Table B.2.
When the risk distribution is a Gamma mixture, i.e.,

F£(µ) =
q"
j=1

®j¡ (µ $ aj,¿j), µ ' R+, (B.1)

we get

dF£(µ $K1 = k1, K2 = k2, : : : ,Kt = kt)

=

q"
j=1

®j exp(!tµ)µkd¡ (µ $ aj,¿j)
q"
i=1

®i

!
´'R+

exp(!t´)´kd¡ (´ $ ai,¿i)

=
q"
j=1

A(j,k)d¡ (µ $ aj + k,¿j + t),
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where

A(j,k) = ®j

!
´'R+

exp(!t´)´kd¡ (´ $ aj ,¿j)
q"
i=1

®i

!
´'R+

exp(!t´)´kd¡ (´ $ ai,¿i)
:

This yields

Pt+1(k1,k2, : : : ,kt) =
q"
j=1

A(j,k)
aj + k

¿j + t
:

The coefficients A(j,k)s are easy to compute. Indeed, they can
be cast into

A(j,k) = ®j
²(j,k)

q"
i=1

®i²(i,k)

,

where

²(j,k) =
!
´'R+

exp(!t´)(t´)k
k!

d¡ (´ $ aj ,¿j)

=
!
´'R+

exp(!´)´k
k!

d¡ (´ $ aj ,¿j=t)

=

&
aj + k!1

k

'&
¿j
¿j + t

'aj & t

¿j + t

'k
:

The ²(j,k)s satisfy the Panjer recurrence relations

²(j,k) =
t

¿j + t

aj + k!1
k

²(j,k! 1), k = 1,2, : : : ,

starting from

²(j,0) =
!
´'R+

exp(!´)d¡ (´ $ aj ,¿j=t) =
&

¿j
¿j + t

'aj
:
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TABLE B.1

¯(k, t) with F̂£ for Portfolio 2 (Part 1)

k
t 0 1 2 3 4 5 6 7 8 9 10

0 100
1 92 172 348 451 473 477 478 478 478 478 478
2 86 146 313 439 472 477 478 478 478 478 478
3 82 126 275 424 469 476 478 478 478 478 478
4 79 111 237 404 465 476 478 478 478 478 478
5 77 100 202 378 459 475 477 478 478 478 478
6 76 92 171 347 450 473 477 478 478 478 478
7 75 86 146 312 439 471 477 478 478 478 478
8 74 82 126 274 424 469 476 478 478 478 478
9 74 79 111 236 403 464 476 478 478 478 478
10 74 77 100 201 377 459 475 477 478 478 478
11 73 76 92 170 346 450 473 477 478 478 478
12 73 75 86 145 311 439 471 477 478 478 478
13 73 74 82 125 273 423 468 476 478 478 478
14 73 74 79 110 235 403 464 476 478 478 478
15 73 74 77 99 200 377 458 475 477 478 478
16 73 73 76 91 170 345 450 473 477 478 478
17 73 73 75 86 145 310 438 471 477 478 478
18 73 73 74 82 125 272 423 468 476 478 478
19 73 73 74 79 110 234 402 464 476 478 478
20 73 73 74 77 99 199 376 458 475 477 478
21 73 73 73 76 91 169 345 450 473 477 478
22 73 73 73 75 86 144 309 438 471 477 478
23 73 73 73 74 82 124 271 422 468 476 478
24 73 73 73 74 79 110 233 402 464 476 478
25 73 73 73 74 77 99 199 375 458 475 477
26 73 73 73 73 76 91 168 344 449 473 477
27 73 73 73 73 75 85 143 308 438 471 477
28 73 73 73 73 74 82 124 270 422 468 476
29 73 73 73 73 74 79 109 232 401 464 476
30 73 73 73 73 74 77 99 198 375 458 475
31 73 73 73 73 73 76 91 168 343 449 473
32 73 73 73 73 73 75 85 143 307 437 471
33 73 73 73 73 73 74 82 124 269 421 468
34 73 73 73 73 73 74 79 109 232 400 464
35 73 73 73 73 73 73 77 98 197 374 458
36 73 73 73 73 73 73 76 91 167 342 449
37 73 73 73 73 73 73 75 85 142 306 437
38 73 73 73 73 73 73 74 81 123 268 421
39 73 73 73 73 73 73 74 79 109 231 400
40 73 73 73 73 73 73 73 77 98 196 373
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TABLE B.1

¯(k, t) with F̂£ for Portfolio 2 (Part 2)

k
t 0 1 2 3 4 5 6 7 8 9 10

41 73 73 73 73 73 73 73 76 91 166 341
42 73 73 73 73 73 73 73 75 85 142 305
43 73 73 73 73 73 73 73 74 81 123 267
44 73 73 73 73 73 73 73 74 79 109 230
45 73 73 73 73 73 73 73 73 77 98 195
46 73 73 73 73 73 73 73 73 76 90 166
47 73 73 73 73 73 73 73 73 75 85 141
48 73 73 73 73 73 73 73 73 74 81 122
49 73 73 73 73 73 73 73 73 74 79 108
50 73 73 73 73 73 73 73 73 73 77 98
51 73 73 73 73 73 73 73 73 73 76 90
52 73 73 73 73 73 73 73 73 73 75 85
53 73 73 73 73 73 73 73 73 73 74 81
54 73 73 73 73 73 73 73 73 73 74 79
55 73 73 73 73 73 73 73 73 73 73 77
56 73 73 73 73 73 73 73 73 73 73 76
57 73 73 73 73 73 73 73 73 73 73 75
58 73 73 73 73 73 73 73 73 73 73 74
59 73 73 73 73 73 73 73 73 73 73 74
60 73 73 73 73 73 73 73 73 73 73 73
61 73 73 73 73 73 73 73 73 73 73 73
62 73 73 73 73 73 73 73 73 73 73 73
63 73 73 73 73 73 73 73 73 73 73 73
64 73 73 73 73 73 73 73 73 73 73 73
65 73 73 73 73 73 73 73 73 73 73 73
66 73 73 73 73 73 73 73 73 73 73 73
67 73 73 73 73 73 73 73 73 73 73 73
68 73 73 73 73 73 73 73 73 73 73 73
69 73 73 73 73 73 73 73 73 73 73 73
70 73 73 73 73 73 73 73 73 73 73 73
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TABLE B.2

¯(k, t) with F̃£ for Portfolio 2 (Part 1)

k
t 0 1 2 3 4 5 6 7 8 9 10

0 100
1 93 168 300 531 819 1084 1313 1524 1727 1928 2128
2 87 151 250 419 651 888 1096 1283 1458 1629 1799
3 82 139 219 346 531 740 932 1102 1259 1410 1558
4 78 130 197 298 445 625 802 961 1105 1241 1373
5 75 123 182 264 383 535 696 846 981 1106 1226
6 72 117 170 239 337 465 610 750 878 995 1106
7 69 112 160 220 302 411 539 669 791 902 1006
8 66 107 152 205 276 368 480 600 716 822 921
9 64 103 145 193 255 334 433 542 651 753 847
10 62 99 139 183 238 307 393 492 594 691 782
11 59 96 133 175 224 285 361 450 544 637 725
12 58 93 129 168 213 267 335 414 501 589 673
13 56 90 124 161 203 252 312 384 463 546 627
14 54 87 120 155 194 239 294 358 431 508 585
15 52 85 116 150 187 228 278 336 402 474 547
16 51 82 113 145 180 219 264 317 377 444 513
17 50 80 110 141 174 210 252 300 356 418 483
18 48 78 107 137 168 203 242 286 337 394 455
19 47 76 104 133 163 196 232 274 321 373 431
20 46 74 101 129 158 190 224 262 306 355 409
21 45 72 99 126 154 184 216 253 293 339 389
22 43 71 96 123 150 179 210 244 282 324 371
23 42 69 94 120 146 174 203 236 271 311 355
24 41 67 92 117 143 169 198 228 262 299 340
25 40 66 90 114 139 165 192 221 253 288 327
26 40 64 88 112 136 161 187 215 246 279 315
27 39 63 86 109 133 157 183 210 238 270 304
28 38 62 84 107 130 154 178 204 232 262 294
29 37 60 83 105 127 150 174 199 226 254 285
30 36 59 81 103 125 147 170 194 220 247 277
31 35 58 79 101 122 144 167 190 215 241 269
32 35 57 78 99 120 141 163 186 210 235 262
33 34 56 76 97 118 138 160 182 205 229 255
34 33 55 75 95 115 136 157 178 201 224 249
35 33 54 74 93 113 133 154 175 196 219 243
36 32 53 72 92 111 131 151 171 192 214 238
37 31 52 71 90 109 128 148 168 189 210 232
38 31 51 70 89 107 126 145 165 185 206 228
39 30 50 69 87 105 124 143 162 182 202 223
40 30 49 68 86 104 122 140 159 178 198 219
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TABLE B.2

¯(k, t) with F̃£ for Portfolio 2 (Part 2)

k
t 0 1 2 3 4 5 6 7 8 9 10

41 29 49 67 84 102 120 138 156 175 194 214
42 29 48 65 83 100 118 136 154 172 191 210
43 28 47 64 82 99 116 134 151 169 188 207
44 28 46 63 80 97 114 131 149 166 184 203
45 27 46 62 79 96 112 129 146 164 181 200
46 27 45 62 78 94 111 127 144 161 178 196
47 26 44 61 77 93 109 125 142 159 176 193
48 26 44 60 76 92 108 124 140 156 173 190
49 26 43 59 75 90 106 122 138 154 170 187
50 25 42 58 74 89 104 120 136 152 168 184
51 25 42 57 73 88 103 118 134 149 165 181
52 24 41 56 72 87 102 117 132 147 163 179
53 24 41 56 71 85 100 115 130 145 160 176
54 24 40 55 70 84 99 114 128 143 158 173
55 23 40 54 69 83 98 112 127 141 156 171
56 23 39 54 68 82 96 111 125 139 154 169
57 23 38 53 67 81 95 109 123 138 152 166
58 22 38 52 66 80 94 108 122 136 150 164
59 22 37 52 65 79 93 106 120 134 148 162
60 22 37 51 64 78 91 105 119 132 146 160
61 21 37 50 64 77 90 104 117 131 144 158
62 21 36 50 63 76 89 102 116 129 142 156
63 21 36 49 62 75 88 101 114 127 141 154
64 21 35 48 61 74 87 100 113 126 139 152
65 20 35 48 61 73 86 99 112 124 137 150
66 20 34 47 60 73 85 98 110 123 136 149
67 20 34 47 59 72 84 97 109 122 134 147
68 20 34 46 59 71 83 96 108 120 133 145
69 19 33 46 58 70 82 94 107 119 131 144
70 19 33 45 57 69 81 93 105 118 130 142
71 19 32 45 57 69 81 92 104 116 128 140


