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01# THE GRADUATION OF :FREQUENCY DISTRIBUTIONS. 

B Y  

H. C. CARVER. 

The graduation of frequency distributions may not improperly 
be referred to as that branch of actuarial and statistical theory 
which is most neglected. 

Eider~on's "Frequency Curves and Correlation," which is rec- 
ommended by the Educational Committee of this Society and is 
unquestionably the text best known to the English speaking actua- 
ries, presents the Pearsonian methods which have dominated to a 
marked degree the English school of biometricians. 

Pearson's method is empirical and is based upon the assumption 
that the differen~tial equation of a unimodal distribution is of the 
form 

dy _ y(a - x) 
dx f(x)  

The following phenomena of such distributions suggest this 
equation : 

(a) At the mode ( x ~ a )  the derivative of the curve is neces- 
sarily zero. The factor ( a - - x )  fakes this fact into consideration. 

(b) At the extremes of the distribution there is generally high 
contact, that is, the slope of the curve fends to approach zero as y 
likewise diminishes in value. 

(c) The balance of the differenUal equation for any distribution 
may be represented by f(x)  appearing in the denominator. We 
assume that this function may be expanded in the power series 
bo --~ b lx-~  b2X 2 ~ b.~x 8 -~ ---, which is generally so rapidly con- 
vergent that the terms which involve the third and higher powers 
of x may be neglected. 

We thus arrive at 

1 dy a - x  
y dx bo + blx + b~x ~ 

as the differential equation of unimodal distributions in general. 
The integration of this equation may produce various types of 
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frequency curves, depending upon the inter-related values of the 
constants bo, bl and b2. Thus ~re may have as solutions 

--(  x--b )S 

1. y = ~e 2~, if b l = b 2 = 0 .  

1 +  if b2 = 0 bl ~= 0. 

if the roots of bo -~ blx 4- b2x ~ = 0 are real. 
41 ~2 \ m~. tan-I - 

4 .  e - 

if the roots of bo -~ blx -t- b2x 2 = 0 are complex. 

The above curves, with modifications, make up Pearson's system 
which, according to Mr. Elderton's recent supplement, comprises 
twelve distinct functions. 

Although the practical suffic:ency of Pearson's method leaves but 
little to be desired, still it is a highly unfortunate fact that a grad- 
uation involving such procedure can only be effec~ed at the expense 
of a vast amount of labor. 0 f l y  those who have completed a grad- 
uation of the transcendental type four (which is the one most 
frequently met in practice) will fully appreciate the truth of the 
preceding s~atement. 

The purpose of this paper is to point out, and illustrate with ez- 
amples, that if we slightly mc~dify Pearson's hypothesis so that it  
will permit treatment by the finite, rather than the infinitesimal, 
calculus, we may eliminate a g:~eat deal of theoretical and laborious 
procedure, and what is equally, if not more important, treat all 
distributions which belong to :Pearson's system (and certain others) 
by a single method regardless .)f " t y p e . "  

SECTIOI~ II .  

The reasoning which prompted Pearson to choose his differential 
equation also suggests 

Ay~ y~(a -- x) 
Ax  -- b,, + blx + b2x ~ 

as the difference equation of a unimodal distribution, since if there 
be a maximum there must also be a value of x ~ a  for which 
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A y , = 0 ,  and moreover, at the extremes where y , = 0  (to quote 
Elderton) " t h e  finite difference between two successive ordinates 
must be zero, or there will not be contact." 

By arbitrarily allowing AX to represent the differefice in magni- 
tudes of two successive classes, this element may be considered equal 
to unity for the particular distribution being graduated, and thus 
eliminated from further consideration. 

It follows that our difference equation may now be written as 

Y ~ + l  = i +  a - -  x = x ~ + c l x  + c2 

yz  bo -}- blx T b2x 2 x ~ -t- cax q- c4 

I t  is important to note here that a knowledge of the values of 
the constants in the differential equation 

1 dy a - - x  
y dx bo + blx + b~x 2 

for a particular distribution does not permit a calculation of the 
ordinates of the distribution until the equation has been integrated, 
producing a solution of the form y = K f ( x ) .  Our case is, however, 
essentially different, for as soon as ci, c2, c3 and c, are known, the 
computed values of Y~÷I/Y~ (corresponding to the l~÷i/l~ or p~ in 
actuarial theory) absolutely determine without any integration the 
xhape of the frequency curve. The condition that the sum of the 
graduated ordinates must equal that of the ungraduated ordinates 
will enable us to arrive at the proper radix. 

Consequently, variations in type, an outgrowth of integration, 
~ill in no way concern us. 

There remains but the problem of determining the constants for 
a particular distribution. 

SECTION III .  

Although it is possible to proceed, using the calculus of finite dif- 
ferences, along lines parallelling Elderton's, yet the constants may 
be determined more easily as follows: 

We obtain by clearing our difference equation of fractions 

c~xy~ + c~y~ -- csxy~+l --  c4y,+1 = x2y~+~ -- x~y~. 

If  we multiply this through by x', and sum with respect to x 
between the limits x = r  and x = s - - 1 ,  we have, giving n succes- 
sively the values 0, 1, 2 and 3, 
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I .  | c~Y.x~y ~ + c2~x~y ~ _ c~x~y~+ ~ _ c ~ x ~ + ~  = Y.x4y~+~ - y, x4y~ 

' [ c~Z~y~ + c~x~y~ - caY~x4y~+l - c~x3y~+~ = y, xSy~+~ - ZxSy~ 

X = 8 - - [  

where X means ~ . 

I f  we desire to graduate that portion of a distribution lying be- 
tween x-----r and x---~s, we must first calculate from the known 
ungraduated frequencies fr, f,+l "" f,-1, fa the numerical values of 

X - - - - $ - - I  Z = a - - 1  . ~ = ~ - - 1  

E x ' f z  and E x'fx+~, cozresponding to the E x 'y~  and 
- -  _.~ = ~ r  ~ r ~ r 

~_~ x"yx+x o f  equations I. Imposing the usual condition that  
z r 

the corresponding moments of the graduated and ungraduated fre- 
quencies must be identical, we Obtain the numerical values of the 
coefficients of equations I. A dmultaneous solution then yields 
the desired values of c~, c2, cs and c 4. 

In, the above the limffs of summation are, as stated, x ~ - r  and 

x - ~ s - - 1 .  Clearly we could ~ot sum to x - ~ s ,  since such pro- 
cedure would require a knowledge of the value of f,+l, which is con- 
trary to our assumption that the ungraduated ~requencies from f~ 
to f~, only, are known. 

Although the values of Zx'f,+~ can be computed in the same way 
as those of ~x"f~, yet this would be practically a duplication of 
work, since we may easily show that 
• - - X  ~ - - 1  

. 1  ~ _ _ ~_,x"f~+~ = s f ,  r l f ,  + ~ x " f ,  
r r 

s--I s - - 1  

-- n(fl E X"-lf= + .C~ ~ ,  X'-~f= -- etc. 
r r 

In other words 

Z f,+l = f . - -  J'~-I-Z f~, 
Y.x A+~ = s - i A - r - lJ~ + Z x  f x -  Z A ,  

Zx~f~+~ = s --  le f .  - r - l J .  + Xx~f~ - 2z xfz  + Z f . ,  

- - 4  

Y.x~f~+~ = s -- 1 f .  -- r --  1], + F.x~f~ -- 4Zx~f~ + 6Zx~f~ 

-- 4Y, x f ,  + Z f , ,  
- - 5  ~ 5 

Zx~f~+t -- Zx~f~ = s --- i f ,  -- r --  1 f ,  -- 5]~x~f~ + lO~x~f~ 
- lOZx~f~ + 5~,zf~ --  Z f . .  
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Formulae I and I I  enable us to graduate a section or " s t u m p "  
of a distribution and are therefore more powerful than formulae 
that presuppose a complete distr ibution--that  is, assume y r = y , - - O .  

I f  we restrict ourselves likewise, and in the usual manner reduce 
the moments 2z"f~ to unit frequency, we have, denoting 

Z x ' %  
Zf~ by  v.' 

vl'cl'--~ c 2 - -  ( v l ' - - l ) c ~ - - c , = - - 2 v l '  ~-  I , 
v , ' c .  + v ~ ' c , - -  ( v , ' - - 2 v ~ '  + 1)c~- -  ( v J - - 1 ) c ,  

= - -  3v2' + 3 v 1 ' - -  1, 

v . '  c~ --~ v~" c2 - -  ( v . '  - -  3v2"~--~- 3v~' - -  1 ) c s - -  ( v2' - -  2v l' -1 t-! 1)c,  

. ~ - -  4v . '  -~- 6v2' - -  4v1' 2c  1, 

v4' cl ' +  v.'c2 - -  ( v j  - -  4v~' + 6v, '  - -  4v~' + 1) c. 

- -  ( v . ' - -  3vl  ~- 3 ~ ' - -  1) c.  = - -  5v.' +" 10v.' - -  10v~', + 5v~ ' - -1 .  

Lastly, if the moments v :  be transferred to the mean by means 
of the relations 

V l ~  0 

v2 = v2' - -  (vl') 2 
v. = v . ' - -  8v2'vl' -t- ~ (¢ )" ,  
v, = v , ' - -  4v.'Vl' ~ 6v2' (v~') ~ -  8 (vl') 4, 

equations I become 

C2 -~- Ca - -  C4 = 1, 

vac, -~  v2c2 - -  (vs - -  3v2 - -  1)ca - -  (v2 + 1)c,  
I l L  = - -  ~ .  ~ 6v.. T 1, 

v4c~ "-[- v~c2 - -  ( v 4 - - 4 v 8  -{- 6v2 --]- 1)a~- -  (v 8 - - 3 v  2 - - 1 ) c 4  
= - -  5 v 4 ~  l O v e - -  l O v 2 - -  1. 

Solving I I I  we have 

I V  

Y3 
el = -- 1 ~ - 1, 

c~ = v~(1 + 2~), 

cs = + 1 ~ ~- 3, 

c4 = Cl - ] -c2- ] -3 -{ -2~  = c 2 - ~ c s -  1, 
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where we let 
y3 2 

fll '= ~,2-- ~ , 

#2 := r--L 
p22 

1 
~2 "~- 3 - -  - -  

~- ~2 

25~ - 3 ~  - 6 - t - 1  
Y~ 

I t  is interest ing to compare ~hese results with Pearson's.  
I f  we change our difference equation 

yx+l  _ x ~ "4- c lx  + c~ 

y x  x ~ + csx  + c~ 
back to the form 

~,yz _ a - -  x 

yx  bo -q- blX + b~:~'  

corresponding to Pearson's  

1 d y  _ 

y d z  
we have, since 

C2 -- C4 

C3 ~ C1 ~ 

bl = c~ 
C3 ~ Cl ~ 

a - - T ,  

o - -  b l x  "4- b=z  ~ 

the following comparison:  

bo = c._.~___4 
C3 -- Cl 

1 

C3 -- C1 ~ 

T~BLE I. 

Finite Constant.  Const. Pearson's Values. 

~2 1 

2 ( 5 # 2 _ 6 # 1 _ 9 + 1 )  2 

~2 ( 4 # , -  3#t _ 1 )  

b2 -- a 

2 (5#2 -- 6 # 1 - - 9  + 1 )  

bo 

bl 

b2 

~3 (#2 + 3) 
P2 

2(5#2 - 6#, - 9) 

p~(4#2 --  3#,)  
2(5#2 - 6#i - 9) 

- - a  

(3#1 --  2#2 + 6) 
2(5#2 - 6#~ - 9) 
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SV, CTm~ IV.  

The following problems will serve to illustrat~ various applica- 
tions of the proposed method to statistical problems. 

Example  I.  

The distribution of deaths due to old age in the U. S. Registra- 
tion Area for the year 1910 is shown in Table I I :  

TABLE II. 

A g e  D e a t h s  
I n t e r v a l s .  U n g r a d u a t e d  

45- 
50- 
55- 
60- 189 
65- 519 
70- 1,379 
75- 2,475 
80- 3,716 
85- 3,116 
90- 1,587 
95- 443 

100- 173" 
105-- 
110- 

To ta l . . .  13,597 

--7.056 
--6.056 
--5.056 
--4.056 
--3.056 
--2.056 
-- 1.056 
-- .056 

.944 
1.944 
2.944 
'3.944 
4.944 
5.944 

Yz+...~l * 
Yx 

8.18444 
6.82875 
5.32671 
3:93885 
2.80070 
1.93457 
1.30420 
.85728 
.54555 
.33085 
.18502 
.08792 
.02531 

y:. 

100 
818 

5,589 
29,777 

117,262 
328,416 
635,344 
828,618 
710,359 
387,534 
128,216 
23,723 

2,086 
53 

3,197,895 

D e a t h s  
Yz 

G r a d u a t e d .  

4 
24 

127 
499 

1,396 
2,701 
3,523 
3,020 
1,648 

545 
101 

9 

13,597 

* Deaths 1OO and over, In calcula¢ing moments treated as class 100--. 

Tak ing  the middle of class 8 0 - -  as origin we have 

2f~ ~ 13,597, v l ' ~  .056262, v , ~  2.34330, 
~xf~ ~ 765, v~'~--- 2.34647, v~ ~ - - . 4 5 2 4 0 ,  
~x2f~ ---- 31,905, va' ~ - - . 0 5 6 7 0 4 ,  v, ~ 16.5051, 
~ x 3 f ~  ~ 771, v4'~--- 16.4478, fll ~--- .0159, 
~x4f~ ~ 223,641, f12 ~ 3.0058. 

cl ~ - -  18.041, 
v2 ~ 69.284, 
o3 ~ 14.526, 
v~ ~ 82.810. 

Us ing  these constants, the value of yx+l/y~, shown ia  Table I I  
were calculated. An  arbi t rary radix of 100 at class 4 5 - -  produces 
a total frequency of 3,197,895; hence each frequency, y~', must  be 
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13,597 The final grad- multiplied by the decimal equivaflent of 3,197,895" 

uation, as shown in the last coluinn , l'esults. 
Let  us now consider the prot]em of calculating the number of 

deaths at each age, instead of wi~thin quinquennial groups. 
Although an interpolation for:mula might  be used, yet it is pref- 

erable to modify the original moments so that both the graduation 
and interpolation may be perfor~ned simultaneously. This  may be 
done as follows: 

Taking A~ as one year, i t  follows that  the corresponding mo- 
ments v~ may be obtained by m~ltiplying the previously calculated 
ones by 5 ~. This will, however, not alter the values of fl~ or f12. 

The new difference equation referred to the mean age of 82.28 
as origin, becomes 

y ~ ,  _ z 2 -t- 618.46x -- 36871 
y~ z 2 -- ~x -- 36880 

The results of this graduation are as follows: 

TABI,EIII .  

Age. y=. Age. yr. __Age" .I $ "" I Ag~. y=. Age. 

52 1 64 46 76 4~7 !- 88 557 100 
53 1 65 60 77 i 519 89 503 101 
54 1 66 78 78 5~7 I 90 446 102 
55 2 67 100 79 6 ~,9 91 387 103 
56 3 68 127 80 6 }4 92 330 104 
57 5 69 158 81 6 }0 93 275 105 
58 7 70 ' 193 82 7)5 94 925 106 
59 10 71 234 83 7 )8 95 180 107 
60 13 72 279 84 6~9 96 141 ~ 108 
61 19 73 328 85 6 ~9 97 108 109 
62 26 74 380 86 6 ~7 98 81 
63 35 75 J 433 87 6)6 99 59 Total.. 

42 
3O 
2O 
13 

9 
5 
3 
2 
1 
1 

13,597 

The results of the graduation, as  shown graphically in Plate I ,  
are entirely sa t i s fac to ry . .  

A very important point which ]s  always involved when the fre- 
quencies are associated with graduated variates, may be brought to 
light by comparing the grouped frequencies of Table I I I  with the 
graduated frequencies of Table I i .  Column 5 of Table I V  shows 
the group totals of Table I I I  while 6 is merely the final column of 
Table I I .  
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The discrepancies between grouped results arc marked, and are 
due to the fact that we have been treating as ordinates these fre- 
quencies that in reality should be represented by areas. Thus, the 
frequency of class 80-- should be represented by the area under 

Plate I. 

600 

,,550 

500 

_~ 450 
0 

400 

~ o  
250 

20C 

150 

20C 

5O 

, wl 

i I 
_J 

60 65 70 75 80 85 90 95 100 105 
AGE AT DEATH 

the curve from age 80 to age 85, instead of by the ordinate at age 

In general we may state that a distribution of graduated variates 
should be represented by areas under a curve, while a distribution 
of integTal variates should be considered as proportional to ordi- 
nates of a curve. 

Since approximately 

Z+~ydx = ~; [y=-i + 22y= "b y,+l ] 
t 

we may revise the computations of Table I I  as follows: 
]n the computing areas, a,, the factor ~ may be neglected, since 

the fraction 13,597 76,749,327 automatically introduces it. 

Columns 4 and 5 arc now practically identical. The differences, 
which are slight when compared to the total frequency, may be 
attributed to the following causes: 
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TABLE IV. 

Ages. 

(1) 

Yz 

(2) 

y '  $* 

45- 8.18444 100 
50- 6.82875 i 818 
55- 5.32671 5,589 
60- 3.93885 I 29,777 
65- 2.800701 117,262 
70- 1.93457 328,416 
75- 1.30420635,344 
80- .85728 828,618 
85- .54555 : 710,359 
90- .33085 387,534 
95- .18502 128,216 

100- .08792 23,723 
105- .02531 2,086 
110- 5~'~ 

(3) 

' 2 ~ y®+~+2 yz~  ~]~+r 

3,0.8 
23,6 15 

153,5 ;3 
777,9 t5 

2,937,9 17 
7,977,7 ;8 

15,134,6' }2 
19,575,2 ~ ~9 
16,844,0 ;0 
9 364,3 ~3 
3,232,0 }9 

652,2 }8 
69,61 ~8 
3,2 12 

76,749,3 ~7 

(4). (5) (6) 

Grouped Fre- 
a x .  quenc |~  from ~z. 

Table I I I  

1 
4 3 4 

27 27 24 
138 139 127 
520 523 499 

1,413 1,414 1,396 
2,681 2,675 2,701 
3,468 3,466 3,523 
2,984 2,992 3,020 
1,659 1,663 1,648 

573 569 545 
116 114 101 
12 12 9 
1 

13,597 13 ,597  13,957 

1. No quadrature formula wa,; used in the calculation of the 
frequencies of Table I I I .  I f  the!:e be many classes, that is, if the 
class interval is small as compared with the visible range, the error 
involved by treating the areas as ordinates is slight. Thus, we 
treat the number of persons dyin,~, as per a mortality table, as an 
ordinate (which practically assumes a un i fo rn  distribution of 
deaths throughout /he year) without introducing an appreciable 
error. On the other hand, if ourltables were based on a quinquen- 
nial, rather than an annual, basis:, such an hypothesis would intro- 
duce a very considerable error, such as we just noted in comparing 
columns 5 and 6 of Table IV. 

2. The quadrature formula use~, though practically sufficient, is 
only approximate. Better ones, involving however a greater 
amount of labor, could be used if necessary; for example 

f ~+tY dx = ~ v ~  {5178y~ + 308:yx-1 -{- yx+1) - 17(yx_.~ -k Y~+2) } 
x--½ 

is somewhat better. 
3. In  changing from a quinquennial to an annual basis, the 

moment v, should, strictly speaking, be modified. Sheppard's ad- 
just-merits will, in general, slightly improve results, although their 
tendency in this case would be to ': over adjust." 

On the whole, if a quadrature formula must be used, the one we 
made use of is practically sufficient, and the modification of mo- 
ments, moreover, may be entirely eliminated. 
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Wage. 

O- 
1-- 
2-- 
3-- 
4-- 
5 -  
6 -  

._  

8-  
9 -  

lO-  
l l -  
12-  
13-  
14- 
15- 
16- 
17- 

.Example I I .  

WAGE DISTRIBUTION~ ALL COMP. CLASSIFICATIONS~ 1916. 

Ungraduated, 

(Under 5) 
43 

59 
84 
84 
95 

160 
207 
286 
311 
288 
332 
220 
149 
218 

G r a d u -  
a t e d .  

2 
4 
8 

16 
28 
47 
71 

101 
134 
168 
200 
227 
248 
260 
265 
262 
253 
238 

wage. 

18- 
19- 
2O- 
21-  
22- 
23-  
24-- 
25-  
26-  
27-  
28-  
29-  
30-  
31-  
32-  
33-  
34-  
35-  

U n g r a d .  
u a t e d .  

182 
97 
94 

341 
77 
65 

384 
23 
21 
6O 

6 
2O 

121 
8 
7 

11 
4 

G r a d -  
u a t e d .  W a g e .  

220 36-- 
199 37-- 
178 38-- 
157 39-- 
137 40-  
118 41-  
101 42-- 

85 43-- 
72 44-- 
60 45-- 
50 46-- 
42 47-- 
34 48-- 
28 49-- 
23 
19 T o t a l . . .  
16 
13 

Ungrad- 
uated. 

(35-4o) 
68 

(4o-50) 
9 

(5O-60) 
2 

(6O-) 
2 

4,138 

Grad- 
uated. 

10 
9 
7 
6 
5'~ 
41 
3 
2i 
2= 
2: 
1| 

1: 
1 

4,138 

:,aOC 
2~C 

~o'18( 
Jsc 

\- 12C 

9~ 
6C 
'Be 

_ ! 1  
I t.r 

/ 

5 19 

Plate  I I .  

i 

-L I II I \ 1  II 
I 1411 1,ll 

i. J JI 1 J 
ill III L 
III lit I 
III III I -  
III Ill [ 

20 25 30 35' 40 
WEEKLY WAGE 

45 

v = =  48 .4321 ,  i l l =  .8083,  c1--~ 33 .974 ,  

va ~ 303 .0239 ,  f12 = 4 " 7 8 5 7 ,  c2~-- 692 .899 ,  

v~ ~ 11225 .6435 ,  c 8 =  51 .281 ,  

c4 = 743.180.  

~ e a n  i s  .493 i n t e r v a l  f r o m  c e n t r a l  o r d i n a t e  o f  c lass  1 6 - - .  
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Exampls III. 
GRADUATION OF TYPE I I ilSTRIBUTION IN ELDERTON. 

63 

Elderton's  Present Grad. 
Central  Age Ungraduated Elderton's  Present d2 d 2 

Of Group.  Exposed to Graduation. Graduation. rusk. ~ " ~" 

17 
22 
27 
32 
37 
42 
47 
52 
57 
62 
67 
72 
77 
82 
87 

Total. 

34 
145 
156 
145 
123 
103 
86 
71 
55 
37 
21 
13 
7 
3 
1 

1,000 

44 
137 
149 
142 
127 
108 
88 
69 
51 
36 
24 
14 
7 
3 

.1 

1,000 

44 
142 
151 
142 
126 
106 
87 
68 
50 
36 
23 
14 
7 
3 
1 

1,000 

2.27 
.47 
.33 
.06 
.13 
.23 
.05 
.06 
.31 
.03 
.38 
.07 

X ~ = 4.39 

2.27 
.06 
.17 
.06 
.07 
.08 
.01 
.13 
.50 
.03 
.17 
.07 

x ~ = 3.62 

Since there  is not  h igh  cont~.ct for  th is  d i s t r ibu t ion  a t  the  y ,  
end, we cannot  p roper ly  assume Y,-1 ~ 0. We should use, there- 
fore,  equations I and  I I .  

T a k i n g  our provis ional  or igin a t  class 37 we obta in  r - -  1 = - -  5, 
] r = 3 4 ,  s - - 1 ~ 9 ,  f8~---1, ~f~==999, ~xf~=165, ~ x ~ f ~ 7 5 9 3 ,  
2 ~ f ~  ~-- 18,135 and 2x ' f~  ~--- 174,309. 

165cl -~ 999c2 --~ 655ca - -  966c~ ~ - -  100, 
7,593c1-{- 1 6 5 c 2 - -  7,~93cs-{- 6 5 5 c 4 2 - -  18,304, 

18,135c~ -~- 7,593c2 -~- 169c3 - -  7,493c~ ~ - -  41,332, 
174,309c~ -~ 18,135c2--132,977c3 -~- 169c4 ~--601~000. 

I n  solving s imul taneous  ~ u ~ 6 o n s  of  tl~is type i t  is advisable to 
d ivide  each equat ion t h ro rgh  by the coefficient c~ and then el imi-  
na te  th is  unknown f rom the set by subtract ion.  This  process 
should be repeated  for  c2 a~d c3. 

The solution is 

v ~ - -  5.180514, c 3 = -  8.163185, 

c ~ - - - - ~  42.734192, c~ ~ - -  50.510486. 

I f  we use x ~ as the cr i ter ion for the goodness o f  fit, it: is seen 
t ha t  a ~ ) m p a r i s o n  somewhat  f a -o r s  the method  of the  difference 

equation.  
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l~ad we treated y~ as y~ ~ 0 ,  the results would have been prac- 
tically the same: the graduated frequencies for classes 17 and 18 
would have been, to the nearest integers 45 and 141 instead of 44 
and 142, all others remaining unchanged. 

Example IV. 

• Example IV. Distribution of Deaths of Males in the O. R. S. for 
tt~e Years 1909, 1910 and 1911. 

The recorded deaths, as shown in Plate III ,  together with the 
estimated population as o£ July, 1910, were used in the construc- 
tion of the U. S. Life Table, smoothing being done by grouping the 
frequencies within quinquennial intervals and redistributing with 
the aid of fifth-degree osculatory interpolation. 

A glance at Plate I I I  clearly indicates that we are dealing with 

Pla t e  I I I .  
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L :  L Tv i, : : : ,  

Y . . . . . . .  \ . . . .  

69 55 60 65 70 75 80 85 90 95 10.0 
A6E AT DEATH 

a compound frequency ~istribu'5~a. We may assume that there . .  - . , ~  

exists a distribution of deaths due to causes that produce the re- 
corded deaths ~t-the higher ages, Series a, and another which is 
responsible for additional deaths at the earlier ages, Series ft. 
Without attempting to philosophize, I may point out that the 
range of .his curve, ages 11 to 60 odd, may reflect on industrial 
and sociai conditions. 

In our attempt to smooth the~e statistics, we shall further as- 
sume that all deaths after the age of 62 n~ay be taken to belong to 
Series a. This is, Of course, rather arbit~.ary. .k glance at Plate 
I I I  shows that the end of Series fl is somewhere between 30 u n ~  
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TABLE V. 

DISTRIBUTION OF DEATHS OF MALES IhT THE O. R. S.  FOR THE YEARS 1909,  
1910,  1911. 

A g e  L a s t  ' D ' n g r a d u a t e d  
B i r t h d a y .  D e a t h s .  

15 1,679 
6 1,995 
7 2,579 
8 2,990 
9 3,338 

20 3,429 
1 3,645 
2 3,963 
3 3,871 
4 3,960 
5 4,170 
6 3,892 
7 4,100 
8 4,566 
9 3,926 

30 4,998 
1 3,772 • 
2 4,719 
3 4,467 
4 4,700 
5 6,050 
6 4,932 
7 4,835 
8 5,873 
9 5,091 

40 6,929 
1 4,565 
2 5,848 
3 5,182 
4 4,869 
5 6,801 
6 4,937 
7 5,332 
8 6,077 
9 5,700 

50 7,696 
1 5,205 
2 6,461 
3 5,964 
4 6,156 
5 6,810 
6 6,304 
7 6,060 
8 6,512 
9 6,224 

60 8,504 
1 6,177 
2 7,153 
3 7,284 
4 7,241 
5 9,000 

T o t a l .  

1,928.25 
2,202.18 
2,461.75 
2,707.14 
2,938.58 
3,156.41 
3,360.98 
3,552.70 
3,732.01 
3,899.36 
4,055.23 
4,200.16 
4,334.65 
4,459.26 
4,574.58 
4,681.17 
4,779.64 
4,870.62 
4,954.74 
5,032.63 
5,104.96 
5,172.39 
5,235.58 
5,295.23 
5,351.99 
5,406.56 
5,459.60 
5,511.77 
5,563.73 
5,616.10 
5,669.50 
5,724.52 
5,781.69 
5,841.53 
5,904.51 
5,971.03 
6,041.47 
6,116.12 
6,195.23 
6,278.98 
6,367.54 
6,461.02 
6,559.58 
6,663.44 
6,773.07 
6,889.39 
7,014.45 
7,153.44 
7,327.68 
7,484.96 
7,622.17 

G r a d u a t e d  Dea th~  

ScfJefl 4. 

708.10 
747.97 
790.16 
834.81 
882.04 
932.01 
984.87 

1,040.77 
1,099.89 
1,162.39 
1,228.44 
1,298.25 
1,371.98 
1,449.84 
1,532.03 
1,618.75 
1,710.21 
1,806.62 
1,908.19 
2,015.12 
2,127.62 
2,245.89 
2,370.12 
2,500.50 
2,637.18 
2,780.32 
2,930.03 
3,086.42 
3,249.54 
3,419.41 
3,596.00 
3,779.22 
3,968.91 
4,164.85 
4,366.72 
4,574.10 
4,786.48 
5,003.19 
5,223.47 
5,446.36 
5,670.79 
5,895.47 
6,118.96 
6,339.60 
6,555.53 
6,764.68 
6,964.77 
7,153.34 
7,327.68 
7,484.96 
7,622.17 

Serie~ ~.  

1,220.15 
1,454.21 
1,671.59 
1 872.33 
2 056.54 
2 224.40 
2 376.11 
2 511.93 
2 632.12 
2 736.97 
2 826.79 
2 901.91 
2 962.67 
3 009.42 
3 042.55 
3 ~)62.42 
3 069.43 
3 ~)64.00 
3,046.55 
3,017.51 
2,977.34 
2,926.50 
2,865.46 
2,794.73 
2,714.81 
2,626.24 
2,529.57 
2,425.35 
2,314.19 
2,196.69 
2,073.50 
1,945.30 
1,812.78 
1,676.68 
1,537.79 
1,396.93 
1,254.99 
1,112.93 

971.76 
832.62 
696.75 
565.55 
440.62 
323.84 
217.5a 
124.71 
49.68 
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TABLE V.--( Continuvd.) 

D I S T R I B U T I O N  OF D E A T H S  OF M A L E S  IN  THE O.  l~. S.  FOR Tt tE  ~J~EARS 1909~ 
1910, 1911. 

Age Last  Ungraduated 
Birthday, Deaths.  

6 7,072 
7 7,504 
8 7,902 
9 7,436 

70 8,767 
1 6 861 
2 7 769 
3 7 659 
4 7 224 
5 7 911 
6 7 001 
7 6 427 
8 6 469 
9 5 814 

80 5,777 
1 4,750 
2 4,667 
3 4,319 
4 3,911 
5 3,417 
6 2,925 
7 2,379 
8 1,972 
9 1,588 

90 1,360 
• 1 972 

2 741 
3 549 
4 378 
5 284 
6 188 
7 155 
8 91 
9 81 

106 49 
1 25 
2 22 
3 17 
4 12 
5 10 
6 6 
7 3 
8 5 
9 3 

110 5 

Total. 

7,736.19 
7,823.85 
7,881.95 
7,907.41 
7,897.28 
7,848.88 
7,759.92 
7,628.61 
7,453.79 
7,235.06 ' 
6,972.91 
6,668.83 
6,325.33 
5,946.27 
5,536.33 
5,101.48 
4,648.60 
4,185.37 
3,719.96 
3,260.79 
2,816.12 
2,393.67 
2,000.25 
1,641.39 
1,321.10 
1,041.67 

863.663 
609.950 
445.970 
320.028 
223.679 
152.127 
100.597 
64.6394 
40.3431 
24.4539 
14.3984 
8.23918 
4.58610 
2.48616 
1.31478 
.679630 
.344192 
.171226 ~ 
.0839097 

Graduated Deaths. 

Series a. 

7,736.19 
7,823.85 
7,881.95 
7,907.41 
7,897.28 
7,848.88 
7,759.92 
7,628.61 
7,453.79 
7,235.06 
6,972.91 
6,668.83 
6,325.38 
5,946.27 
5,536.33 
5,101.48 
4,648.60 
4,185.37 
3,712.96 
3,260.79 
2,816.12 
2,393.67 
2,000.25 
1,641.39 
1,321.10 
1,041.67 

803.663 
60 c.950 
445.970 
320.028 
223.679 
152.127 
100.597 
64.6394 
40.3431 
24.4539 
14.3984 
8.23918 
4.58610 
2.48616 
1.31478 

.679630 

.344192 

.171226 

.0839097 

Serle~ ,6. 

70, assuming that  the balance of the dis t r ibut ion belongs to .~ single 

curve. Since the ordinates  a t  62 and 63 appear to be closer to this 

curve than the others, because of the well-known sys~mat ic  errors 
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in statements regarding ages, thi~ limiting section was chosen. I 
have found that it is possible to choose any point between 50 and 
70, which is approximately on Series a ;  what is gained or lost on 
one series is made up on the othe~. 

Taking the number of deaths at age 62-63 as fr, and choosing 
age 94- as one provisional origin,: we obtain by means of equations 
I and I I  the following difference equation 

y~+l x ~ - 30.616x + 589.440 
y~ x 2 - 21.439x + 821.405" 

The result of the graduation :is the portion of Series a falling 
after age 62. 

By calculating values of Y~/Y,,+I for ages less than 62, the re- 
mainder of Series a is easily o%tained. Taking the provisional 
origin at age 35--,  the difference equation of the rough residual 
Series fl must now be taken as 

y~+l _ (x -~ c l ) (x  - 26) 
y~ x;: -~ c2x + c3 

in order to effect a union of the: two curves at the proper point. 
Where systematic errors are not ])resent, the data is generally able 
to provide this point of union itself, but  in problems where such 
large variations occur (the last three terms of the rough residua~ 
series are - - 3 3 2 ,  ~ 1,739 and 788) this must be provided for" 
by the introduction of the proper factor. Incidentally, we are  
able to proceed now with but three moments instead of four. The  
elimination of this higher moment, 2x~f~, with its high probable 
error, is somewhat in our favor. 

We proceed as follows: 

y~+l _ x ~ -- 26r -~ cl(x  --  26) 
y~. X 2 -~- C2X -t-" Cs ' 

c~ (~xy~ - -  26~y~) - -  c2~xy~+l - -  c~y~+l 

= ~x2y~+~ - -  ~x2y~, ~ 26~y~:, 

c~ ( ~x2y~: - -  26~xy~ ) - -  c2~x2y~+~ - c~xy~:+~ 

= ~x3y~+l - -  ~x~y~ :-[-26~xy~, 

cl ( ~ x S y x - -  26~x2y~) - -  c~x~y~÷~ "-- cs~x~y~÷l 

----- ~x4yx+i -- ~z4y~ ~ 26~x~y~. 
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TABLE VI. 

:REORADUATION OP THE U .  S.  LIFE TABLE FOE MALES IN THE O.  1~. S .  BY THE 

I~t'E~HOD OF COMPOUND CURVES. 

Age 

20 
1 
2 
3 
4 
5 
6 
7 
8 
9 

30 
1 
2 
3 
4 
5 
6 
7 
8 
9 

40 
1 
2 
3 
4 
5 
6 
7 
8 
9 

50 
1 
2 
3 
4 
5 
6 
7 
8 
9 

6O 
1 
2 
3 
4 
5 
6 
7 
8 
9 

:Fisher's 
Graduation-- 

l0 Curves 
(Modified 
Radix). 

78,792 
78,445 
78,082 
77,704 
77,313 
76,906 
76,484 
76,046 
75,590 
75,116 
74,627 
74,119 
73,592 
73,045 
72,477 
71,646 
71,280 
70,653 
70,006 
69,340 
68,652 
67,944 
67,216 
66,464 
65,689 
64,891 
64,065 
63,208 
62,322 
61,400 
60,443 
59,441 
58,397 
57,306 
56,161 
54,962 
53,706 
52,394 
51,016 
49,581 
48,086 
46,528 
44,913 
43,243 
41,524 
39,756 
37,946 
36,102 
34,229 
32,333 

Life Table 
Ungraduated. 

78,792 
78,396 
77,974 
77,543 
77,110 
76.675 
76,237 
75,794 
75,339 
74,867 
74,378 
73,872 
73,344 
72,792 
72,215 
71,614 
7O,988 
70,341 
69,676 
68,995 
68.297 
67,583 

Present, 
Graduation-- 

2 Curves. 

7,205 

78,792 
78,395 
77,987 
77,568 
77,138 
76,696 
76,241 
75,774 
75,294 
74,801 
74,294 
73,773 
73,237 
72,686 
72,119 
71,535 
70,935 
70,316 
69,679 
69,023 
68,347 
67,648 

Graduated Deaths. 

Total d z. Series a. 

3,967 209 
4,079 232 
4,189 257 
4,305 286 
4,422 317 
4,544 352 
4,671 391 
4,800 435 
4,933 483 
5,071 537 
5,213 596 
5,359 662 
5,511 736 
5,671 818 
5,835 909 
6,005 1,010 
6,183 1,122 
6,369 1,246 
6,562 1,383 
6,766 1,535 
6,980 1,703 

1,889 

Series ~. 

3,758 
3,847 
3,932 
4,019 
4,105 
4,192 
4,280 
4,365 
4,450 
4,534 
4,617 
4,697 
4,775 
4,853 
4,926 
4,995 
5,061 
5,123 
5,179 
5,231 
5,277 
5,316 

66,850 
66,096 
65,319 
64,518 
63,689 
62,833 
61,951 
61,046 
60,118 
59,167 
58,189 
57,170 
56,099 
54,970 
53,773 
52,505 
51,173 
49,787 
48,343 
46,842 
45,285 
43,669 
41,993 
40,264 
38,490 
36,676 
34,824 
32,938 

66,928 
66,184 
65,415 
64,619 
63,796 
62,943 
62,059 
61,142 
60,189 
59,200 
58,171 
57,100 
55,986 
54,826 
53,617 
52,358 
51,046 
49,679 
48,257 
46,778 
45,241 
43,647 
41,995 
40,289 
38,530 
36,722 
34,869 
32,977 

7,441 
7,692 
7,955 
8,233 
8,529 
8,841 
9,173 
9,524 
9,896 

10,288 
10,704 
11,143 
11,604 
12,087 
12,593 
13,120 
13,663 
14,224 
14,793 
15,368 
15,943 
16,512 
17,064 
17,592 
18,083 
18,528 
18,918 
19,238 

2,094 
2,321 
5,385 
2,843 
3,144 
3,472 
3,832 
4,224 
4,651 
5,113 
5,614 
6,154 
6,734 
7,354 
8,015 
8,715 
9,453 

10,226 
11,030 
11,860 
12,709 
13,569 
14,429 
15,278 
16,102 
16,886 
17,614 
18,266 

5,347 
5,371 
5,385 
5,390 
5,385 
5,369 
5,341 
5,300 
5,245 
5,175 
5,090 
4,989 
4,870 
4,733 
4,578 
4,405 
4,210 
3,998 
3,763 
3,508 
3,234 
2,943 
2,635 
2,314 
1,981 
1,642 
1,304 

972 
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TABLE YI.---( Conc~uded.) 

B~.0RADUATION o~ 'PHE U. S. LrFE TABS~. FO~ MASES IN THE O. R. S. BY THE 

~ETHOD 01~ C03[POUND CUEVES. 

Flsher'8 
Graduat ion- -  

Age. I0 Curves 
(Modified 
Radix). 

70 30,425 
1 28,516 
2 26,609 
3 24,711 
4 22,838 
5 I 20,996 

19,197 
7 17,452 
8 15,766 
9 14,157 

80 12,620 
1 11,168 
2 9,808 
3 8,550 
4 7,389 
5 6,331 
6 5,374 
7 4,517 
8 3,756 
9 3,092 

90 2,515 
1 2,022 
2 1,605 
3 1,253 
4 964 
5 730 
6 541 
7 393 
8 280 
g l 193 

10 129 

51 
30 
17 

9 
4 
1 

91 

Life Table  
Ungraduat~d, 

31,023 
29,087 
27,134 
25,165 
23,188 
21,213 
19,246 
17,311 
15,438 
13,648 
11,942 
10,322 
8,804 
7,413 
6,165 
5,059 
4,093 
3,263 
2,562 

]Present 
Graduatio:~-- 

2 Curvem 

31,05}; 
29,105 
27j13~, 
25,166 
23,18g 
21,210 
19,248 
17,320 
15,443 
13,638 
11,918 
10,30:[ 
8,800 
7,42A 
6,182 
5,076 
4,108 
3,273 
2,56'7 
1,980 
1,50t 

Tota l  
d~. 

19,485 
19,653 
19,743 
19,769 
19,781 
19,621 
19,283 
18,761 
18,060 
17,191 
16,169 
15,015 
13,757 
12,425 
11,057 
9,684 
8,343 
7,064 
5,873 
4,792 
3,835 
3,007 

Graduated Deaths. 

Series 
a. 

18,827 
19,276 
19,596 
19,769 
19,781 
19,621 
19,283 
18,761 
18,060 
17,191 
16,169 
15,015 
13,757 
12,425 
11,057 
9,684 
8,343 
7,064 
5,873 

Series 
8. 

658 
377 
147 

1,978 
1,502 
1,121 

821 
591 
417 
289 
196 
130 
84 
53 
33 
19 
II 
6 
3 
2 
1 

1,117 
81~5 
585 
412 
28i 
192 
127 
83 
53 
33 
20 
12 
7 
4 
2 
1 

2,310 
1,737 
1,278 

920 
647 
446 
300 
198 
127 
8O 
50 
30 
18 
10 

6 
3 
2 
1 

4,792 
3,835 
3,007 
2,310 
1,737 
1,278 

920 
647 
446 
300 
198 
127 
80 
50 
30 
18 
10 
6 
3 
2 
1 

The difference equation, 

yx+l = z 2 - .56149x - 661.40128 
y~ z" -- 3.14933x -- 672.89232 

is the result of a simultaneous s)lution. 
The lack of red tape involve,] resulting through application of 

the finite calculus is brought out by the above. 
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I regret that I cannot agree with ]~{r. Fisher's "Note on the 
Construction of ]~{ortality Tables," Proc., Vo]. IV, to the extent 
that it is possible to construct mortality tables from only records of 
deaths. 

If  we add the graduated deaths of Table V backwards, we will 
produce a series that approximates the l~ column of a mortality 
table. I believe this sort of thing could be done for a community 
which enjoyed a stationary population, and also not affected by 
immigration or emigration, but only in such an event. 

However, we can graduate the populations as we just did the 
deaths and compute values of q~ by means of the formula 

d= 
q~= L~W½d:" 

In order to bring out the fact that a graduation of the d~ column 
may be performed by breaking it up into but two curves, Table VI 
and Plate IV are added--showing the results obtained by the pro- 

Plate IV. 

2e,500 : , ~  : 
~ l v , ~ 0 ,  , , 

" 7 ,500 '  ' , 4 '  ,~ 
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25 30 35 4t) 45 50 55 60 65 ~ 7 

\ 
\ 

\ , . _  
80 85 90 95 

posed method compared to the actual values as shown in the Life 
Tables prepared by Professor Glover and the regraduated values 
as computed by Mr. Fisher by means of ten compound curves. 

SECTION V. 

In conclusion I wish to bring out certain points bearing upon the 
systems devised by Pearson ancl Charlier which are, unfortunately 
ancl incorrectly, considered by many to be radically different, both 
as regards philosophic basis and effectiveness. 
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I f  we integrate Pearson's diff.~rential equation in the modified 
form 

1 d y = = a - x  
y '  dx bo 

we obtain as a solution the Gaus~¢ian or normal curve of error 

1 (~-b)~ 
y ----- ~ox ~ - e -  ¢22 

This curve, obviously symmetrical, graduates with a considerable 
degree of •satisfaction, many d::stributions possessing but sligh~ 
skewness. 

To take care of skew distributions a function f ( x )  is introduced 
in, the differential equation•, as before stated, giving 

1 d y  a - -  x 

y "  dx = bo~f(x) or 
1 dy a - x 
y dx bo + blx ~- b2x ~ + b3x ~ -{- . . .  " 

Charlier's Type A curve is given: on the other hand, as 

y Ao~o(~) + ~ m iv = ~3~(~) q- A4q~(~) + A s ~ )  + • • -, 

where q)(x) is the same symmetlic function that we obtained above 
from Pearson's differential equal;ion 

1 dy a - x  
~'d-~ := bo 

The type A curve is identically equivalent to 

y ~ (b(~)(1 - { - a 3 [ ( x - - b ) 8 - - 3 c ( x - - b ) ]  -~- a~[ ( x - -  b ) '  
- -  6 c ( x - -  b)~ + 3c ~] + . . . ) ,  

which may in turn be written a~'~ 

y=~(~)f(x)~¢(~)[bo% b~ + b~x ~ + b~:~ + . . . ] .  

In  effect, then, the basis of Pearson's system, and Charlier's 
Type A curve is the same symmetrical function ~(~). Skewness is 
taken care o f  in each case by the introduction of an uN~:~ow~ 
function f ( x )  which is represerted as the converging power series 
bo + btx ~ b2x 2 --[- . . . .  In  one case this is introduced in the dif- 
ferential equation of the graduating curve-- in ~he other, in the 
curve itself. 
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is 

GRADUATION OF FREQUENCY DI5TRIBUTIONS. 

The basis of Charlier's Type B curve 

y.~- Bo~(x) + B,h~(x) --[- B~A~d/(x) ~+ . .. 

e - m m  Z 

¢ ( x )  = Ix  ' 

whose difference equation, from a fixed origin is 

y~+l m y~+~ m 

this is of the type 
Ayz a -- 2: 

which is quite similar to the corresponding difference equation of 
this paper. 

Again, we might generalize the above by introducing a function 
f (x )  in the difference equation, giving 

Ay~ a -- x 
yz+l bo ~- bl:~ ~- b2~ ~ -~ barb ~ -I- - . -  ' 

l%glecting the terms involving the third and higher powers of 
we have our difference equation 

Y~+I _ x 2 -~  c l x  ~-  c~ 

y~ x 2 ÷ c~z + c~" 

Therefore we have in effect modified the basic curve y- - '~(x)  
by introducing a function f (x)  in the difference equation. Char- 
lier's Type B curve introduces f (x)  in the curve (or rather series) 
itself since the Type B curve can be written as 

y - - ~ - ~ ( x ) f ( x ) ~ ( x )  [bo ~- blx ~- b2x 2 ~- b~x 3 -~ ...]. 


