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ON GRADUATING EXCESS PURE PREMIUM RATIOS 

BY 

PAUL DORWEILER 

The objective in graduating data is to obtain their smooth 
rearrangement according to some pattern which there is reason to 
believe would fit the data if their volume were increased indefi- 
nitely. As some knowledge of the general characteristics of the 
data to be graduated is requisite in selecting the pattern to be 
used, it is desirable to make a preliminary survey of the material. 

Nature  o] Data 

The data discussed in this paper concern the excess pure pre- 
mium ratio, which, with respect to an individual risk, may be 
defined as the ratio of the risk's losses in excess of a specific 
selected loss ratio to the total losses of the risk. For a group of 
risks the excess pure premium ratio for a given selected loss ratio 
r, is the ratio of the aggregate of the losses in excess of the loss 
ratio r in each risk to the aggregate total losses of the group. This 
may be expressed more precisely in mathematical form by the 
equation 

Y. (L  - -  r x ) ,  
Y - -  ZL where 

y denotes the excess pure premium ratio for losses in excess 
of the loss ratio r. 

L denotes the actual losses of the risk. 
x denotes the risk premium. 
r denotes the selected loss ratio, the losses above which are to 

be considered excess losses. 
denotes summation of the values for each risk in the group. 

This equation is not generai for it is necessary to place a restric- 
tion on the formula so that only the positive values of the term 
(L -- r x) are to be used. The selected loss ratio may be expressed 
either as an ordinary loss ratio r, that is as an index of the pre- 
mium x which is taken as the base unity, or as an index of the 
expected loss ratio E. If the latter form is denoted by r' then r 
becomes r ' E  in the formula. 
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Let the relation of the three variables ; the excess pure premium 
ratio y, the selected loss ratio r, and the risk premium x be denoted 
in general by 

y -=-- F (r, x) 

This general equation in rectangular coordinates (y, r, x) repre- 
sents a surface. However, certain restrictions apply to the vari- 
ables so that only a part of the surface is included in this study. 
A review of previous discussions of the subject and a study of 
exhibits showing these variables, together with reflection on the 
definitions of the terms will bring out these necessary restrictions : 

x is positive, varying from 0 to ~o 
r is positive, varying from 0 to eo 
y is positive and varies from 1 to O. 

If it is assumed that the experience of the risk under proper classi- 
fication and on a correct premium level will approach the expected 
as the risk becomes indefinitely large* then still further limita- 
tions may be placed on these variables. 

The data used in this paper pertain to Compensation Insurance 
exclusively. At the present time this is the only line having a 
large volume of experience available in a form that may be used 
readily for graduating excess pure premium ratios. As the char- 
acteristics of the excess pure premium ratios for various lines of 
Casualty Insurance are similar, the generalizations deduced from 
these data may be applied in varying degree to other lines. 

Representation of Data in Three Dimensions 

Assume that the variables y, r and x have been arranged in the 
definite order given in Table Ia, p. 148, or in Table I, p. 21, Vol. 
XX, P.C.A.S. In a system of rectangular coordinates take the 
risk premium x along the horizontal axis to the right, the selected 
loss ratio r along the horizontal axis toward the observer, and the 
excess pure premium ratio y along the vertical axis upward. The 
surface y - - F  (r, x) and the coordinate planes YOX, YOR and 

* This assumption is equivalent to the assumption in probabilities that 
the actual result will approximate the theoretically expected as the 
number of trials is increased indefinitely. 
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ROX will form a solid somewhat as indicated in Fig. I. If the 
figure is extended indefinitely to the right, a section parallel to 
the YOR plane approaches a right triangle. If the figure is 
extended indefinitely toward the observer, the height remains 
constant and equal to unity, but the width at the base decreases 
continually so that a section parallel to the YOX plane approaches 
a vertical straight line of unit length as the ultimate limit. If the 
figure is extended along the ROX plane when r and x are increased 
indefinitely, the height decreases and may be viewed ultimately 
as a mere film on the ROX plane. 

Consider a section parallel to the YOR plane; its intersection 
with the surface consists of a curve which may be represented by 
the function y - - ]  (r). The curve starts at the point (0,1), 
decreases slowly as r is increased when the section is taken just to 
the Ieft of the YOR plane, and decreases more rapidly at the 
beginning when the section is taken farther to the right. Ulti- 
mately the curve approaches the straight line y + r /E  --  1, where 
E is the expected Ioss ratio, when the section is taken at the 
extreme right for indefinitely large risks. 

Consider a section parallel to the YOX plane; its intersection 
with the surface is a curve, y -- f (x), which starts at the point 
(0, 1) and decreases to the right, approaching an asymptote as x 
becomes indefinitely large. When r < E, the asymptote is the 
intersection line formed by the section and the plane represented 
by 3' + r /E  -- 1. When r > E, the asymptote is the line of inter- 
section of the section with the R O X  plane. The farther the section 
is taken from the YOX plane, i.e., the larger the r under consider- 
ation, the more rapidly the curve descends at the beginning. As r 
becomes extremely large, the curve approaches a vertical line of 
unit length as its limit. 

Consider a section parallel to the ROX plane; its intersection 
with the surface represents the relation between the selected loss 
ratio r and the size of risk premium x for a fixed excess pure 
premium ratio y. It may be noted that the intersection is a curve 
which is asymptotic to the line where the section cuts the YOR 
plane at one end, and also asymptotic to the line where the section 
cuts the plane represented by y + r /E  = 1 at the other. 

The surface y --  F (r, x), intersects the YOR plane at y --  1 
and the YOX plane at y - - 1 .  In the region where r < E  the 
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surface becomes asymptotic to the plane, y -[- r /E  -- 1, as x be- 
comes indefinitely large. The surface also becomes asymptotic to 
the FOR plane as x decreases and r increases indefinitely. When 
both x and r are indefinitely increased the surface becomes asymp- 
totic to the R O X  plane. It should be noted that while the general 
shape of the surface in Fig. I is much affected by the relative size 
of the units chosen for y, r and x, the characteristics mentioned 
above are retained under any selected relativity of units. 

Selection o] Pattern 

It  is not practicable to use a general function representing such 
a complex surface as a pattern for graduating the excess pure pre- 
mium ratios. It is practicable to use equations representing the 
curves formed by the intersection of the surface with planes par- 
allel to one of the vertical coordinate planes as patterns. There is 
little interest in the relation of r and x for a given value of y, 
consequently the curves for sections parallel to the R O X  plane 
will receive no further consideration. Primary interest exists in 
these relations : 

1. The relation of y and r for a constant x, or the relation of 
the excess pure premium ratio and the selected loss ratio for 
a group of risks having approximately the same premium. 

2. The relation of y and x for a constant r, or the relation of the 
excess pure premium ratio and the individual risk premium 
for a given selected loss ratio. 

Relation oJ y and r, x constant 

The characteristics for curves representing the first relation are 
those possessed by curves formed by the intersections of the 
surface y = P (r, x) and planes parallel to the YOR plane. These 
characteristics may be recognized to some extent by using as a 
pattern equations in y and r, y = ] (r), which pass through the 
point (0, 1) and become asymptotic to y - - 0  as r is increased 
indefinitely. Among curves fulfilling these conditions are those 
represented by y = 10 -4 r -b ,2  and y = c -~". These equations 
might be used as patterns and their constants determined for each 
size of risk so as to produce good fits. 
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The excess pure premium ratios were determined by premium 
size groups of risks. Any irregularity in the experience of a group 
which affects any of the excess pure premium ratios for a given 
selected loss ratio r, will also affect the excess pure premium ratios 
for all selected loss ratios which are less than r. As a result, an 
abnormality in the experience will affect the whole curve, or a 
large portion of it. Deviations of this sort cannot be overcome 
by smoothing the data. The graduations for various sizes of x 
would result in curves which viewed laterally formed elements of 
a surface which still had troughs and ridges very much as in the 
original data. It would be expected that curves formed by the 
intersections of lateral sections with such a projected surface 
would require considerable smoothing to eliminate these troughs 
and ridges. For this reason no effort has been made here to 
consider the curves represented by y --  ] (r) but rather to direct 
attention to the curves formed by the intersections of the surface 
with sections parallel to the FOX plane. 

Relation o] y and x, r constant 

The characteristics of curves under the second relation are those 
possessed by curves formed by the intersection of planes parallel 
to the Y O X  plane and the surface, y - - - F  (r, x). These charac- 
teristics would be recognized if the graduation used as a pattern 
an equation, y - - ]  (x), whose graph passed through the point 
(0, 1), then decreased and as x increased indefinitely approached 
a definite asymptote dependent on r. An equation of the graph 
possessing these characteristics is y - - -a  + b/c "~, where a, b, c 
and n are constants to be determined so that the formula fits the 
data for the particular section corresponding to a specific selected 
loss ratio r. The condition imposed on a and b in the formula 
and the application of the normal equations, are discussed in 
Appendix I. As an illustration, the graduation of the excess pure 
premium ratios corresponding to the selected loss ratio .50 is 
given in Table III. 

The ungraduated excess pure premium ratios shown in Table Ia 
were determined after the premium level had been adjusted to 
produce the expected loss ratio not only for the experiences as a 
whole but for each size of risk group. In Table Ib are shown 
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the graduated values as determined by the method explained in 
Appendix I. 

Generally the results shown in the Table Ib indicate a fair fit. 
On inspection it will be noted that the adjusted values for each 
selected loss ratio in the $4,000-5,000 premium size group are 
under the original values in each instance. This might indicate 
that while the equations used as the pattern in graduating may 
be made to fit fairly well for the range of risks over $5,000, there 
may be some doubt as to whether the formula has sufficient flexi- 
bility to fit the whole range of risks including those under $5,000. 
To test the flexibility of the formula, the method of graduation 
was applied to the range of risks extending in size from $10 to 
over $16,000, shown in Table V, p. 173, Vol. XIII ,  P.C.A.S. The 
results shown below indicate a reasonable fit. However, there is 
a wide spread in the original ratios, which are based on scant data, 
and any general smoothing would seem likely to succeed in bring- 
ing the adjusted values reasonably within the extremes. It may 
be shown that if the formula were extended clear to the zero 
point, it would not fit small hypothetical risks, for example $1 
premium or less. 

Lower Limit  
Risk Group 

(1) 

$ lo 
25 
50 
75 

100 

150 
200 
300 
400 

Actual 
Pure Prem. 

Ratio 

(2) 

.945 

.884 

.834 

.852 

.821 

.756 

.704 

.720 

.752 

Graduated 
Ratio 

(3) 

.929 

.896 

.867 

.843 

.816 

.784 

.747 

.707 

.674 

Lower  Limit  
Risk Group 

(1) 

$ 500 
700 

1,000 
1,500 
2,500 

4,000 
8,000 

16,000 

Actual 
Pure Prem. 

Ratio 

(2) 

.652 

.541 

.540 

.436 

.414 

.223 

.169 

.028 

Graduated 
Ratio 

(3) 

.637 

.582 

.533 

.456 

.383 

.259 

.143 

.029 

Graphs o] Excess Pure Premium Ratios--Unlimited Per Case 
Losses 

Graphs for the graduated excess pure premium ratios for vari- 
ous selected loss ratios in Table Ib have been drawn and are 
shown in Chart I. To the right, beyond the range of the actual 
data the curves have been extended showing how they approach 
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their asymptotes. To the left below the smallest premiums in the 
data the curves have been extended in broken lines through 
selected points determined from the formula. 

It has been found convenient to use three-cycle semi-logarithm 
paper in representing the premium field ($1,000-1,000,000) under 
consideration. With this ruling of the paper it is possible to 
devote two-thirds of the chart to that part, approximately one- 
tenth of the premium fieId, which is of primary importance. It is 
possible to use four-cycle paper to extend the field down to $100 
premium risks, or to use five-cycle paper to go down to the $10 
premium risks, though the latter would be questionable. It would 
not be advisable to use the semi-logarithm paper if the field were 
to be extended to $1 risks, and obviously it would be impossible 
to use this paper if the field were extended to zero. In interpret- 
ing semi-logarithm charts it must be recognized that slopes and 
curves do not have the same meaning as in charts having uniform 
scales. The ogive form of the "IOM" curve, and the similar form 
which the selected loss ratio curves assume if extended far enough 
to the left are due entirely to the use of the semi-logarithm paper 
with its constantly changing horizontal scale, and not to any 
property inherent in the curves. 

Effect oj Per Case Limit 

The line marked "10M" separates Chart I into a left side in 
which a further limitation of primary losses to $10,000 per case 
can have no possible effect on the excess pure premium ratios 
because the per case limit is greater than the per aggregate limit 
implicit in the given selected loss ratio, and into a right side in 
which the restriction of cases to $10,000 may result in reducing 
the primary losses and consequently in increasing the excess 
losses. There are regions also to the right of the "10M" line where 
the $10,000 limit will have no effect. In the upper right of the 
chart, for example, correctly classified risks having premiums of 
$500#00 or more on a proper premium level would develop, almost 
to a mathematical certainty, loss ratios of say at least .15, even if 
individual cases were limited to $10,000. The amount that would 
be excluded from primary losses under the per case limit wouId 
in all probability already have been excluded under the small 
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aggregate limit imposed by the low selected loss ratio. The upper 
right region excluded cannot be demarcated definitely for in 
going upward or to the right the effect of the per case limit be- 
comes very small gradually, ultimately becoming infinitesimal. 

The effect produced 15y-imposing a maximum per case limit in 
addition to a per loss ratio limit may be determined largely from 
theoretical considerations. A study and interpretation of Fig. I, 
Table I, Chart I, and the definitions will show these deductions to 
be reasonable. 

(a) Imposing a per case limit in addition to a per loss ratio 
limit will have no effect on the excess pure premium ratio 
if the per case limit is greater that the imposed per aggre- 
gate limit implicit in the selected loss ratio and the risk 
size. This condition prevails in the region to the left of the 
"10M" line in Chart I. 

(b) For a given selected loss ratio which is greater than the 
expected, the per case limit will begin to be effective when 
the risk premium reaches the point where the selected loss 
ratio curve crosses the "10M" line in Chart I. The effect at 
first is small but gradually increases until the full value of 
.042 (see Table IV) has been attained. 

(c) For selected loss ratios less than the expected, the per case 
limit becomes effective gradually after the selected loss 
ratio curve has intersected the "10M" curve, reaches a 
maximum some time later and then decreases until the 
effect disappears entirely in extremely large risks. To this 
general relation there are two exceptions, when the selected 
loss ratio is very small and also when the selected loss 
ratio lies between the expected loss ratio (.598) and one 
which is .042 X .598 or .025 less than the expected. 

When the selected loss ratio is so small that the risk 
must become so large before the selected loss ratio curve 
crosses the "10M" line that virtually every risk, even with 
losses limited on a per case basis, will develop a loss ratio 
not less than the given loss ratio r, then the .presence of a 
maximum limit per case will produce no effect on the excess 
pure premium ratios. 

When the selected loss ratio lies between the expected 
and one which is .025 less than the expected, the effect on 
indefinitely large risks will approach and ultimately equal 
the difference between the selected loss ratio and one which 
is .025 less than the expected when this difference is ex- 
pressed in terms of the expected loss ratio. 
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Effect Expressed with Use o] Symbols  

These relations may  be expressed more precisely with the aid 
of symbols ; 

whe re l  denotes the 
r denotes the 
x denotes the 
E denotes the 
y denotes the 
e denotes the 

case limit l on a per 
then for r > 0, e 

r > E ,  e 

E > r >  ( E - - . 0 2 5 )  e 

(E - - . 0 2 5 )  > r, e 

per case limit on losses, $10,000 
selected loss r a t i o  
risk premium 
expected loss ratio, (.598) 
excess pure premium ratio 
increment on y due to superimposing a per 

loss ratio limit r. 
- - 0 i f x < l / r  
begins at  point where x - -  I/r, in- 
creases to .042, for x - -  00 

begins at  point where x : l/r,  in- 
creases to [.025 - -  ( E - -  r) ] / E  
for x - -  oo 

begins at  point where x - -  l /r ,  in- 
creases first and then decreases to 
0, for x : oo 

The  equations of the asymptotes  of the curves y : ] (x) for 
the various selected loss ratios with unlimited losses and with 
limited losses are as follows: 

Value o] r 

r > E  
E > r >  ( E - - . 0 2 5 )  
r < (E - -  .025) 

Equations of Asymptotes  
Unlimited Losses L imi ted  Losses 

y : 0 y : .042 
y - (E  - -  r ) / E  y : .042 
y - -  (E - -  r ) / E  y - -  (E  - -  r ) / E  

Graphs o] Excess Pure Premium Rat ios - -L imi ted  Per Case Losses 

The graphs for selected loss ratios with losses limited on a per 
case basis might  be constructed directly from actual excess pure 
premium ratios calculated by  omitting the excess per case losses 
in obtaining the numerator  of the ratio but  using unlimited losses 
for the denominator.  The excess pure premium ratios could then 
be graduated by  some process similar to that  used for the excess 
pure premium ratios with unlimited losses in Appendix I.  This 
procedure would produce different adjusted pure premium ratios 
for each per case limit even for the low selected loss ratios and 
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small risks where the limit could not possibly affect the result. 
The method followed here consists of using the graduated curves 
for the unlimited losses as basic and then adapting them graphi- 
cally to conform to the known requirement of having the depar- 
ture begin at the point where the "IOM" line crosses the curves, 
of approaching the new asymptote at the extreme right of the 
chart when the risk becomes indefinitely large, and of passing 
through some of the intermediate points determined from a com- 
parison of the excess pure premium ratios calculated first with 
unlimited losses and then with losses limited on a per case basis. 

The effect of the per case limit is given in Table IVa which 
shows the remainders when the actual excess pure premium ratios 
with limited per case losses are subtracted from the corresponding 
actual excess pure premium ratios without per case limits on 
losses. The portion of the total losses excluded from primary 
losses with both per loss ratio and per case limits on losses is 
equal to the excess pure premium ratio calculated with excess 
losses unlimited plus .042, the value of the New York losses elimi- 
nated by the excess per case limit of $10,000. The net increase of 
the non-primary or excess losses in excess of a given selected loss 
ratio, combined with a $10,000 per case limit, over the non- 
primary losses without per case limits is .042 minus the values 
shown in Table IVa. As might be expected on account of the 
small volume of experience, the per case limits affected the various 
premium size groups differently and in not a single group was the 
.042 average derived from all New York losses combined repro- 
duced in Table IVa. To eliminate these variations, all the differ- 
ences in Table IVa were expressed as indexes of the left hand 
column, then multiplied by .042. These results are shown in 
Table IVb. To obtain the net increase in non-primary losses the 
values in Table IVb must be subtracted from .042. These differ- 
ences are shown in Table IVc. If the values in Table IVc are 
first smoothed and expressed in a new Table IVd, then with proper 
interpolations this Table IVd may be used to determine the effect 
of the per case limit for intermediate points. Using the value of 
certain intermediate points from IVd along with the known rela- 
tions at the point where the selected loss ratio curve crosses the 
"10M" line, and knowledge of the asymptotes for curves with per 
case limit losses, the necessary adaptations to the Chart I curves, 
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were made graphically. The new curves are shown in Chart II, 
which is a reproduction of the New York Board chart. 

In actual practice the relations of y,  r and x are usually shown 
in charts in which the excess pure premium ratio y is plotted 
against the selected loss ratio r for specific risk sizes x. Chart I 
and Chart I I  may be readily transformed into new charts having 
these relations by taking the vertical line corresponding to a defi- 
nite risk size x,  and plotting the intersections of this line with the 
selected loss ratio curves onto a new rectangular chart in which 
the ordinates represent excess pure premium ratios and the 
abscissas represent the selected loss ratio. The points pertaining 
to a definite risk size are then joined and the connecting curve is 
designated by the risk premium size. Such a transformation of 
Chart I has been made and is shown as Chart III.  A similar trans- 
formation of Chart II  is shown as Chart IV. 

In summary it is apparent that the selection of the equation 
used is arbitrary. The advantages that may be credited to it are 
its relative simplicity, its not too restricted flexibility, and its 
adaptability to the conditions at the very beginning, the zero 
point, and at the extreme end, the indefinitely large risk. The 
disadvantages that may be charged against it are that it lacks 
extended flexibility, that it is necessary to give special arbitrary 
treatment to zero values and that it is not well adapted to apply 
to actual experience, but really requires prior adjustment of ex- 
perience to the expected loss ratio basis. 

I t  is apparent too, that the procedure is somewhat hybrid using 
first algebraic methods to graduate the excess pure premium ratio 
for unlimited loss experience and then superimposing graphic 
methods to depict the deviations caused by the per case limit on 
losses. The choice of this procedure arose out of a desire to con- 
sider the excess pure premium ratios for selected excess loss ratios 
with various per case limits in terms of the basic. I t  will be 
recalled that to the left of the point where the per case limit equals 
the aggregate loss limit on the selected loss ratio curve, no effect 
results from placing an additional per case limit on the losses, 
and it would seem desirable to leave that portion of the ungradu- 
ated curve the same irrespective of any later effect due to the use 
of per case limits on losses. 

Finally, there may be serious question whether at this stage of 
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our knowledge such a refinement of graduated pure premium ratios 
is warranted. Practically the same result could have been accom- 
plished by a simple graphical method, particularly where large 
aggregates of experience are involved. Admittedly, at this time 
the more fundamental considerations of whether the excess pure 
premium ratios should be based on all industry combined or should 
vary by industry, whether they should be based on actual experi- 
ence or on adjusted experience, are of greater significance than 
the refinement brought about by any graduating process. Recog- 
nizing the relative importance of these problems, it seems, never- 
theless, that the study of the problem of graduation of excess pure 
premium ratios by the Actuarial Committee of the New York 
Compensation Insurance Rating Board, in which the method de- 
scribed in this paper was developed, has been worth while if not 
for the direct results produced in  greater refinements, then for the 
development of a more intimate knowledge of the behavior of 
excess pure premium ratios. 

APPENDIX I 

Graduating Excess Pure Premium Rates by Method 
o] Least Squares 

(1) Let y : a + b/c  *~ where y : excess pure premium ratio 
x - -  risk premium in thousands 

Then ( y - - a ) / b  --- 1/c ~" r --  selected loss ratio 
x" log c : - - l o g  [ ( y - - a ) / b ]  a, b, and c are constants, to be 

determined for each r 
a = (E - -  r ) / E  
b = 1 - -  a : r / E  
E = expected loss ratio, .598 n log  x + log log c = 

log {--log [ ( y - - a ) / b ]  ) 

(2) n l o g x + B - - A - - O  where B = log log c 
A --  log (--log [ ( y - - a ) / b ]  } 

When formula (2) is applied to the pure premium ratios corre- 
sponding to a selected loss ratio r the values for log x and A may 
be determined for each of the fourteen risk premium groups in 
Table Ia. The problem is to determine in accordance with the 
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method of least squares, n and B and then c so that equation (1) 
will represent the best fit for the fourteen points. 

The normal equations for n and B in (2) are: 

n ~ l o g x  + ~,B - - ~ A - - - O  

n ~ (log x)2 + B ~ log x --  E A log x ~ O. 

I t  is worth while when applying the method of least squares 
repeatedly to a set of data as in Table  Ia  to calculate an auxiliary 
table as an aid in solving the normal equations. Table I I  has been 
made for this purpose. As an illustration the process of graduating 
the excess pure premium ratios for the selected loss ratio .50 in 
Table Ia  will be shown in detail. 

a - -  ( .598--.50)/ .598 = .1639 

b -"  .50/.598 ~ .8361 

y - -  .1639 + .8631/c ~ 

nlogx  + B - - A - - O  
where B - -  log log c 

A ---- log ( - - log  [(y-- .1639)/ .8361]  ) 

The development of the normal equations requires the prelimi- 
nary  calculation of coefficients and constants which may be made 
most conveniently in some tabular form. In Table I I I ,  Columns 
1-10, which are self explanatory, these calculations have been 
made. From Table  I I I  and the auxiliary Table  I I  the normal 
equations may be written as : 

18.35278 n + 14 B + 1.99797 - -  0 

26.72278 n + 18.35278 B + 1.85452 - -  0 

The solution of the normal equations may be obtained more 
readily by passing directly to the derived equation for B given 
below Table I I  and substituting therein values taken from columns 
8 and 10 of Table I I I  and from columns 4, 6 and 9 of Table II .  

Solving 

B - -  --.518998 

log c = .30269 
c ---- 2.0077 
n = .28704 
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Substituting these values equation (3) becomes: 
.28704 

y --  .1639 + .8361/2.0077 ~ 

The adjusted y's are calculated in Table III,  Columns 11-16, 
and entered on line r = .50 in Table Ib. If a similar procedure 
is followed for each value of r given in Table Ia; then the 
adjusted values in Table Ib will be determined. 

There is one difficulty inherent in the formula that arises 

w h e n y = 0 ,  for r > E  

and y = a  for r < E  

In this case infinite values are introduced into Table III,  and 
consequently into the normal equations giving some terms such 
great weight that the resulting curve becomes a straight line---its 
asymptote. This invalidates the procedure making other recourses 
necessary. To circumvent this difficulty two courses may be 
followed. The zero value point may be omitted entirely, which 
amounts to giving no weight whatever to the experience, or a 
small arbitrary value may be used. This value should be small 
enough so that its effect is to depress the resulting curve below 
the curve that would be obtained if the point were omitted en- 
tirely. When there are zero values for several consecutive risk size 
groups, only those corresponding to the lower premium size groups 
need be given arbitrary values, the others being omitted. 

If the premium level of each premium size group had not been 
adjusted so as to produce the expected loss ratio E for the group, 
then such additional difficulties would arise in groups having 
redundant premiums where the excess pure premium ratio might 
become less than a--the ordinate of the asymptote---that the 
formula would become useless. 

Relat ion oJ Parameters  a, b, c and n 

The selection of the formula y = a + b /c  *n as a pattern creates 
an interest in the interrelations of the parameters a, b, c and n. 
The relation of a and b as connected with r and E which has 
already been stated arises from the conditions which require the 
graph to pass through (0, 1) at the left and to be asymptotic to 
y = ( E - - r ) / E  if r < E and asymptotic to y = 0 if r > E. These 
relations are fairly evident. 
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The relations of c and n to each other and the other parameters 
are not so clear. As x and y are taken positive and as y < 1, it 
follows that c must be greater than one. I t  appears from empiri- 
cal relations that c is approximately at a minimum when r - - E  
and increases as r moves away from E in either direction. The 
behavior of n is more obscure. I t  may be shown that for r > E 
the values of n should be equal and possibly this relation holds 
for r < E. This means that a constant n should produce the best 
fit for the surface over the region where r > E. An interpretation 
of the varying n's may be given as meaning that each n produces 
the best fit according to the standards of the method of least 
squares for the excess pure premium ratios corresponding to the 
specific value selected for r and the particular groupings of risks 
as used here. Any rearrangement of the premium size groupings 
would in general produce a different set of n's. 

The table following shows the values of c and n corresponding 
to the various selected risk ratios used in the graduation. 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 
1.00 
1.25 

1.50 
2.00 
3.00 

.8328 

.6656 

.4983 

.3311 

.1639 
0 
0 
0 

0 
0 
0 

0 
0 
0 

.1672 

.3344 

.5017 

.6689 

.8361 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

4.4104 
3.1096 
2.4572 
2.0878 

2.0077 
1.9179 
1.9921 
2.0741 

2.1001 
2.1514 
2.2152 

2.5142 
3.1729 
4.9151 

.43904 

.35887 

.34931 

.34099 

.28704 

.24892 

.29182 

.32321 

.36388 

.39212 

.46276 

.46944 

.47853 

.46631 

a = (.598 --r) / .598,  b -- 1 - - a  
I f r  =.598, a = 0, and b = 1 
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TABLE Ia 
ACTUAL PURE P R E M I U M  R A T I O S  FOR ~EXCESS L I M I T S  PER Loss R A T I O  

Table showing pure premium rat ios-- ra t ios  of losses in excess of selected risk loss 
ratios to total losses--for  various selected risk loss ratios by size of risk groups. New 
York Compensation Experience. All Industry Combined: Policy Years 1936-1937 for 
risks under $10,000 premium. Policy Years 1934-1937 for risks over $10,000 premium. 

a L o w e r  L i m i t s  of  P r e m i u m  Size  Groups  in  $ I ,000  U n i t s  
Se- { b A v e r a g e  Risk Premium of  Groups in $I,000 Units 

]ected [ c Number of Risks in Groups 
R i s k  { - - I  

Los~ I . . . .  " 0  8 0  9 0  1 0 0  t i  a 4 o o u - . . 15.0 20.0 25.0 Ra os[ . • • ._ _. . . . . . . .  
b 4.6 
c 940 

00% 1.000 
10 .845 
20 .720 
30 .619 

40 .537 
50 .470 
60 .416 
70 .369 

80 .331 
90 .299 

100 .27O 
125 .211 

150 .168 
200 .110 

6.1 
1025 

1.000 
.843 
.709 
.595 

.502 

.425 

.361 

.307 

.263 

.228 

.199 

.142 

.101 

.053 

7,5 
828 

.064 

8.1 
260 

1.000 1.000 
.838 .840 
.694 .700 
.574 .567 

.481 .466 

.407 .385 

.349 .321 

.300 .266 

.262 .221 

.233 .186 

.205 .156 

.152 .100 

.111 .066 
.037 

i 
1,000 

.834 

.688 

.559 

.449 

.356 

.284 

.225 

.181 

.147 

.119 

.070 

.042 

.017 

11.8 
916 

.058 

.025 

18.0 

.013 

22.1 
865 205 

i 

1.000 1.000 1,000 
.834 .833 .833 
.684 .677 .671 
.553 .537 .527 

.447 .424 .404 

.365 .332 .310 

.301 .259 .226 

.249 .201 .166 

.208 .156 .122 
,174 .124 .091 
,146 .099 .069 
.092 .058 .040 

,033 .028 
.008 

25.9 
126 

1.000 
.833 
,673 
.527 

.400 

.297 

.221 

.159 

.112 

.080 

.056 

.024 

.008 

.001 

30.0 
34.9 
118 

1.000 
.833 
.676 
,534 

.406 

.299 

.220 

.157 

.124 

.086 

.071 

.046 

.033 

.021 

40.0 
48.6  
68 

1.OOO 
.833 
.671 
.524 

,401 
.302 
.224 
.163 

.113 

.074 

.050 

.015 

.003 

.000 

50.0 
60.8 
67 

1.000 
.833 
.668 
.511 

.369 

.249 

.162 
,099 

.060 

.032 

.013 

.000 

.000 
,000 

75.0 100.0 
85.5 127.4 
21 15 

1.000 1.000 
,833 .833 
,667 .666 
.513 .499 

.364 .335 

.232 .204 

.128 .111 

.073 .052 

.036 .029 

.014 .015 
,003 .006 
.000 .000 

.000 .000 

.000 .000 

O0 

0 
Z 
0 

0 

c) 

~fl 

c 



T A B L E  Ib 
GRADUATED PURE PREMIUM I~ATIOS FOR EXCESS LIMITS PER LOSS ~ATI0 

Table showing  the da ta  in Table Ia a f t e r  g radua t ion  by 
method outl ined in Append ix  I. 

O 

Se- 
lected 
Risk 

Rat ios  

oo~ 
I0 
2O 
30 

40 
50 
60 
70 

80 
90 

100 
125 

150 
200 

a !Lower Limits of Premium Size Groups in $1,000 Units 
b !Average Risk Premiums of Groups in $i,000 Units 
e , Number of Risks in Groups 

a 4.0 
b 4.6 
e 940 

1.000 
.842 
.713 
.607 

.525 

.448 

.386 

.341 

.803 

.275 

.249 

.200 

.152 

.091 

5.0 
6.1 

1025 

1.000 
.839 
.704 
.591 

.503 

.424 

.361 

.312 

.271 

.240 

.212 

.160 

.117 

.065 

7.0 
7.5 
328 

1,000 
.837 
.698 
.580 

.486 

.405 

.341 

.289 

.246 

.213 

.184 

.132 

.093 

.048 

8.0 
8.1 
260 

1.000 
.837 
.696 
,576 

.480 

.399 

.334 

.281 

.239 

.205 

.176 

.124 

.086 

.043 

9.0 
9,8 
222 

1.00O 
.836 
.691 
.567 

.466 

.383 

.317 

.262 

.218 

.183 

.154 

.102 

.068 

.032 

10.0 
11.8 
916 

1.000 
.835 
.687 
.558 

.452 

.367 

.300 

.242 

.198 

.161 

.133 

.082 

.053 

.023 

3~ 

1.0O0 
.834 
.679 
.541 

.424 

.333 

.262 

.201 

.156 

.119 

.092 

.048 

.028 

.010 

20.0 
22.1 
205 

1.000 
.833 
.676 
.534 

.412 

.318 

.245 

.183 

.138 

.102 

.076 

.036 

.019 

.006 

25.0 
25.9 
126 

1.000 
.833 
.674 
.529 

.403 

.306 

.231 

.168 

.124 

.089 

.064 

.028 

.014 

.004 

30.0 
34.9 
118 

1.000 
.833 
.671 
.521 

.388 

.285 

.207 

.143 

.100 

.067 

.046 

.016 

.008 

.002 

40.0 
48.6 
68 

1.000 
.833 
.669 
.514 

.373 

.264 

.180 

.118 

.077 

.047 

.030 

.008 

.003 

.001 

50.0 
60.8 
67 

1.0O0 
.833 
.668 
.510 

.365 

.251 

.164 

.102 

.064 

.037 

.022 

.005 

.002 

.000 

75.0 
85.5 
21 

1.000 
.833 
.667 
,505 

.354 

.233 

.139 

.080 

.046 

.024 

.013 

.002 

.001 

.000 

100.0 
127.4 

15 

1.000 
.833 
.666 
,502 

.345 

.215 

.113 

.059 

.030 

.013 

.006 

.001 

.000 

.000 

h~ 

t~ 

¢D 
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CHART T. 
Exc~zz P~R Loss PU~T~O PURE PPmMIUM RaTiOS 

FOR SELECTED I.DS,S I:~TtOS CS.L,.R) 
Data from 7~ble I-/o, 

Adju#fcd Premium 8iz, e 
! 
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.8O 

• ~ 6O 

~a ,20 

1.00 

CHART Z.Z. 
ExcB~ P~R Lo,~ ]~Tzo F'uP,~ F'Z~MZUM,~,TZO~ 

FOR SELECTED LOSM P ~ O S  (S..L.l~) , . 
~.~up=fcd Rofi:os,D,e.riv[d From t4~/uo/,V~/ues (Co/. a) of CLR@ E x h ~ f  8, ~7=~94/. 
~/~uuu LO~ Ls'mifohbn !nFr~menr, .A~. ¢~. ¢n~on/~lly. ALl ~ndu~frics. Risk~ o~rf,~,ooo. 

Lo~¢a L/'rnife, d to ~l£~OOG pt, r CRS¢. 

.10 

Adjusfcd Premium Size . . . .  
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C H A R T  I'V" 
Based on Chart II. 

Ratio to Total Losses of Losses in Excess o£#/o, ooo Limi# per Claim 
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TABLE II 

N 

ti) 

I 
4 
5 
6 

7 
8 
9 

10 
l l  
12 

14 

Auxiliary Table for Normal Equations 

x 
r 

4.579 
6.054 
7.525 

8.078 
9.755 

i i. 842 

18,039 
22.060 
25 .894 

34.892 
4-8,595 
60.816 

85.493 
127.458 

m 

i 

log x 

~ ' t S )  

.66077 

.78204 

.87651 

.90750 

.98914 
1.07545 

1.25621 
i. 54361 
i. 4152O 

i. 54575 
1.68659 
1.78402 

1.93195 
2.1053O 

log x 

~4~ 

• 66077 
1.44281 
2.51932 

5.22662 
4.21576 
5.28919 

6. 54540 
7.88901 
9.Z0221 

I0.84494 
12.52~155 
14.51555 

16.24748 
18.55278 

( log x) 2 

t S )  " 

.45662 
• 61159 
.7682/ 

.82319 

.97840 
1.15225 

i. 57806 
1.80529 
I • 99713 

2.58OO2 
2.84459 
3.18275 

~.75255 
4.45229 

Z(log x) 2 

~6J 

.43662 
1.04821 
i. 81648 

2.65967 
5. 61807 
4.77032 

6.54858 
8.15567 

10.15080 

12.55082 
15.37541 
18. ~5814 

22.29049 
26.72278 

N 
~:Zog_ x 

17) 

i • 5154 
1.58618 
1.29348 

1 • 23969 
i. 18605 
i • 13439 

1.06945 
1.01407 
.967512 

.922089 

.877?86 

.838249 

.800124 

.762827 

181 

i. 51~4 
1 • 57645 
i. 2'/682 

1.22236 
i. 16520 
1.10877 

1.05105 
.967541 
• 916402 

.865461 

.81505~ 

.771389 

.728897 
• 686784 

(7)-{e) 
~ l  - 

.oo9;5 
. 0 1 6 6 6  

.01735 

.02085 

.02562 

.05842 

.04655 

.051110 

.056628 

.062749 

.066860 

.071227 

.076045 

Normal Equations may be written 

n + NB/2~log x -XA/~log x = 0 

n., BZ:lo~ x/r_(lo~ x) 2 -Z~ zog #'Z (lo~ x)~- o 

where B = l o ~  lo~; @ 

A= log {- IogF-Lv-e)/b31 

k-¢ 
Oq 

O 

O 

C 

o 

C} 
N 

r~ 

~d 

ZB=NB 



TABLE III 

0 ~ ¢ u l s t l o ~  shse% fo r  l i t t l e ,  by methoa o f  l eas t  squemes, the foz~lzla, ,7 = .1659*.~361/0 nx, to  the 
excess pure p~emium ma¢ios fo~ selected loss  ~%io  .50 in  Table I s .  AdJus%e~ excess pure p~emium zs%tos 
in  Column 16, Table I I I  are entered fo~ selected loss mstio .50 in  Table 1%. 

[1) 2)- x 7 1659 

12) [5) 

4.5?9 .470 .5061 
6.054 .425 .~611 
?.525 .407 .2431 

8.0?8 .585 .2211 
9.?55 .556 .1921 

11.842 .565 .2011 

18.059 .552 .1681 
25.060 .510 .1461 
25.894 .29? .1551 

54.892 .299 .1551 
48.595 .502 .1581 
60.816 .$49 .0851 

85.495 .232 .0681 
127.458 .204 .0401 

(5)/.856~ 
{4} 

• .56610 
.5122,8 
.29075 

.26444 

. 22976  

.24052  

.20105 

.i7474 

.15919 

.16158 

.1651? 

.10178 

.08145 

.04796 

lo~ (4) 
+ i 0  

9.56360 
9.49454 
9.46552 

9.42235 
9.56127 
9.38115 

9.30550 
9.24259 
9.20192 

9.20859 
9.21795 
9.00766 

8.91089 
8.68088 

log (6) 
-(5)+1o + 1o (?)-10 

16) i Iv) ' ~ )  

. 4 5 6 4 0  9 . 6 5 9 8 8  - . 3 6 0 1 2  

. 5 0 5 4 6  9 .90569  - . 2 9 6 5 1  

.53648 9.72955 -.27045 

.57767i 9.76168 -.23852 

.65875 9.80555 -.19468 

.61885i 9.79159 -.20841 

.69670i 9.84505 -.15695 

.75761 9.87945 -.12055 

.79808 9.90205 -.09795 

.79161 ~ 9.898511 -.i0149 

.78207 9.89525 -.10675 
9.99665 -.00534 .99234 

1.08911 10.05707 +~OS?O? 
1.51912 10.1202~ +.120£8 

I0.540~51 I-1.99797 

7 .28v04 ianti lps 1 .~b269 _(15) 
l og  X (8}x(9) x (9) j (11) x(12) +10 

.660 , - . 2 3 , 9 6  ..1896  11.  6 : 9 .55156 
- . 2 5 1 7 5  ,.22.448 i l . 6 7 6 8  . 5 0 ? 5 5  9.497,,45 

.89651"788)4 -.23705!.?,45159 i.?848 .540~& 9.459?5 

.90?50 -.21625 .26043 1.8215 .55155 9.44865 
.738592 I1.992? .58198 9.4180~ 

.98914 -.19257 .Z0812 9.0529 .61534 9.58466 1.07343 -.2~71 

1.25521 -.19716 .56058 2.2959 .694,54 9.~0566 
1.54561 -.16197 I.~8567 2.4504 .75566 9.26454 
1.4J.5~0 -.15842 . 40564  2.5447 .77026 9.2:59?41 

1.54275 -.15657 .442&5 2,?222 .85912 9.160881 
1.68659 -.18004 .4-8412 5.0487 .9P,2~I 9.07719 
1.78402' -.00596 .51209 5.2515 .9842019.01580 

1.95195 +.07162 .55454 5.5854 1.08526! 8.91474 
2.10550 +.25525 .60431 4.0Z08 1.217061 8.78294i 

-1.85452 

0 

C 
a n t l l o ~  .1659 + ~, 
Tl4)-lff],. 8561x (15) 

--t 1@) I15) j. ~Zo 
r~ 

.34006 .448 

.51078 .424 
• 28824 .405 

cn 
.28096 i .599 
.26185 .385 C 
. 24247  , i . 567  

.2~3214 ] , 5 5 3  "~ 

.18580 i .518 
• 16972 .306 

• 14484 .285 
.i1945 .264 
• 10371 .251 

.08218 .235 

.06067 .215 

C~ 



TABLE IV. 

Part IVa - shows the values of y-y derived from New York Board X~a. Unit = .001 
y = excess pure premium ratio, losses unlimited. 
~' = excess pure premium ratio, losses limited to $I0,000 per case. 

Part IVb - shows the values in IVa expressed as indexes of value in "00" column 
and the~ multiplied by 42. Unit -- .001 

• Aver. 7 Sele~u~ Risk Loss Ratio expressed in terms of Expected Loss Ratio 
Prem. 

r i i 

IVa 4.5 ; 4 4  44 44 441 44 44 44 44 44 44 44 44 44 ! 44 i 44 44 44 44 44 52 
5.5 20! 24 20 20 20 20 19 20 20 19 15 20 ~0 20 19 19 20 20 20 9 

: 6 . 5  22 25 23 22; 22 22 22 22 25 22 21 22 2 2  2 2  25 22 22 23 19 5 
7.5 56 36 56 56 35 .56 56 3 6  3 6  5 6  56 56 5 6  3 6  3 6  .56  35 35 54 12 

8.5 28 29 ~8i ~8 28, 28128 ~8 28 28 ~ 28 29 29 28 28 2~ 25 21 
,.5 I1 11 10 ' ll i0 11 11, 9 11 11 11 10 11 ii l0 l0 9 , 

12.1 47 47 4748 47 47 47 47 47 47 47 47 45 42 39 56 32 27 17 4 
1~1 5, 57 5~ 50 5715~ 57 5~ 55 ~ 52 ~7 ~ 40 5~ ~2 29 25 1~ 1 

b 

22~ 5~ ~5 55 ~ 5~i 5~ 55 55 2, 2~ ~ 20 18 18 18 18 l~ ~ 
~.5 2~ 2, 29 29 ~ ~ ~, ~ ~ ~ 17 1, ~2 10 ~ ~ , 5 

,~.0 ~7 5~ 5~ ~7 ~, 5~ 5~ 5, 48 ~ ~ 50 2~ 18 12 , , , 

85.7 46 45 46 46 45 40 52 24 19 9 5 4 . . . . .  
119.6 61 61 61 61 61 61 51 44 ! 20 17 .5 . . . . . .  
204.1 20 120 21 20 21 20 20 7 . . . . . . .  

i 

Aver 42 I , I ~ I , , , , , , , ~ : { i ] ' -  ! i ! 
IVb 4.5 42:42 42 , , 4 2  42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 52 

5.5 42 42[42!42 42 42 42 42 42 42 42 42 42 42 42 42 I 42 42 42 19 
6.5 42 42 .42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 35 10 
?.5 42 42142 42 42 42 42142 42 42 42 42 42 42 42 42 , 41 41 40 14 

i 
[ 

8.5 42 42 42 42 421 42 42 42 42 42 42 :42 42 42 42 42 I $9 57 52 - 
9.5 42 42 42 42 42 ~ 42 42 42 42 42 42 42 42 42 42 42 54 34 25 

12.1 42 42 42 42 42 42 42 42 42 42 42 42 40 38 35 $2 1 26 22 12 i 
17.1 42 42 42 42 42 42 42 i42 42 42 42 42 40 29 27 24 I 21 18 i0 i 

i ! 

27.5  42 42 1442 ~ 42 4 2  42 42 414~ 55 50 25 20 17 14 9 7 6 4 
35.8 42 42 42 42 42 42 55 50 25 19 16 15 9 6 4 4 
45.0 42 42 42 i42 42 42 55 52 27 22 19 13 i 9 7 5 5 - 

i 
61.6 42 42 142 42 42141 59 35 50 20 i0 4 5 i . . . .  
85.7 42 42 142 42 42 37 29 22 17 8 5 4 . . . . . .  
119.6 42 42 42 42 42 42 55 50 14 12 2 I . . . . . .  
204.1 42 42 142 42 142 42 15 1 . . 42 . . . . . .  . - , , , 

0 
z 

d 

o 
t~ 
X c] 

C 

o 
{n 



TABLE IV 
(continued) 

IVc 

IVd 

IVo - shows remainders when values in IVb are subtracted from 42. Unit = .001 

IVd - shows the values in IVc after smoothing. This represents the additional loss in 
~he excess portion when $I0,000 per case limit 'is added to the per loss ratio 

' limit. Unit = .001 

k ver.~' Selected Risk Los~ Ratio expressed in terms of Expected Loss Ratio 

! .00 '.15'.30 '.45 '.oo ".90 1.05Ei.20 Ii. 5 1.50 1.65 1.00ji.9512.10 i2.25 2.40,2.55,3.30.5.0( 
4.5' O' 0 ~ O' O' O' 0 ~ O' 0 ~ 0 ] 0 ~ 0 " 0 " 0 ] 0 " 0 0 0 0 0230 i0 
5,5 o l  o o o o o o o o o o o o o o ~ o o o 
6.5 0 0 0 0 0 0 0 0 0 0 0 0 0 J 0 0 6 () 0 6 33 
7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i I 2 28 

I 8.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 I0 42 
9 • 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 19 42 
t2. i 0 0 0 0 0 0 0 0 0 0 00 0 2 4 7 i0 16 20 30 41 
17. i 0 O 0 0 0 0 0 0 0 0 0 2 13 1518 21 23 32 41 

22.3 0 0 0 0 0 0 0 i 3 8 12 16 19 121 21 21 21 22 34 42 
27.3 0 0 0 0 0 0 0 i 7 12 17 22 25 28 33 35 36 38 42 42 
33.8 0 0 0 0 0 0 0 2 7 12 17 23 26 29 33 136 38 38 39 38 
45.0 0 0 0 0 0 0 0 2 7 i0 15 20 23 29 3535 39 59 42 42 

61.6 0 0 0 0 0 i 3 7 12 ! 22 32 38 39 i 41 42 42 42 42 42 J 42 
85.7 0 0 0 0 0 5 13 20 25 34 37 38 42 42 42 42 42 42 42 42 

119.6 0 0 0 0 0 0 712 28 50 40 42 42 42 42 42 42 42 42 42 
204.1 00_r O. 00~ 0 0 2 7  , 42 42 142 42 , 42142 , 42 42 . 42 , 42 , 42 42 

4.5' o '  o '  o '  o '  o '  o '  o "  o ' o " o o ! o "  o " o • o • o -  o [ o - o , zb 
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