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SAMPLING THEORY IN CASUALTY INSURANCE 

INTRODUCTION AND PARTS I AND II 
BY 

ARTHUR L. BAILEY 

Introduction 

The fundamental concept of insurance is that the insured is relieved of 
any concern, not only as to what is going to happen, but also as to what 
could happen but probably will not. Of course, at the time the insurance is 
written, neither the insured nor the insurer knows what is actually going to 
happen. But, even when the period of the coverage has expired, and the 
actual events are determined, both parties still Should understand that the 
coverage provided was against what might have happened rather than 
against the specific events that actually did happen. Thus the losses paid 
by an insurer never actually reflect the hazard covered, but are always an 
isolated sample of all of the possible amounts of losses which might have 
been incurred. 

It  is this condition, of never being able to determine, even from hindsight, 
what the exact value of the inherent hazard of the coverage was, that has 
brought the casualty actuary into being. It becomes his province to make 
rates and rating plans such that, in the absence of an unprecedented catas- 
trophe, his company will be able to pay the losses incurred in covering a 
wide group of such unknown inherent hazards and still stay solvent; or 
preferably, make a profit for its stockholders or pay a dividend to its policy- 
holders. The myriads of compilations of loss experience, classification re- 
finements, and expedients in general, resulting from the actuary's attempts 
to achieve this goal, need not be lingered on here, being well enough known. 
A few of the expedients do need to be referred to specifically. 

When the loss experience of. one group of insureds was first compiled, 
separately from that of another group, it was found that it was different. 
The question immediately arose, "Does this mean that the elusive inherent 
hazard is different for this group of risks, or does it mean that the hazard is 
the same but the actual losses of the two groups just happen to be different ?" 
Credibility formulae were designed to provide an answer to this question. 
These have taken a wide variety of forms during the history of casualty 
insurance. Some have been based on the soundest of theoretical premises, 
while others have been purely expedients. Whatever the form, these for- 
mulae have been applied in recognition of a condition in which the actual 
observations are only samples of what might have been. It is the hope of 
the writer that this paper may serve, among other things, to produce more 
properly applicable credibility formulae. 
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Shortly after the problem of classification and territory experience had 
been met, the question of the insurance-minded large risks arose. Such risks 
knew that their operations were more efficient than those of their competi- 
tors; "otherwise they would not have become so large." They also knew 
that their loss experience was not exactly that contemplated by the manual 
rates. "Something ought to be done about it." Experience rating plans 
were developed as an answer and soon became the accepted thing; and a 
credibility formula was developed that would produce the same increase, 
or decrease, depending on the selected value of K, in the accuracy of the 
modified rate as compared with the unmodified rate, irrespective of the size 
of the risk. In later years this formula has been departed from as the plans 
have become more complicated. The implied aim has, of course, continued: 
that of producing a more accurate rate through application of the rating 
plan, although no means has been available to determine, before the plan is 
actually applied, whether or not this has been accomplished. The author 
hopes to provide a basis for the proper evaluation of the constant K. 

The most recent development calling for a sound knowledge of sampling 
distributions is the retrospective rating plan. It  is difficult to understand 
why this form of gambling remained dormant during the speculative twen- 
ties, only to break out in the depression thirties. The present epidemic can 
no doubt be explained as the direct result of the war hysteria. Whatever 
the cause, certain elements of the insurance industry desire to depart from 
rates based on expected averages and explore the possibility of rating on the 
basis of departures from expected averages. The initial essays in this direc- 
tion have been made only after the application of some good unactuarial 
horse-sense by the underwriters, in the selection of the risks. Before, or it 
may be, while, we embark on an all-out retrospective program, it would 
seem well to seriously investigate the theoretical principles underlying such 
a course. It is felt by the author that this paper may serve as a foundation 
for such an investigation. 

Another field where a knowledge of the sampling distributions of losses 
could be used to advantage is that of the rat!ng procedures for deductible 
and excess coverages. Such procedures are now based on a very broad 
grouping of classifications, even including the entire line of insurance in 
many cases. This results in the necessity for a large safety margin in such 
rates in order to offset the selection against the company that inevitably 
results from broad classifications. The effect of such a ratingprocedure is 
to exclude, through redundant rates, the normal or subnormal risks from 
electing such coverages. Rating procedures can be developed, however, with 
a knowledge of the sampling distribution functions, which would give full 
rate recognition to differences in the hazard of such coverages by classifica- 
tion. These coverages, which include the real elements of insurance as con- 
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trasted to the chance variations of retrospective rating, could then be made 
available to the many large risks who need only this type of coverage. 

We must recognize that the only data available to us in casualty insur- 
ance is in the form of samples of what may occur. From these samples we 
are required to measure, as well as we may, the inherent hazard of the cover- 
age provided to a particular insured, or group of insureds. In experience 
rating, and more especially in retrospective rating, we must also measure 
the probable distribution of these expected losses among the risks. In order 
to do this we need a rather complete understanding of the theoretical dis- 
tribution of losses among samples when various causes of variation are 
present. 

The sampling variation due to pure chance fluctuations is always present 
in our data. Usually, however, our problems are made more complicated 
by the presence of other types of variation as well as chance. One of the 
most important of these types of variation is that between the inherent haz- 
ards of risks of the same rate classification and territory. Others are those 
resulting from errors, due to chance or otherwise, in the rate making pro- 
cedure, or in the rating plan to be applied. Most problems involve the 
simultaneous consideration of at least two of these types of variation. 

In many problems, however, we are only asked to decide whether or not 
a particular piece of data could reasonably be attributable to chance varia- 
tion only. Other types of variation may be present in such data but are 
not involved in the answer to the problem. If the probabilities are greatly 
against the event occurring as a result of chance only, we may or may not 
then want to search for the reason. An extreme example of this kind of 
problem is presented by the $100,000 premium risk with a loss ratio of more 
than 100~o in each of the past three years. The probability that this series 
of losses arose only from chance is so small that the underwriter himself 
would cancel the risk, or double the rate. Cases nearer to the borderline 
definitely come into the province of the actuary and can be answered only 
on the basis of a knowledge of sampling distributions resulting from chance 
variation only. 

Thus our first step in the development of the theory of sampling distri- 
butions will concern itself only with variations due to chance. When these 
have been fully explored, we will then have to compound the results when 
one or more of the other types of variation are also present. The first two 
parts of this paper deal with the theory of purely chance sampling distribu- 
tions and with methods of numerically approximating such distributions. 
Later parts will deal with the inclusion of other types of variation, and with 
the application of the theory to particular kinds of problems such as indi- 
vidual risk underwriting, rate making, experience rating, retrospective rating, 
and the rating of deductible and excess coverages. 
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It is hoped that this analysis of the sampling theory as applicable to 
casualty insurance will help to bring to light any flaws which may now exist 
in the rate making or rating structures and thereby serve to make them 
more accurate. It would be expected that the need for such corrections will 
be greater in the less highly developed rating of deductible and excess cover- 
ages and in the highly sensitive retrospective rating plans than in the older 
and more time-tested rate making and rating procedures. 

It is believed that one conclusion will be drawn immediately from a review 
of the discussion of the Poisson Distribution. This is that the recording and 
collection of experience on a per accident basis, rather than on a per claim 
basis, would greatly assist in the interpretation of the data. This should 
certainly be done for all classifications of hazard involving any appreciable 
number of multiple-claim accidents. 

The writer would appreciate being advised of any algebraic or arithmetic 
errors which may be found. As it has not been possible to have any inde- 
pendent check on most of this material, the author will have to assume full 
responsibility for these. That the symbolism used is different from that 
more recently presented can only be defended on the ground that the paper 
has been in progress for several years. 

I. 

DEVELOPMENT OF BASIC FORMULAE FOR THE DISTRIBUTION OF CASUALTY 
INSURANCE STATISTICS DUE TO CHANCE FLUCTUATIONS ONLY 

A. The Poisson Distribution 

The number of accidents in casualty insurance is distributed in accordance 
with the Poisson Distribution. This is not an assumption, but a demon- 
strable fact. The assumption, which it will later be necessary to make, is 
that the number of claims is also distributed in the same way. 

We have from the Bernoullian Theoremthat :  if p is the probability of 
an event occurring and q is the probability of the event failing to occur, then 
out of s trials the probabilities of the event occurring 0, 1, 2, . . . . .  , s --  1, 
s times are given by the terms in the expansion of (q + p)*. It can be seen 
that the Bernoullian Distribution is not applicable to casualty insurance 
from the fact that the Bernoullian Theorem is dependent on the condition 
that there are only two possibilities; namely that the event happens, or it 
fails to happen. In casualty insurance the event (an accident) may not 
only happen or fail to happen, but it may also happen more than once. 

We can, however, approach the conditions of the casualty business with 
the Bernoullian Distribution. If only one accident could happen each month, 
the probabilities of 0, 1, 2, . . . . .  ,12 accidents occurring during a year would 
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be given by the terms in the expansion of q ~ i2  / ' where p is the average 

number of accidents per year and q is equal to 1 -  P .  Similarly, if more 

than one accident could happen during a month but only one could happen 
per day, the probabilities of 0, 1, 2, . . . . .  ,365 accidents occurring during the 

year would be the terms in the expansion of q-t-g-6--~) ,where q is equal 

to I P 
365" 

Finally, we could take the limiting case where the year is divided into an 
infinite number of parts. In this case the wobabilities of 0, 1, 2, . . . . .  , to 
infinity accidents occurring during the year would be the terms in the ex- 
pansion of : 

Only this limiting case would fit casualty insurance, where accidents can 
happen in very rapid succession although not at exactly the same time with- 
out, by definition, being the same accident. This limiting case is the Poisson 
Distribution; and the probabilities of O, 1 ,  2 ,  . . . . .  , n ,  etc. accidents are: 

1 p p2 p~ 
e p '  e ~ '  1 2  e ~ '  . . . . .  ' ] n e ~  ' . . . . .  , etc. 

Having found that the Poisson Distribution provides the probabilities of 
the occurrence of O, 1 ,  2 ,  . . . . .  , n ,  etc. accidents for an individual risk whose 
hazard remained constant throughout the year, the probabilities can be 
determined of 0, 1, 2, . . . . . .  , n, etc. accidents occurring during a year be- 
tween two risks having different hazards although both remain constant 
during the year. 

Let the probabilities of 0, 1, 2, . . . . .  , n, etc. accidents for the first risk be 
given by : 

1 p p~ p" 
e ~ '  e p ' ~ e ~ '  . . . . .  , ~ e ~  , . . . . .  , etc. 

and for the second risk by:  

1 q q~ q~ 
e ' ' e ' ' [ 2 e ~ "  . . . . .  '[_ne ~ ' . . . . .  , e t c .  

The probability that  neither will have an accident is: 

1 1 1 
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The probabili ty that there will be only one accident is: 

1 q p 1 p + q  
e v e q "~ e~ e ~ - -  e ( p + q )  

The progabili ty that there will be exactly two accidents is: 

p~ 1 q2 + 2 pq + p2 1 .  q2 p .  q + . __  = ~ -  "e(p+~) 
e ~' [2_.e~ + e ~ e ~ [2.eU e q 

The probabili ty that there will be exactly n accidents is : 

1 q" p q(,-1) + . . . . .  + p(,-1) 
e ---y " l n . e  q + - f i ' [ n - - l . e q  [ n - - a . e ~  

(p + q)2 
[_2"e (~+~) 

• _ _  p "  1 q +  
gq I n  • e ~ " e~ 

_ q" + npq ~"-1) + . . . . .  + n p ( " - x )  q + p" _ (P + q)" 
~ n . e ( p + q )  ~ n . e ( ~ + q )  

Thus it is found that the probabilities of the occurrence of 0, 1, 2, . . . . .  , n, 
etc. accidents among two risks having different hazards, although both re- 
main constant during the year, are likewise given by the Poisson Distribu- 
tion using the combined hazard of both risks, i.e. : 

1 ( p + q )  ( p + q ) ~  ( p + q ) "  
e(p+~)' e(~+q) ' t_2.e(~+~)' . . . . .  , l_~.e(p+q), etc. 

This combination of hazards can obviously be extended to cover any 
number of risks having any range of individual hazards and also to cover 
any variation of hazard during the year. For the general case, where c 
represents the expected total number of accidents for all risks, the probabili- 
ties that the total number of accidents will be 0, 1, 2, . . . . .  , n, etc. are given 
by  the terms of the Poisson Distribution: 

1 c c 2 c" 
e* ' 7 '  l_~'e°' . . . . .  ' In .  e* ' . . . . .  , etc. 

NOTE: Throughout  this paper the expected number of accidents or of claims 
will be indicated either by a small "c" or a capital "C". No differ- 
ence is intended between these two. 

B. Sampling Distribution o] the Number  o] Claims or Claim Frequency 

The assumption will be made that the probabilities of the occurrence of 
0, 1, 2, . . . . .  , n, etc. claims when c are expected are also given by the terms 
of the Poisson Distribution. This would seem to provide a very close ap- 
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proximation unless it is known that the claims usually occur in sizable 
groups. 

In  dealing with the various sampling distributions it will be found ex- 
pedient to deal with the ratio of actual to expected values. In the case at 
hand the exposure element of the claim frequency cancels out in the ratio of 
actual to expected claim frequencies, and the ratio becomes identical to the 
ratio of actual number of claims to the expected number of claims. These 
ratios can take only the values corresponding to O, 1, 2, . . . . .  , n, etc. 
claims of : 

0 I 2 n 
c '  c '  c '  . . . . .  ' 7 '  . . . . .  , etc. 

In order to prepare tables for the practical use of the sampling distribu- 
tions, it will be necessary to evaluate the mean, variance, and skewness of 
these distributions. These are obtained as follows from the totals shown in 
Table  1 (see page 81): 

Mean E r . ] ( r )  Total  of Column (3) 1 
- -  E l ( r )  = Total  of Column (2) --- 1-- - - 1  

V~., 2~ r2 ](r)  Total of Column (4) 1 + 1 
• - -  X ] ( r )  = Total  of Column (2) = 7 

1 Variance --- U2:~ - -  V2:, - -  (Mean) z - -  - -  
c 

r e ](r)  Total  of Column (5) 1 3 
Vs:r - -  ~ ] ( r )  = Total of Column (2) = ~ + + 1  

U3 :r 

S k e w n e s s :  

1 
- -  V3:r - -  3 (V2:r) (Mean) + 2 (Mean)a = c--- ~- 

1 
U3:r c 2 1 

C. Sampl ing  Dis tr ibut ion o] the Total  Cost o] a F ixed  N u m b e r  o] Claims 

Before considering the sampling distributions of other statistics, it will be 
necessary to record certain data concerning the sampling distribution of the 
total cost of a fixed number of claims. I t  will be assumed that these claims 
occur at random out of an infinite number of equally likely possibilities, and 
that  the moments of this infinite population of possible claims can be esti- 
mated from the distribution by size of the claims paid in the past. 

Before letting the parent population approach the infinite in size, it will 
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be assumed to consist of Y values whose amounts are xl, x2, xa, , x~r, and 
from which the following sums are formed: 

the sum of the N values of x. ' 
Ex*  - -  
~ x  a - -  

X x x  = 
X X X  

X2X 

NOT~. : 

the sum of the 
the sum of the 
the sum of the 
the sum of the 

N values of x 2. 
N values of x a. 
~C2 possible products two at a time. 
~,C3 possible products three at a time. 

the sum of the 2.~C2 possible products of squares and values. 

The x's in the last three sums must have different subscripts. 

From this population of N values of x, all possible combinations of n 
values will be formed; there being ~C, such combinations, each of which 
would be equally likely to occur were a single sample drawn. The total cost 
of these n claims will be designated as t. The  required data are the first 
three moments of t about the origin, VI:t, V2:t, and V3:t, and the second and 
third moments about the mean, U2:t and Ua:t. 

In each value of t there are n values of x. In the sum of all ~vC, possible 
values of t there are n'~Cn terms of x's; and, as each of the Y different values 

n 
of x are equally frequent, each of the N values must occur ~ - ' ~ C ,  times. 

The average of all possible values of t will therefore be: 

n 
~ -  .~-C,.X x x x 

V i : ¢  - -  - -  n.  - -  n V i : z  
~C. N 

In each value of t z there are n terms of x 2 and ,C2 terms of xx, each of 
which has a coefficient of 2. In the total of the ~vCn values of t ~ there are 
n.~C~ values of x 2 and 2.~C~.z¢C~ values of xx. As there are only N differ- 
ent values of x 2 and ~Cz different values of xx, then each value of x 2 occurs 

,C2 
N.~C~ times and each value of xx occurs 2 . . ~ C .  times. The average 

value of t 2 therefore is: 

2 " ~tC2 ~ . ~C,,. X x2 + z,,C2 "~'~C"" w, xx 

V2:t = ~C,, 

n . E x 2  "4- 2 " " C 2 " E x x  
- - N  ~Cz 

I t  is noted here that (E x) 2 = E x 2 + 2 X xx, so that  (~  x) 2 - -  ~ x 2 may be 
substituted for 2 ~ xx, giving : 
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n ~C2 ~C2 . X x z 
V~:t = ~ "7£ x 2 + ~ • (7£ x ?  - -  ~,C2 

n(---n----I)1 V2 : .+  n ( n - - 1 )  
= n N - - 1  J 1 - -  1 VI':, 

N 

Letting N approach infinity, the limiting value becomes: 

Vz:t --" n'V2:~, ~-  n ( n  - -  1) V12:~ 

and 

Uz:t --- V~:t - -  V12:, = n .  V~:~ - - n .  VlZ:~, = n" U2:, 

In each value of t s there are n terms of x s, 2.,,Cz terms of x2x each with a 
coefficient of 8, and ,C3 terms of x x x  each with a coefficient of 6. In the total of 
the 2~C,, values of t s there are then n .~C, ,  values of x 8, 6",,Cz'NC,, values of 
x~x, and 6",,Cs'NC,, values of xxx .  As there are only N possible values of ~ ,  
2"~C2 possible values of x*x, and 2~Cs possible values of xxx ,  each value of x s 

n nC2 occu r s~  "~¢C~ times, each value of xZx occurs 3. ~ "2~C~ times, and each 

6" ,Cs..,~C,, times. The average value of t s is therefore: value of x x x  occurs ~C3 

n ,,C2 6" .Ca "~C,,'7£ x x x  Xr " ~C.  " 7£ x 8 + 3" ~ . ~C . .  7£ x~x + ~ ' 3  

Vs:t = 2d7,, 

.C2 ~ 2 .C s  
__ nN . X ~ + 6.--~-~2 . z, x x + 6. --=~c.s . ~ xxx 

It is noted here that  7£ x2.7£ x = 7£ xS+ F-,x2x so that 7£x2x - -  7£x~.7£ x - 7 £  x ~, 

and that :  
(7£ x) 3 = X x s + 8 7£ x2x + 6 X x x x  

= 3.  X x 2. X x - -  2 X x  s + 6 7£ x x x  

so that 6 X x x x  - -  ( X  x )  s + 2 X x s - -  3 X x ~ X x. These values may be sub- 
sti tuted to obtain: 

n ,,C2 I-.-. 2 - -  ;X x s ]  Vs: ,= R . X x z  + 3 . ~ [ z ~ x  X x  

+ .C~ r ] ~C~ k ( xx ) s  + 2 x  x s - 3  x x 2 x x  
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3 n(n  - -  1 )  
---  n N - - 1  

+ 3  [- n(n  - -  1) 

L 1 

n ( n - -  1 ) ( n - -  2 )  1 
V3:. 

(N - -  ~) (N - -  2) l 

n ( n - - 1 ) ( n - - 2 )  

n ( n - - 1 ) ( n - - 2 ) - ]  

i ( 

and 

Letting N approach infinity, the limiting value becomes: 

V2:~ " V1 : , ~  

Vs:, -"  n 'Va: .  + 8 n (n  - -  1) V2:.' Vz:. + n(n  - -  1) (n --  2) Vls:~, 

U3:t - -  Vs:t --  3 V~:t " Vl:t + 2 V18:, 

= n [Vs:~ --  3 V2:~ • Vz:~ + 2 VzS:~] 

---" t/,- U3:z 

This gives as the skewness (Charlier) of the t distribution: 

n .  Us:~ o.3:x 

~ 3 : , -  ( n . V ~ : x ) s / ,  - -  ~/n- 

D. Sampling Distribution o] Total Losses, Pure Premiums,  and Loss Ra6os  

(1) In the form of the ratio of actual to expected value, the exposure 
divisor of the pure premiums and the premium divisor of the loss ratios 
cancel out, leaving only the ratio of actual to expected total losses. Thus only 
a single sampling distribution is required. Furthermore, as the expected total 
losses is a constant, the moments of this ratio, R,  can be obtained directly 
from the moments of the total losses, T. 

The total expectation is the sum, taken over all possibilities, of the product 
of the probability of an event occurring and the expectation if the event 
occurs. The average values of the first three powers of the total cost, t, t z, 
and t 3, have been obtained in the previous section for a fixed number of 
claims. The Poisson Distribution will be assumed to give the probabilities 
of obtaining 0, 1, 2, . . . . .  , n, etc. claims. The sum of the products of these 
will be the first three moments, about the origin, of T, the total cost when 
c claims are expected. 
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From the totals on Table  2 (see page 82) are obtained:  

V1 :T = C" V1 :~ 

V2:~,-- c" V2::~+ c a V12:,, 

V3:T - -  c" Vs:,, + 3 c 2 V2:,," V1 : .  + c a V1 a :~, 

The moments  of R, the ratio of actual to expected losses, are then obtained 
by  dividing these by  the first three powers respectively of c" V~ =, the expected 
lOSS, a s :  

VI:~ = 1 

and:  

V2:/~ - -  V2:a~ 
c" V12:= + 1 

V3 :~ 
Va :R - -  c 2 V18:, + 3 

U2:R ~ ~/2:z 
C" V12:x 

c" V12:. + I 

V3 : 
U3:l~ - -  C2 Via:  ~ 

with the skewness (Charlier) of: 

V3 : 
a~:~ = k / T ( v 2 : . ) a / 2  

(2) Under certain conditions we m a y  wish to exclude, or may  not have 
available, the cases for which there were no actual losses. As the proportion 
of such cases to the total will be e -° ,  then, designating this select set of 
ratios b y  R 1 : 

V~:~ = 0 (e - ° )  + V.:R~ (1 - -  e - c )  
and 

V.:R 
V.:R, - -  1 - -  e -~ 

Thus the moments  of R 1, the ratio of actual to expected losses when cases 
with no actual losses are excluded are found to be:  

1 
V I : R ' =  l - - e  - °  
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and 

1 r. v_~2..~ ] 
/ 2 : R ,  - -  1 - -  e - °  L c V~':,, + 1 

1 I- Y~:o v~,o q 
V ,  :~, = 1 - -  e - *  L c z V~8:,, + 8 - - c  V12:,, "[- 1 _1 

1 V V2 
U2 

:n,  1 - -  e - °  L c  
:#$ 

1 r v3:, 
Ua:~, = 1 - -  e - °  k czTV18.. 

e - o  

1 ~ e - ' ]  

3 e -¢.  V2:, 
(1  - -  e - * )  c" V12:,o 

e - '  (1 + e-°) ]  
T I - -  b---~) ~ .a 

E. The Sampling Distribution o] the Average Claim Cost 

The first three moments, about the origin, of the total cost, t, of a fixed 
number of claims were determined in section C as : 

V 1  :t " - -  . ~ l : , x  

V2:t - -  .V2:,. + n (n  - -  1) V12:., 

V3:t - -  .V3:,. + 3 n(n  - -  1) V2:. VI:~, + n(n  - -  1) (n - -  2) Vla:,~ 

The first three moments, about the origin, of the average claim cost, a, of a 
fixed number of claims can be obtained directly from these by dividing 
respectively by the first three powers of n:  

V1 :o - ' -  V1 :~, 

V2:,~ n - -  Z1 
V2:~-- + - -  Vx~:,. 

n n 

V3:.~ n - -  1 (n - -  l )  (n - -  2) 
Va:a ~ n2 + 3 n---- Y -  V2:. VI:. -[- n2 Vla:~, 

The first three moments, about the origin, of the ratio of the actual average 
claim cost to the expected average claim cost, s, of a fixed number of claims 
can then be obtained by dividing these respectively by the first three powers 
of 111 :~, the expected average claim cost. 

VI:, - -  1 

1 V::~, n - -  1 
V~., = - .  - -  + - -  

• n Wl2:m n 
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and 

1 Va:~, n - - 1  V2= ( n - - 1 ) ( n - - 2 )  
V8:,-- n-... ~ • V18 ~ .-}- 3 n-.........-......~- • V12a~ -J~ n2 

1 U2.~ 
U'2:8--" -- ~ "  

n V12 :ae 

1 U s : .  
U8 :s = " ~  V18: * 

with the skewness (Charlier) of: 

0,8:8 ~ 

Combining these with the probabilities of 1, 2, . . . .  , n, etc., claims occurring 
from the Poisson Distribution, (note that the cases where no losses occur ~ire 
excluded) the first three moments of the ratio of actual average claim cost 
to the expected average, for all possible number of claims are obtained as: 

° ° ( c " )  X (1) 1 
n = l  ~ 1 - -  ,---~ 

g l  :5" --" - -  1 
00 1 - -  

c n 1 - -  e-- 7- 

n - - 1  ~ *  

V 2 : s ' -  

oO 

E 
n - - 1  

1 V2., _ ~ )  C" 

00 cn 
x 

n - - 1  

Ul2:~v 

1 

1 
( Vu:. 1)  --  1 + K(o) \ VI~ = 

where K ( o  - -  

O0 Cn O0 Cn 

n = l  - n - -  
R 

1 e ° - -  1 
e c 

NOtE : The only method of determining the values of K(~) and of' G(o below 
is that of laboriously calculating each term of the series and adding 
them together. For large values of c an approximation is available as 
shown in the table at the end of this section. 
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VB:$ "---- 

00 
T, ( 1 Vs:~, n - -  1 V2:a ,  

n---1 ~ Vxa::, + 3  n ~  V12" + 
(n 1 ) ( n  - 

m 

- -  [ .  V 2 : ~  

¢~ Cn 

n "-- 1 t i e °  

{ Va = V2 :~, 2 ) 

(1 ' - 7 ) G ( o ,  

1 
1 m -  

e e 

{. V2:~, ) [Vs:~, V2:,, ) 
= 1 + 3 \ V 1 2  * 1 K(o)+~Vla:. 3 ~V12:, + 2  G~o) 

where  
oO 

n- - -  1 nz]n_ 
G(,) = • e ° - -  I 

The moments of this ratio of actual to expected average claim cost about 
the mean then reduce to: 

U2 :s = K(~) " ( V':~' ) V12" 1 = K(,)"  U2:~, 
V 1 2  :~ 

• [ V~ :. V~..~ '~ 
U3 :s -- G(o) \ V1 a:. 3 ~ + 2 ] 

and the skewness to :  
G(e) 

as:, - -  [Kc~)]a/2 "as:, 

Values of K(o, and Gco) 

C 

1 

4 

10 

40 

For  larger  values  
of c 

K(c) 

.766988 

.329627 

.113021 

.025659 

1 
c--1 

G~ 

.667235 

.157766 

.015322 

.000677 

1 
(c - -  1) (c - -  2) 

[K(o)] s/~ 

.993335 

.833642 

.403253 

.165 

~ ' c - - I  
c - - 2  
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F. A UseJul Function ol Actual and Expected Losses 

In section D of this chapter the moments of the distribution of R (the 
ratio of actual to expected total losses, pure premiums, or loss ratios) were 
found to involve the expected number of claims, c, in both second and third 
moments. In many cases the available data consists of that for individual 
risks or classifications with c having a different value for each observation. 
In analyzing such data, the function of actual and expected losses, which is 
described below, will be found useful. Although its form is such that its first 
and second moments do not involve the value of c, its value in practical use 
will not be found to arise from this fact alone. I t  will be largely due to the 
effective weighting factor of unity for each observation in the suggested 

1 
function as contrasted to an effective weighting factor of ~ in the R func- 

tion, which, therefore, exaggerates the influence of the small risk or small 
classification experience. The suggested function is: 

A - - E  -- ( ~-~-- - - 1 )  ~'--E'= ( R -  1 ) ~ f - E =  (R - -  1 ) ~ c ' V l : .  

The moments of Z can be determined in terms of the moments of R from 
the relationship Z = (R - - 1 )  ~/C-VI= and in terms of the moments of x 
by substituting the values of the moments of R in terms of those of x as 
follows: 

VI:Z = I / C "  Vl:.v (VI:R --1) = 0 

V2:z = C'VI .~  (V2.~ - -  2 V~.R + 1) = V2:. 
• ' " V1 :~ 

Va:z= ( C ' V I : . ) s / 2 " ( V s : R - - 3 V z : R + 3 V l m - - 1 ) - -  Vs:. 
V'U (V~:~)s/2 

from which : 

and 

V2:z 
u2:z = u2:,, (C.  vl:~) = v,:~ 

• ..] V2 :,~ 
qz - -  aR ~/C" V1 :. " -  ~ V1 :, 

U3:z = Us:R (C'VI:~,) s/* = Vs:~, 
V~- (v~:=)8/2 

VII :~ 
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As the moments of R will most often be required in terms of the moments 
of Z the reverse of these relationships will be given. They are: 

V1 :Z 
V1 :~ = V C" V1.-----~.. + 1 

V2:z 2 Vl:z + 1  
V2:,- -  C VI:. ~ C C'Vv----~ 

Vs:z 3 V2:z 
V3:R-  (C.VI:~)8/2 + C VI:~ + 

3 V1 :,~ 

V C VI:. 
, ~ + 1  

U2 :z 
U2 :R- -  C VI:~ 

U3 :z 
Us:R -- (C V~:~) 8/2 

a 3 : R =  a3:z 

It  will be noted that, although the first two moments of Z are independent 
of the amounts of expected losses, that the third moment and a3:z are still 
functions of the expected loss (E = C'VI:,). As the value of V3:z, as calcu- 
lated from observations having different values of E, will actually be of the 
form: 

V3:z --  V3:Xv1 :.. "(Average value of ~ in the actual observations) 

it will be necessary, in order to obtain the value of V'a:z corresponding to a 
particular value of E (indicated as E'),  to make the adjustment: 

(V3:z as calculated from the observations) 
, 1 . 

V a:z = 1 / E "  (Average value of ~ m the actual observations) 

It will usually be expedient to make this adjustment directly to the value 
of a3:z as:  

(aa:z as calculated from the observations) 
- -  1 

a'8:z - -  V E'. (Average value of - ~  in the actual observations) 
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1 
The "average value of ~ in the actual observations" would involve a 

very considerable amount of work to calculate exactly but it can be approki- 
mated with an accuracy sufficient for most purposes by the separation of the 
observations into ten or more groups according to the size of the expected 

1 
loss, E. For a rough approximation the average ~ - ~  for each group would 

1 
be assumed to be C, Average E and these values weighted by the number of 

observations in the groups. A closer approximation can be obtained by cor- 
1 

recting this estimate, X/Average E ' by the factor ] /2 - r  + 2 1 + V'r-' where r is the 

ratio of the highest.value of E in the group to the lowest value of E in the 
group. 

G. The Excess Pure Premium Ratio in Terms of the Loss Ratio Distribution 

The excess pure premium ratio (for a loss ratio of B, a premium per risk 
of P, and a permissible or expected average loss ratio of L) is defined as the 
ratio of the amount of losses which axe expected to be in excess of B P per 
risk to' the total of all expected losses. As the permissible loss ratio is subject 
to many arbitrary changes, it would seem advisable to eliminate it from the 
theoretical considerations as well as to construct tables of the excess pure 
premiums which would be independent of the permissible loss ratio. 

This can be done by recognizing the excess pure premium (for a ratio of 
actual to expected losses of R', and an expected loss per risk of E) as the 
ratio of the amount of losses which are expected to be in excess of R ' E  per 
risk to the total of all expected losses. This can be expressed symbolically as: 

(A - -  R'  E )  
A - - R ' E  

X ( R ' ,  B )  - - -  
O0 

X E  
A - -O  

where A represents an actual loss per risk and E the corresponding expected 
loss per risk. 

I t  should be noted here that there is no specific qualification that the sum 
of all A's be the same as the sum of all E's. The only conditions necessary 
to obtain the proper excess pure premium for practical application are that 
all values of E in this equation are identical and that the values of A in the 
equation are those which are expected to occur. 
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As all values of E are the same, we can divide the numerator and denomi- 
nator by E obtaining: 

o0 

X (R.', B )  " - - "  

O0 00 

A-- R' E E -- R" Y~ (R) -- 2~ (1) = R--R'  R=R" 
O0 cO 

X (1) 2~ (1) 
A : 0  R : 0  

Insofar as our expectations are concerned the values that R may take 
form a continuous function for each value of which the probability that R 
may take such a value is F(R). Thus, in terms of these probabilities, the 
excess pure premium ratio is: 

f R'F~B,'dR--R" f F(R,.dR 
R : R '  R--R" 

X(R', B) Oo 

f F(R)'dR 
R = O  

As R may not be negative, we recognize that: 

and, 

o0 

S 
R = 0  

Fcm "dR = 1, 

00 0o R '  

R--R" R - - 0  R - - 0  

and as 

R - - 0  
origin, then: 

o0 

I .F(m.dR is the first moment of R about the 

oo R' 

I R'F(R)'dR-Vx.~-- I R'Fcm'dR 
R---R' R = 0  
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Making these substitutions, we have: 
R r o o  

× ( W , E ) - - - - V I : R - - I R ' F ( R ) ' d R - - R ' "  I F(a)'dR 
R - - O  R--" R' 

From the formula for integration by parts, we have: 
R t R t 

f R'Fcn~'dR=R' I 
R = 0  

which gives us: 

R = 0  

R p R '  

F(R)'dR-- I fFcn) 'dR'dR 
R - - 0  R = 0  

R '  R '  

v1, S i 
R - - 0  R = 0  

as the actual functional form of the excess pure premium ratio which can 
then be put in the form of: 

B/L B/L 
VI:~B I f X (B,P,L) - -  L L ~- FCR)'d R'd R 

R - - 0 R : 0  

H. The Loss Elimination Ratio in Terms o] the Distribution of Individual 
Losses 

The loss elimination ratio, or "K" value, used in determining rates or 
discounts for deductible insurance, is (for an assured's retention of B dollars) 
the ratio to total losses of the total of the first SB of each loss. Thus: 

K = (All Losses of less than $B) + B.  (Number of Losses over $B) 
Total of All Losses 

In terms of the distribution of individual losses by size of loss, this becomes: 
B oo 

Ix ' f (x ) 'dx+B I](x)'dx 
0 B K-- 

o~ 

I x.l(x).dx 
0 
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which through the substitution of: 

B B B B 

.dx.dx 

becomes: 

K - -  

oo B B 

and recognizing fx . l (x) .dx as VI:. and 

0 

.dx.dx 

oO 

f x./(x).dx 

0 

I]o(X)'dxasunity, wehave 

K =  

B _ 
B B 

fo S: 
as the functional form of the loss elimination ratio. 

I. The Fundamentals o[ Experience Rating 
For the purpose of this paper, experience rating will be defined as a pro- 

cedure to obtain, on the average, better estimates of the inherent hazard 
of the coverage provided individual risks than that represented by the 
premium at manual rates. This definition must be recognized as being 
entirely different from one that would include all methods of partial "self- 
rating." Many such methods produce premium charges that, on the average, 
represent poorer estimates of the hazard than the original premium at 
manual rates. 

Obviously, in order for experience rating to be necessary, there must exist 
either a demonstrable difference in the inherent hazards of risks not ade- 
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quately measured by the manual rating procedure or appreciable errors in the 
manual rates. The other basic premise is that the accuracy of an experience 
rating procedure must be judged on a percentage basis. Otherwise a 8100 
error on a $1,000 risk could be offset by a $100 error on a $10,000 risk. 
Because of their simplicity and their firm foundation in practice, the follow- 
ing outline of the experience rating procedure will be based on the linear 
regression formulae resulting from the methods of least squares. 

Figure 1. will help to visualize the experience rating process on this basis. 
It is representative of all risks for which the premium at manual rates is a 
specified amount, P, contemplating an expected loss of E'. For such risks the 
true inherent hazards are represented by E'  (1 + m), where m varies from 
risk to risk. The ratio of the true inherent hazard, E '  (1 + m), to the con- 
templated hazard, E', is then equal to (1 + m), which is measured on the 
vertical axis. An assumed frequency distribution of risks according to the 
value of (1 + m) is shown along this axis. 

The ratio of the actual losses of the risk, A, to E', the expected losses 
contemplated by the premium at manual rates, is represented by R'  and is 
measured along the horizontal axis. For all risks having a manual premium 
of P, the frequency distribution of risks according to the value of R' will be 
a skew distribution such as shown along the horizontal axis (except for very 
large values of P, when this distribution may be even skew in the other 
direction). The resulting frequency surface of ( 1 +  m) and R" will be 
approximately as shown by the contour lines. 

One very important characteristic of such a frequency surface is that the 
regression line of R'  on (1 + m) is always the line: R'  = (1 + m). This is 
evident from a consideration of the risks having a particular value of m. For 
such risks the true inherent hazard is E'  (1 + m). For risks with such a 
true inherent hazard the average of the actual losses will be E'  (1 + m) and 
the average ratio of the actual losses to the expected losses contemplated by 
the premium at manual rates will be (1 + m). As the regression line of y 
on x is the straight line, if such a straight line exists, passing through the 
mean values of y for each particular value of x, then the regression line of 
R'  on (1 + m) is the line R '  - -  (1 + m). 

The regression line of y on x has the formula: 

x +  V l : v - - r ~ v ' - - ' V x : ~  

in terms of the coefficient of linear correlation between x and y, r,v, and the 
standard deviations of x and y, ~ x and ~ y. This gives us first that 

~ ,  ~r(l+m) 
r R ,  ( l + m ) "  - -  - -  1 o r  r ~ ,  ( l + m )  - -  - -  

~(1- i -m)  (T.R, 
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z 
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and secondly that: 

We can place these values directly in the equation of the other regression 
line, that of (1 + rn) on R', of :  

/ ~<i+,,~ ( ~a+~, .V~:R, ) (1 + m) --  [r.,,~+,.,---;Z-, ) "R'+ V,:,~+,., - -  rR,a+,., . ~----7 

to obtain: 1 

U2:u, / + ( 1 - -  Us:R, ] V~:cl+,~ 

As U2:<1+,,~-----U2:m and, if the rate level is assumed to be correct, 
Vl:cl+,.~ = 1, we have as the regression line of (1 + m) on R" on a per- 
centage basis: , ; 

( l + m ) = \ V 2 : • , ]  + 1----U2:R, 

and, by multiplying through by E' 

E" ( I + m ) -" ( U2:'~ ~ A + ( / U2:m ~ ~p 
U2:R,] 

or : Estimated True Inherent Hazard = Z.A + (1 --  Z) .E', which is recog- 
nized as the typical experience rating formula. Furthermore, if we define K 

- ,  / U2.R, ) E'  
as being equal to/~ ~ - - 1 _  then Z - -  E ' + K  

and we have the well established credibility formula originally suggested by 
Mr. Greene* as a practical approximation to the more complicated formula 
developed by Mr. Whitney.** 

In order to evaluate K let us assume for the moment that, as a result of 
chance variation only, the actual losses are distributed, for risks for which 
the true expected losses are E, in such a way that the first two moments 
about the origin are: VI:T--E,  and V~:~.--H.E-k-E ~. Then, for risks 
having an inherent hazard of E'  (1 + m), the corresponding moments would 
be: V I : T = E '  ( l + m )  and V2:2,-- H . E ' ( I + m )  + E  '2 ( 1 +  m) 2. The 
ratios of these actual losses to g', the losses contemplated by the premium at 

rates, would be : V1 :R, = (1 + m) and V2:n, --  H. (~+---- m) .[_ (1 + m) 2, manual 

for a particular value of m. 

* P.C.A.S., Vol. V, page 133. 
** P.C.A.S., Vol. IV, page 274. 
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Averaging these moments for all values of m, but only for risks having 
losses contemplated by the premium at manual rates of E', we will obtain: 

H 
Vl:n, ~ 1 and V2:n, ~ - ~  -J- 1 -[- U2:,~ if it is again assumed that the rate level 

_ _ H  U is correct so that VI:,~ = 0. This gives us U2:R, - - - ~  ~:,~ which can be sub- 

H 
stituted in the formula for K to obtain : K = ~ 

U 2  :In, ° 

Returning to our original supposition i nvo lv ing / /we  find that : 

H V2:~, - -  E z V2:~, - -  VxZ:~, 
- -  E - -  E 

= -U--~-:E" Uo.:R = Uz:z 

which gives us as the final values of K :  

K - -  U2:r = E-U2:~ 
E" U2 :,,, U2:,,, 

U 2 : z  

- -  U 2 : r  n 

I t  must be definitely understood here that while the second moments of 
T, R ,  and Z in the formula for K are the measures of chance variation only. 
they measure the chance variation of all risks. Thus K is not necessarily a 
constant but will vary between classifications for at least three reasons: 
(1) variation in the accuracy of the manual rate, and (2) variation in the 
diversity of the inherent hazard of risks in the classification, both of which 
are jointly measured by U2 .... and (3) variation in the relative hazards of the 

T V2:,~ 
classifications as measured Dy-v-~x:. Variation of K by size of E '  will also 

occur as a result of both (2) and (3) as well as a result of variation in loss 
frequencies within or between classifications. These variations will be studied 
in subsequent chapters. 

For the special case of a group of classifications for which the manual rates 
are incorrect, but in all of which all risks have the same distribution of losses 
by size of loss and have the same expected frequency of loss per unit of 
exposure, we have, by using tl~e values of U2:~, U2:•, or U2:z obtained in previ- 
ous sections of this chapter: 

K - -  V2:~, 1 
VI:~ " "U2:,~ 

as in this case U2:,~ measures only the errors in the manual rates. 
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II. 

PREPARATION OF TABLES OF THE NORMAL SAMPLING RANGE 

DUE TO CHANCE FLUCTUATIONS ONLY 

A. Number of Claims or Claim Frequencies 

In other lines of statistical analysis, tables of the normal range of values 
to be expected as a result of the sampling variation are found to be valuable 
aids in the interpretation of the significance of observed data. Such a table 
for the ratio of actual to expected number of claims or claim frequencies 
would be universally applicable to any line of casualty insurance for which 
the assumption of the Poisson Distribution is valid. 
• In Table 3, the probabilities from the Poisson Distribution of obtaining 

0, 1, 2, . . . . .  , etc., claims are calculated for the values of c, the expected 
number of claims, of 1, 4, 10, and 40. The ogives of these probabilities are 
also shown representing the probability of n or less claims occurring. The 
values of the ratio of actual to expected number of claims corresponding to 
the .005, .025, and .050 points on these ogives are entered in Table 5. 

As c increases, the labor involved in this calculating procedure becordes 
prohibitive and recourse to an approximation is made. As will be pointed out 
later, it is believed that this approximation produces the correct result to the 
number of digits retained in Table 5. (1) For values of c above 40, the skewness of this sampling distribution = ~ 

is comparatively small although significant. For these values of c the 
Poisson Distribution is closely approximated by the Type II I  frequency dis- 
tribution. The ogives of the Type II I  distribution have been tabulated for 
1/10th intervals of skewness.* 

In Table 4, the values of the abcissas, measured in standard deviational 
units from the mean; corresponding to the .005, .025, and .050 points on the 
ogives, are shown. These are values interpolated from the tables correspond- 
ing to the required skewness. The values in Table 5 are calculated directly 
from these by multiplying by the standard deviation and adding the mean to 
produce .the required results in the scale of the ratio of actual to expected 
values. 

An indication of the accuracy of the approximation of the Poisson Distribu- 
tion by the Type II I  distribution is obtained by comparing the values entered 

* NOTF-: Although the writer used the tables given in "Introduction to Mathematical 
Statistics," by J. W. Glover and H. C. Carver, published in mimeograph form in 1926 by 
Edwards Brothers, Ann Arbor, Michigan, these tables are understood to be available in 
Volume 2 of the "Annals of Mathematical Statistics" in a paper by L. R. Sa|vosa. 
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in Table 5 for c equal to 1, 4, 10, and 40 with the values which would have 
been obtained from the Type I I I  distribution as calculated in Table 4. For 
the lower and upper 2½% points, the comparison is: 

I Value of Ratio Corresponding to a Probability 
of a Lesser Value Occurring of: 

e .025 .975 
Poisson Type nI  Poisson Type n I  

1 
4 

10 
40 

.000 

.250 

.400 

.700 

--1.000 
.250 
.400 
.700 

3.000 
2.000 
1.700 
1.325 

3.000 
2.000 
1.700 
1.325 

B. Total Losses, Pure Premiums, and Loss Ratios 

(1) The various distributions of claimsby size of claim are uniform in 
that they all exhibit a concentration of frequency at the low amounts with a 
tapering off of the frequencies up to and including very high amounts. This 
produces a skewness far in excess of that usually encountered in a study of 
frequency distributions. The only type of theoretical frequency distribution 
which has been found to fit these distributions of claims by size is the Normal 
Logarithmic Distribution. Tests of the goodness of fit of this type of distri- 
bution have indicated that, except for the concentration of claims at such 
round-figures values as $50, $100, $500, and $1000, the departures of the ac- 
tual distributions from the Normal Logarithmic are not greater than would 
frequently occur in samples of the size tested. (See Table 6 for an example of 
procedure of fitting such a distribution and the test as to its goodness of fit.) 

The only condition necessary to produce a Normal Logarithmic Distribu- 
tion is that the amount of an observed value be the product of a large number 
of factors, each of which is independent of the size of any other factor. 
Reflection as to the conditions entering into the determination of the amount 
of a claim settlement in casualty insurance, the variations in the seriousness 
of accidents for which claims are made, and all of the factors eventually 
recognized in making the final settlement makes it apparent that the necessary 
condition is at least approximated in the data with which we are concerned. 
When this condition is met, the logarithms of the observations become the 
sum of a large number of independent elements, which is the only condition 
necessary to result in a Normal Distribution. Thus, we shall expect to find 
the logarithms of the claim amounts normally distributed. 

The generalized Normal Logarithmic Distribution, which we shall use, 
provides an additional degree of freedom in fitting the actual conditions by 
assuming that only the amount of all observations over and above a fixed 
amount are distributed in the manner described. Thus, if x represents the 
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amount of a claim and "a" this fixed amount, it will be assumed that Iog 
(x --  a) is normally distributed with a mean of lo and a standard deviation 
of cro. The quantity: 

log ( x -  a) -- lo 
Go 

will then be distributed normally with a mean of zero and a standard devia- 
tion of unity, permitting the use of available tables of the integral of the 
normal distribution in fitting this type of distribution to the observed 
distributions. 

Although the necessary transformation from the original scale of observa- 
tions to the logarithmic distribution is not difficult, the determination of the 
constants, a, lo, and G,, from the moments of the observed distribution is quite 
involved. S. D. Wicksell has derived the procedure for the determination of 
the constants as follows: 

- - G  3 If s - -  
2 

and ,7= "~"-s+ V ~ +  #-s--Vs2+l 

then a = M G 

(M -- a) 2 and 
l o =  loglo # U 2 + ( M - - a )  2 '  

G~ = ~ / 2  ( l o g l o  e [ l o g l o  ( M  - -  a )  - -  lo] 

= #.868589 [loglo (M -- a) -- lo] 

where: M ,  G, U2, and a8 represent the Mean, Standard Deviation, the second 
moment about the mean, and the skewness, respectively, of the distri- 
bution to be fitted. 

(2) The standard deviation and skewness of the sampling distribution of 
the ratio of actual to expected losses, pure premiums, and loss ratios corre- 
sponding to a particular value of the expected loss, E. = c. VI:,, are propor- 

t i o n a l t o ~ V ~ : ,  and V3:~ ~V2.~ VI:,, V2:~ - respectively; functions of the distri- 
V1 :.~ 

bution of claims by size of claim. The values of these functions vary by line 
of insurance and may vary by classification or territory. The extent of the 
variation by line of insurance is shown in the following table, which gives the 
values for several of the casualty lines calculated from the distribution of 
claims by size group as reported under the official calls for New York State 
experience. 
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Line  of Insurance 

Workmen's 
Compensation 

Automobile 
gc 

:~{anufacturers' and 
Contractors 

Manufacturers' and 
Contractors 

Owners', Landlords' 
and Tenants' 

Product 

Coverage 

All 

Classifications 

B . I .  c~ 

P.D. 

56.89 165.53 

59.34 148.27 
55.93 164.32 
11.84 60.81 

70.96 247.34 

38.86 108.64 

36.65 145.44 

Priv. Pass. 
Commercial 

B.I. All 

P.D. " 

B.I. Excl. N. Y. C. Apts. 
and Tenements 

B.I. Foodstuffs 
" All Others I 

15.25 
49.17 

71.93 
166.07 

To indicate in detail the advocated procedure of calculating the desired 
table of the normal sampling range, property damage liability coverage on 
commercial automobiles has been selected as an example. Although the 
following discussion deals only with this single case, it is believed that the 
method is equally adaptable to all cases. Comparison of the resulting Table 
10 with Table 5 gives a specific comparison of the normal sampling variation 
in total losses, pure premiums, or loss ratios with that occurring in the 
number of claims or claim frequencies. 

In preparing the desired tables of the normal sampling range of the ratio 
of actual to expected values of total losses, pure premiums, or loss ratios, the 
values of M,  ,~, U2, and a3 will be (as found in section D of I): 

1 V.o:. 
M = I  U 2 - -  

g Vlg:m 

1 . / V 2 : .  1 Vs:. 
~ =  7 / -  ~ V l ~  and ~8 = ~ (V2:,)3/~ 

For commercial automobile property damage claims we have: 

~]Ve:~ _ 2.050 and Va:. V12:, (V2:~,)s/z - -  10.524 

In fitting available theoretical distributions to this data, we will find three 
different ranges requiring separate treatment. The first of these will be where 
the expected number of claims is small (10 or less). In this range, the occur- /) 
rence of no losses must be recognized as a distinct possibility and the number 
of such cases set aside before attempting to fit a continuous distribution such 
as the Normal Logarithmic Distribution to the remaining cases. This pro- 
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cedure is followed in Table 7, where each successive step has been set out in 
order to show the algebraic process as well as the arithmetic computation. 

The second range is that where the probability of obtaining zero losses is 
insignificant, although the skewness of the distribution of losses by amount 
of loss is still a controlling influence. Here the Normal Logarithmic Distri- 
bution is fitted directly by omitting steps (2) to (6) inclusive and step (28) 
as shown in Table 8. 

The third range is that for very large values of expected claims. In this 
range the skewness, although still large enough to preclude the use of the 
normal distribution, comes to a level recognized by a Type III  distribution. 
The calculation procedure can thus be further reduced to that shown in 
Table 9. 

Table 10 presents the final results of the calculations of Tables 7, 8, and 9 
and shows for the ratio of actual to expected total losses, pure premiums, and 
loss ratios the normal sampling range. This table corresponds for these 
statistics to Table 5 for the number of claims or claim frequencies. 

C. Average Claim Costs (of a Fixed Number of Claims) 

In actual practice we will usually be concerned only with the sampling 
variation of the ratio of actual to expected average claim costs for the fixed 
number of claims that actually occurred. 

From section E of part I, we find the necessary statistics to construct the 
desired table as: 

1 1/U~:~ and~a- -  1 
M = 1, ~ = V n  V~--SZ~ ~ n n  ~ : ~  

which, combined with the values for Commercial Automobiles, P.D., give: 

1.7891 and a3 - -  13.972 
M --  1, ~ - -  V n V'------~ 

In fitting theoretical distributions to this data, it will again be necessary 
to use the Normal Logarithmic Distribution for the smaller values of n (less 
than 1440), while the Type II I  distribution will expedite calculations for 
larger values of n. The resulting Table 11 is presented, without again show- 
ing the details of calculation which are similar to those of Tables 8 and 9. 

D. Average Claim Costs (with c Claims Expected) 

In some few cases we shall be concerned with the sampling variation of 
the ratio of actual to expected average claim costs when only the expected 
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number of claims is known. From section E of Part I, we find the necessary 
statistics from which to calculate the desired table of sampling variation as: 

M - -  1, (r --- ~ V U2..x G(c~ 
VI:, and aa - -  K(c )3 /2  "aa:x  

or combined with the values for Commercial Automobiles, P.D.:  

M - -  1, a - -  1.7891 F"~(~) and aa - -  13.972 • G(~) 
K(c) 31z 

The  Normal  Logarithmic Distribution will again be found useful in fitting 
a theoretical distribution for values of c less than 1440. The  results are 
shown in Table 12, where it is found that this table is practically identical 
with Table  11 for values of c, of 40, or greater. 


