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SAMPLING T H E O R Y  IN CASUALTY INSURANCE 

PARTS I I I  THROUGH V I I  

BY 

ARTHUR L. BAILEY 

Introduction 

It  has been the intent of the writer to develop a fairly complete mathemati- 
cal theory of the variations in casualty insurance statistics as well as to 
develop such mathematical aids as are necessary to the computations involved 
in the use of the theory; but to leave to others any interpretation of the 
results of application of the theory. In accordance with this intent, only light 
and superficial treatment by way of illustration has been given in Parts I I I  
and VII to the application of the theory to underwriting and to the descrip- 
tion of two kinds of credibility. The discussion in Part VI of the use and 
computation of excess pure premium ratios covers considerable detail felt to 
be advisable at this time because of the recent extension of rating procedures 
based on such ratios. The reading of this part at least should bring about a 
realization that the figures in a table of excess pure premium ratios are by no 
means exact and are at best only rough approximations. 

It will be noted, in Part IV covering the modification of the formulae of 
Part I to recognize various types of fluctuation other than chance, that the 
individual observations are in each case weighted to obtain the various aver- 
ages. This weighting process will appear to the reader either as obviously 
necessary or as a completely unnecessary and arbitrary complexity. The 
writer can only state that some very erroneous results were at first obtained 
when the weighting procedure was omitted. 

It  will be recognized by some that one of the most important types of vari- 
ation to be found in casualty insurance statistics has not yet been covered. 
This is the variation in the accuracy of the data or in the underlying condi- 
tions with the passage of time. The effects of such variation will have to be 
investigated prior to the application of the theorles to rate making and experi- 
ence rating. It is hoped that this can be presented in a subsequent part, 
together with the applications to rate making, experience rating, and the 
problems of excess and deductible coverages. 

In view of the contemporary work of Mr. Satterthwaite, it seems advisable 
for the writer to say a few words in defense of having taken a very circuitous 
route to reach results which to many will appear to be the same as those 
reached immediately by Mr. Satterthwaite. From the earliest days of statis- 
tical theory, there have been two schools of mathematical statistics. One of 
these is broadly spoken of as the Pearsonian school, being identified by its 
development of concise algebraic formulae by means of highly advanced and 
very elegant mathematical processes and by its insistence, in the application 
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of these formulae, that the data fit the formula rather than that the formula 
fit the data. The other school is known as the Scandinavian or "sledge ham- 
mer" school. This latter term describes rather well the processes used by it in 
the development of formulae. The essential difference, however, is that the 
entire effort of this latter school is aimed at obtaining formulae which will 
describe the actual data, with the description being made in terms of symbols 
having specific interpretations. It  will be obvious to anyone who has glanced 
through either Parts I or IV of this paper that the writer most certainly has 
used the sledge hammer method as contrasted to the neat development of the 
"Generalized Poisson Distribution" and the "Hyper-geometric Distribution" 
by Mr. Satterthwaite. This procedure has been necessary, however, in order 
to obtain, instead of algebraic formulae with indefinite parameters, a mathe- 
matical description of the moments of the various casualty insurance statistics 
in terms of fundamental statistics subject to exact or approximate determina- 
tion from actual data. 

Attention is called to the proofreading error on page 73 of Part I, where, 
in the fourth line 

H H 
U2:~, ~ ~-7 U2.,~ should read U2:R' ~'~ ~ + U2:ra. 

Thanks to the assistance of several individuals, Miss Eva Dorenstreich in 
particular, the following parts are presented with somewhat more confidence 
as to their algebraic accuracy than were the first two. 

III.  

USE OF SAMPLING THEORY IN INDIVIDUAL RISK UNDERWRITING 

The tables of the normal sampling range due to chance fluctuations only 
which were developed in Part II  are designed to be used in the evaluation of 
past individual risk experience in the determination of the future desirability 
of the risk. The use of these tables can best be explained by their application 
to individual risks as examples. The examples do not attempt to cover all 
possible cases but are given only to illustrate that definite answers to specific 
questions can be provided from the tables of sampling distributions due to" 
chance fluctuations only. Actual problems will frequently require the testing 
of the risk experience for individual years to point out any trends and will 
usually involve the separate analysis of the experience of more than one line 
or type of insurance. Although large risks are used in the examples, the tables 
are equally applicable to small risks. Likewise, the tables are equally 
applicable to the combined experience of all risks in a territory, class, or 
production office ; and it is in this application that much of their value can be 
realized by a carrier. 
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The A Laundry Company 

Let us consider the A Laundry Company, for which the automobile prop- 
erty damage premium for the exposure of the past three years at present 
manual rates is $4,53!. The permissible loss ratio for this premium is .517, 
and the average claim cost for the classification in the entire state experience 
of all companies is $32. To compare with this, we have from the experience 
of the risk during these three years 8 claims incurred, with a total loss of 
$356 and an average claim cost of $44.50. Testing this average claim cost 

first, we refer to Table 11, to find that a ratio of $44.50 $32 .00-  1.39 would not 

be an unusual ratio for a risk having 8 claims. The table shows us that a 
ratio of 1.991 would even be quite normal for a risk having 10 claims. We 
thus find that any unusual element of the risk must lie in the claim frequency 
of the risk. To test this we refer to Table 5 and enter it with the expected 

number of claims of $4,351 X .517 8 $32.00 ~- 73, to find that a ratio of -~ - -  .11 is 

entirely below the normal range. This indicates that at manual rates the 
A Laundry Company is a very desirable risk to put on the books. 

In an extreme case of this kind, this same conclusion would undoubtedly 
be reached by any underwriter without reference to tables of any kind ; and a 
certain amount of competitive rating would probably be encountered on such 
a risk. We thus have the problem of determining just how much rate recog- 
nition can safely be given to the experience of such a risk. Before doing this, 
let us examine the results produced under the New York State Automobile 
Experience Rating Plan, which in this case would produce a credit of 46%, 
or a rate modification of .54. With such a modification, the expected number 
of claims would be 73 X .54 --  39, and the ratio of actual to expected claims 

8 
would be-3-~--- .21. Referring again to Table 5, we find that the risk is still 

far below the level of claims expected, even with a 46% credit. 
In an open state, where risks are "equity" rated, competition might well be 

offering such a risk more than a 46% credit; and we must decide for our 
company how great a Credit we are willing to offer such a risk with a reason- 
able assurance that the risk will continue to be a good risk and not immedi- 
ately deteriorate. The first decision must be as to the level of significance 
that our company will adopt as its standard of excellence, the P---.005, 
P --  .025, P ~ .050, or some other level. Having adopted a particular signifi- 
cance level as our standard, we would find a chart prepared from Table 5 to 
be of considerable assistance. Figure 2 is illustrative of such a chart and 
shows for the P -- .050 and P --  .950 levels the relationship between actual 
and expected numbers of claims. Referring to Figure 2, we find for the 
A Laundry Company that the 8 observed claims would represent a P --  .050 
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level when the expected number of claims was 14.5. Thus we can give this 
. 14.5 

risk a modification o~- 73" -" .20, or an 80% credit. Obviously, a discount 

of more than 80% would make such a risk just an ordinary risk instead of 
a good one. 

The B Brewery 

Our next risk is the B Brewing Company, with a premium at present rates 
for the past three years of $16,996, a permissible loss ratio of .517, and an 
expected average claim cost of $27, from which we calculate the expected 
total loss as $16,996 X .517-- $8,787 and the expected number of claims as 
$8,787 

$27 --  325. The experience of this risk for this three-year period included 

544 claims totaling $13,389 and averaging $24.61 per claim. Testing the aver- 

age claim cost in Table 11, we find that a ratio of $24.61 $27.00 -- .91 is a normal 

occurrence when 544 claims actually occurred. For the claim frequency, 
.544 

however, we find from Table 5 that the ratio o~ 3-3Y5---- 1.67 is definitely above 

the normal range. For this risk the Experience Rating Plan would produce 
a 30% debit, and with such a debit the expected number of claims would be 
325 X 1.30---423. Re-entering Table 5 with 423 expected claims and a 

544 
ratio of ~-ffff-- 1.29, we still find the risk to be definitely above the normal 

claim frequency range. 
Before considering how much greater debit than 30% our company would 

require before feeling safe to write this risk, let us assume that we knew 
nothing of the number of claims actually occurring and only knew the total 
losses of the risk during the past three years. To test these total losses, we 
enter Table 10 with 325 expected claims and a ratio of actual to expected 

total losses of $13,389 $8,787 -- 1.52, reaching exactly the same conclusion as before, 

that the risk's loss level is considerably above the range to be normally 
expected. Considering the 30% debit of the Experience Rating Plan, how- 
ever, we would enter Table 10 with 423 expected claims and a ratio of 

$13,389 --  1.17, to find the risk to be just about on the P --- .950 level, 
$8,787 X 1.30 
indicating that the risk is probably, but not definitely, bad. This exercise 
illustrates only that if we want to obtain all of the information from the 
available data, we must use all of it and not take the easiest way, thereby 
getting only part of the answer from part of the available data. 

The P ~ .950 line on Figure 2 will assist us in determining the minimum 
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debit modification which a carrier with the P = .950 level of deficiency for 
bad risks would require in order to write the risk. For the B Brewing Com- 
pany we find, for a deficiency level of P - -  .950, that the 544 actual claims 
correspond to expected claims of 505. Thus the modification would be 
505 
325 = 1.55, and we would require a 55% debit or more applicable to the 

present rates in order to make worth while the chances involved in insuring 
this risk. Even under these conditions it would be indicated that the B Brew- 
ing Company would be a fertile field for some effective safety engineering 
service. 

The C Bus Line 

The C Bus Line has in the past been self-insured and is now making appli- 
cation for full coverage insurance. It has provided our carrier under affidavit 
with lists of equipment used during the past three years and summaries of 
the losses which it has incurred under its self-insurance. Applying the present 
manual rates to this risk, we find that it would have developed $14,832 of 
premium during the past three years in a classification having a permissible 
loss ratio of .607 and an average claim cost of $43. Thus total expected 
losses of $9,003 and 209 expected claims would be indicated. Their statement 
of loss experience shows tha{ 179 claims, totaling $4,395 and averaging-S24.55 
per claim, were incurred by them. Testing the claim frequency from Table 5, 

,179 ~ 
we enter it with 209 expected claims and a ratio oI~-~'-.ov, to find the risk 

at just about the P--.025 level. The Experience Rating Plan applicable to 
this risk produces a 26% credit, so that we return to Table 5 with expected 

,179 
claims of 209 X .74 ---~ 155 and a ratio ol 1-~--  1.15, finding that the appli- 

cation of the 26% credit has shifted the risk from the P ~ .025 level to the 
P -- .975 level and that, from a loss frequency point of view, the risk may no 
longer be desirable. 

Entering Table 11 to test the average claim cost with 179 actual claims 

and a ratio of $24.55 $43.00 -- .57, we find that the average claim cost is far below 

the level to be normally expected. For this risk we have the average claim 

cost in one direction and the frequency in the other direction, and it thus 
behooves us to review the total losses. We enter Table 10 with the expected 
number of claims of 155 ; and with the ratio of actual to expected losses after 

experience rating of $4,395 .66, to find that the risk is apparently 
$9,003 X .74 -- 

a desirable one, being just below the P = .005 level of significance. Review- 
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ing our findings, we conclude that the desirability of this risk hinges entirely 
on its low average claim cost; and that because this low average claim cost 
may have been the result of a fictitious deflation accomplished by the elimi- 
nation from the report of experience of a few large losses, and because there 
is a certain doubt in our minds that this low average claim cost can be con- 
tinued with the settlement of claims transferred to our company as a third 
party, a review of the risk's claim folders in considerable detail is advisable 
and a continuous check on the average claim cost of our own losses for the 
risk should be maintained. 

The D Distributing Company 

The D Distributing Company is a combined local and long haul truckman 
written on a gross receipts basis. On the basis of its currently developed 
gross receipts rate, including a 57% experience rating credit, the premium 
for the past three years would be $34,587 in a classification having a permis- 
sible loss ratio of .617 and an average claim cost of $41, indicating expected 
total losses of $34,587 X .617 - -  $21,340 and an expected number of claims of 
$21,340 
$41.00 --520.  The experience of these years shows 441 claims incurred, 

totaling $15,791 and averaging $35.81. Reference to Table 11 for 441 actual 

claims and a ratio of $35.81 $ 4 1 . 0 0 -  .87 shows the average claim cost to be on 

about the P - -  .025 level. Reference to Table 5 for 520 expected claims and 
441 

a ratio ofy~-~-- .85 shows the claim frequency Below the P -  .005 level. 

Apparently this risk could be afforded a greater credit than the 57% pro- 
vided by the Experience Rating Plan. 

A chart similar to Figure 2 but prepared for New York commercial auto- 
mobile---property damage coverage--total losses from Table 10, would show 

us that, for actual losses of $15,791 equivalent to $15,791 $41 ---- 385 claims of the 

expected average amount, the expected number of such normal sized claims 
would be 450 for a level of significance of P -  .050. Thus a further modi- 

450 X $41.00 
fication of $21,340 -- .86,  or a total modification of .86 X .43- - .37  

(a credit from manual rates of 63%), could be safely afforded the risk. 
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IV. 

MODIFICATIONS OF THE BASIC FORMULAE FOR THE DISTRIBUTION OF 

CASUALTY INSURANCE STATISTICS TO RECOGNIZE DIVERSITY 

OF RISKS, HAZARD LEVELS OF CLASSIFICATIONS 

AND RATEMAKING ERRORS 

A. Diversity of Risks in the Same Classification 

The formulae of Part I were developed for application to individual risks 
and involved statistics of the expected number of claims and the distribution 
of losses by size of loss for the individual risk. It  is necessary to modify 
these formulae for application to all risks of a classification when only the 
average statistics for the classification as a whole are known. It will be 
recognized that, although the individual risks grouped into a classification 
may be similar, only in very rare instances are they identical in all respects. 
The differences between the individual risk and the average of the classifica- 
tion, on a percentage basis, will be spoken of as the risk diversities. 

Because of the necessity of weighting the statistics of individual risks to 
obtain averages for the classification, we shall find it necessary to introduce 
the symbols e for exposure and ] for claim frequency. Thus C = el. Statistics 
of the classification as a whole will be denoted by a prime ( ' ) .  The diversi- 
ties of claim frequencies, average claim costs, and pure premiums will be 
denoted by p, q, and m respectively, being defined by:  

] = j ' ( l + p ) ,  VI:~--VI:~, ( l + q )  and ( l + m ) =  ( l + p ) ( l + q )  

The moments of p, q, and m will be defined by:  

e.].q" X e.m" ~, e.p", V.:~ --  and IT,:,, = . ~  
V . : ~ = .  Xe ' X e ' ]  ' "Xe 

where it will be noted from the following identities that: 

VI:~ --  Vl:q = VI:,, = O. 

],=Xe.]xe - - X e ' ] " ( l + P )  Xe = 1 ' ( 1 + - ~ - )  

VI:,, Xe.I.VI:~, Xe.[.Vx:x,(1 + q )  ( X e . ] . q )  
- -  X e ' ]  - -  X e ' ]  --V~:x, 1 +  Xe'l 

. X e . m \  ]'.VI:~, = Xe.I.V~:~Xe --  X e ' f ' V ~ : ~ ' ( l + m )  1 + ~ }  

1. Number o] Claims. 

We shall concern ourselves with the development of formulae applicable 
to risks for which C claims are expected on the basis of the classification claim 
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frequency. Such risks will have an exposure of C/]' and, as they have a 
claim frequency of ]' (1 + p), the true expected number of claims for such a 
risk will be C (1 + p). From the formulae of section B of Part I we can 
write the first three moments, about the origin, of the actual number of 
claims occurring for such a risk as: 

v ~ : . = C  ( l  + p) 
v~:. = c (1 + p )  + c ~  (1 + p ) ~  
Vs:. .=C ( l + p )  + 3 C  2 (1 + p ) * + C  3 ( l + p )  3 

These moments for individual risks, when weighted by the exposures of the 
risks and averaged for all risks, will give us the moments of the actual number 
of claims occurring for all risks in the classification when C claims are 
expected on the basis of the classification claim frequency. These are: 

V1 :., = C 
V2:., = C + C 2 (1 + V2:~) 
Vs:., = C + 3 C 2 (1 + V2:~) + C s (1 + 3 V2:~ + Va:p), and 
Us:.. = C + C 2 V2:~ 
Us:., = C + 3 C * V~:, + C 8 V.:, 

The moments of r', the ratio of actual to expected number of claims, can 
then be obtained by dividing by the powers of C as: 

V~:r, --  1, U2:r, - -  1/C + V2:p, and Us:~, - -  1/C 2 + 3 V2:~/C + Va:p 

2. Total Cost of a Fixed Number of Claims. 

We must now deal with a group of risks whose average claim costs are 
admittedly different but for which we have available only the distribution 
of losses by size of loss for all risks combined. No progress can be made 
without some assumption as to the form of the distributions for individual 
risks. A minimum assumption is that the distributions for all risks in the 
class have the same coefficient of variation and, for the purpose of develop- 
ing third moments, also have the same skewness. Indicating the coefficient 
of variation by (C V) we have: 

(C V) 2 U2:~, _ V~:~,- V21:~ V2:. 1 
- -  V21:z V21:z. V21:~v 

V2:. = V21:~ [ (C V) 2 + 1] - -  V21:~, [ (C V) 2 + 1] (1 + q)2 

Xe. I .V2: .  _ E  V21:.. [(C V)~ + 1] e ' ]  ( l + q )  z 
but V~:., - -  ~ e . ]  - -  5~ e-] 

= Vh:., [ (C V) ~ + 1] (1 + V2:q) 

V::~, and by substituting this we have: so that V2a:., [ ( C V ) * + I ]  -- 1 + V2:q 
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V2:~ = Vz:~, (1 + q)2 and V2=" VI:~-- Vz:~," VI:~, (1 + q)S 
1 + Vz:~ 1 + V2:q 

A similar procedure involving the skewness, ~s:~, gives us that: 

V3:~, (1 + q)S 
gs:. = 1 + 3 g~:q -Jr- V3:q 

Using these values of Vz:~, V2=" VI:~, and V~:~ in the formulae of section C 
of Part I we have the first three moments of the actual costs of n claims, for 
an individual risk, as: 

V,:t - -  n. V, =, (1 + q) 

Vz:t= E n'V2=, -}-n (n- - l )Vql :z , ]  (1 + q)Z 
1 + V2:q 

[- n'Fs.~, 3 n(n--1)  Vz:x, Vl:x, 
ga :t = i_i .jr. g V2 .----2-:q-+q+ Va :q ÷ 1 .jr. V2:q 

-Jr- n(n--1)  (n--2) Vax:,,] ( l + q )  s 

These moments for individual risks, when weighted by the expected number 
of claims of the risks, e-f, to measure the relative number of times such a 
number of n claims will occur, will give us the moments of the actual amount 
of losses from n claims of all risks in the classification as: 

VI :v - -  n. 171 :~' 

V2:v --" n'Vz: . ,  "jr" n(n--1)  V21:,,, (1,jr,VZ:q) 

V V I-l+3"Vz:q'+Vs:q-] Vs:t,= n'Vs:,,-Jr 3 n(n--1) 2:.," a:*'L -f-+~..q J 

+ n ( n - 1 )  ( n - 2 )  VSl:,,,(l+3 • V~:q.+vs:q) 
and Uz:v --  n.U~:,, + n ( n - - 1 )  Vz:q.V2t:,, 

Uz:v = n. Us:,, + 3  n (n - - l )  V2:.," Vt:,, E 2. Vz:q.j+Vs:q ] 
I + Vz:q ._l 

+n(n - -1 ) (n - -2 )  Vs1:x,~Vs:q ~ 2 : ~ ]  

The moments of a', the average claim cost of a fixed number of claims, 
can then be obtained by dividing by the powers of n and the moments of s', 
the ratio of the actual to expected total losses or average claim costs for a 
fixed number of claims, can be obtained by dividing by the powers of n. Vx :~.. 

3. Total Losses When C Claims are Expected. 

Concerning ourselves again with risks for which C claims are expected on 
the basis of the classification claim frequency, we can write, from the formu- 
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lae of section D of Part I, the moments of the total actual losses, T, for 
an individual risk as: 

VI:T -'- C" Vl:x' (1 + m) 
V2:~=C'V2:x ( l + p )  +C2V21:,~, ( l + m )  2 
Va:r= C" Vs:~ (1 + p) + 3 C ~ V2:~" VI:~ (1 + p)2 + C 8 V81:x, (1 + m) 3 

The averaging of these moments, when weighted by the risk exposures, is a 
straightforward process for the right hand terms of the above values for 
VI:T, V2:r, and Vs:r involving only powers of m and the constants C and VI:.,. 
The averaging of the left hand terms of the values for V2:2, and Va:T involve 
only the substitutions : 

X e  (1 + p )  V~:~, X e . f ( l + p )  V~:~ Xe.J.V2= 
X e = X e . !  - -  X e ' l  = V2:~, 

and 2 ~ e ( l + p )  Vs:. __ X e . f ( l + p )  Vs:x _ E e . I . V 3 : . _ V 3 . ~ ,  
Xe Xe.f Xe'/ 

No exact symbolic evaluation of the middle term of the value for Va:~. can be 
made except one involving the correlations between powers of p and q. How- 
ever, under the assumptions of the previous section regarding the individual 
risk distributions of losses by size of loss, such correlations can be treated as 
a group and it can be shown that: 

X e ( l + p )  2 V2:x'Vl:a, _ V2:x,* Vl:x, (l+V2:~)(1+3 V2:q+V3:q) _4... G 
:X e - -  1 + V2:¢ -- 3 C 2 

where G jointly represents all such correlations and is zero when all are zero. 
The algebraic derivation of this identity becomes very involved and will not 
be shown. Its accuracy can readily be verified by the erection of a numerical 
problem that fulfills the conditions of no correlation between any power of 
p and q. 

We thus have for the moments of the actual total losses, for all risks in a 
classification for which C claims are expected on the basis of the classifica- 
tion claim frequency: 

V, :~,, = C" V,:., 
V2:~, = C'V2=, + C 2 V21:. ' (1 + V2..,.) 

[( l+V~:~) (1+3 v~:~+v~:~) ] 
Vs:~,,-- C'Vs:x, + 3 C 2 V2:.," VI:., ! 

1 + V2:q J 
+ C 8 Vs,:x. (1 + 3 V2:,~ + Vs:.~) ± G 

and U2:~. = C" V::~. + C ~ V21:~. • V2:,~ 
• V [-(l+V2:p) (1+3 V2:q+Vs:q) _ 1 ]  

va:~, = c .  va:o, + 3 c~ v~:~, 1:~, L V 4  ~ 
+ C a Val:x," Va:., ----- G 

The moments of R', the ratio of actual to expected losses, can be obtained 
from these by dividing by the powers of the expected total loss, C-VI:~,. 
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B. Hazard Levels of Classifications to Be Combined 

Classifications and territories are made in order to discern and recognize 
any demonstrable differences in loss costs per unit of exposure. Such of these 
differences as are due to differences in claim frequencies have no effect on 
the sampling distributions with which we are concerned. Only such differ- 
ences as are due to differences in the distributions of losses by size of loss 
need be considered. 

It frequently occurs that the only available distribution of losses by size 
of loss includes risks from a wide group of classes. Although it might be 
reasonable to assume that the coefficients of variation, and even the skew- 
nesses, of the distributions for individual classifications are constant, it 
would not be reasonable to assume that the average claim costs for all classes 
are likewise constant. Moreover classification average claim costs are usually 
available and actually can be taken into consideration. Thus for the purpose 
of sampling theory the "hazard" of a class or territory will be represented 
by its average claim cost. 

Statistics for a group of classes will be denoted by a double prime ("). 
The symbol B will be used to represent the relative hazard of a classification 
and will be defined as : 

VI:, , ,=Vx:~.(l  q -B)  with Vn.B-- ~ e ' f ' B n  
• Z e ' ] '  

It will be noted that VI:B = 0 as: 

Vx:~. F,e'y'Vl:~, ~ e ' j ' ( l q - B )  
- -  ~,e']" = Vx:,- E e ' f '  --  VI:~- (1 + VI:B) 

The other difference between classes will be in the diversity of risks within 
the classes. I t  will be unreasonable in most cases to assume that the moments 
of p, q, and m are constant for all of a group of classes. The moment formulae 
for risks in a group of classes will, therefore involve moment functions of p, 
q, and m defined as: 

E e" V,:~ . Z e" 1" V,:q V,,m, Z e' V,,:~, 
V , . p ,  Z e / , vn:~, ---- E e' ]' and -- E e' 

It will be important to note that all powers of B are independent of any 
moment of p, q, or m as this independence is utilized in evaluating the sum- 
mations and averages in the following paragraphs. 

1. Number o] Claims 

The moments of the actual number of claims occurring when C are expected 
on the basis of the classification claim frequency of section A-1 of this Part 
may be averaged for a group of classes, using weights equal to the class 
exposure, e', to obtain: 
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V l l n  N ~ C 

V2:.- "-- C + C 2 (1 + V~:p,) 
Vs:.- = C + 3 C z (1 + V~:~,) + C s (1 + 3 V2:~, + Vs:~,) 

2. Total Cost o] an Actual Number o] Claims Whose Expected Total is E 

If E losses are expected for a risk, in a class having an average claim cost 
of VI:.,, because of the actual occurrence of n claims, then n must be E/Va:~,. 
The moments of the actual total losses, of all risks in a classification for which 
E/VI:~, claims have occurred, may be written from the formulae of section 
A-2 of this Part as: 

V1..e = E 

V2:,. + E (E - -  VI:,.) (1 + V,:q) V2:,, = E -p~L.~. 

V~:,, 1 + 3 V2:q + Vs:q 
Vs:,, = E + 3 E (E - -  VI:~,) "V---~:.," 1 + V2:q 

+ E (E--VI:~,) (E--2 Vx:~.) (1+3  V2:q+Vs:q) 

These moments must then be weighted by e ' f  VI:,, or by e ' f  (1 + B) to 
obtain the corresponding moments for risks of all classifications. First it will 
be necessary to make the substitutions: 

V2:., V::.. 1 + B 
Vl:m. -- Vl:m- " 1 +  V2:B 

This produces: 

V1..t- -- E 

and Vs:..__= Vs:.. (1 + B) 2 
VI:., - -  VI..." (1 + 3 V2:B + Vs:B) 

V2:.. + E2 ( I+V2:¢)- -E 'VI: . .  (l+V2:q,) ( l+V2m) V2:~, = E VI:~- 

1+3 
Vs:t. = E VI:,~. + 3 ~ 1 + V2:q, L - -  - VI:,,. T-Tr - ~ "3 

+ (1+3  V2:¢+Vs:¢) [Es--3 E z V~:~. (1+V2:.)  

+ 2 E WI...- (1+3  V~..B+Vs.~) ] 

3. Total Losses When Losses o] E Are Expected 

If E losses are expected for a risk in a class having an average claim cost 
of Vx:~,, then C, the expected number of claims on the basis of the classifica- 
tion claim frequency, will be E/VI:.,. The moments of the actual total losses, 
of all risks in a classification for which E/VI:..  claims are expected, may be 
written from the formulae of section A-3 of this Part as: 
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V I  :~, ---  J~ 

V~:~,=E ~ + 3 / ~  ~ .  1 +  v2.~ 

+ E ~  ( 1 + 3  V2:., + Vs:,,) ----- G 
These moments must then be weighted by e ' f  VI:,, or by e ' f  (1 + B) and 
the substitutions of the previous paragraph made to obtain the corresponding 
moments for all classifications as: 

VI:T. "- E 
E V2:~- V2:r- = VI:~- + E2 (1 + V~:,,,) 

V3:~- . V2:~- (1 + V2..~,) (1 + 3 V2:¢ + V3:q,) 
V3:r- -- E ~ +  3 E 2 ~ .  1 + V2:q, 

+ E ~  ( 1 + 3  V2:,,, + Vs:.~,) -- G' 

C. Ratemaking Errors, or Errors in the Available Estimates o] 
Classification Averages 

Up to this point the formulae have been developed on the premise that 
actual averages of classification data were available. In hindsight analysis 
this is usually the case; while in prospective application it is not. The next 
step, then, will be to recognize the possibility of errors in the available esti- 
matesof classification averages. To do this we shall represent the estimated 
classification claim frequency by F where ] ' = F  ( I + P ) ,  the estimated 
average claim-cost by A where Vx:,, = A (1 + Q), and the estimated average 
pure premium by FA where 1' Vx:,,--FA ( I + M ) .  Thus P, Q, and M 
represent percentage errors in classification estimates corresponding to the 
percentage diversities, p, q, and m, of individual risks. 

The moments of P, Q, and M will be defined by: 

V,:p--  ~ d P "  E e ' F Q " ,  and V,:~--  X e" M" 
e' , V . :o ' -  ~ e ' F  Xe" 

so that VI:p, VI:~, and Vx:a~ represent the component parts of or the entire 
error in rate level for the group of classes as a whole. 

It  will be important to note here that P, Q, and M are independent of the 
moments of p, q, and m; as this independence will be utilized in evaluating 
the averages of the following paragraphs. 

1. Number o] Claims. 
The value of C in section A-1 of this Part must be replaced by C (1 + P) 

before the averaging process of section B-1 is performed, to obtain: 
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VI:,~- - -  C (1 + VI:v) 
v2:.. = c (1 + v~:~,) + c* (1+v2:,,) (1+2 V~:v+vz:e) 
Vs:n- = C (1 + VI:p) + 3 C 2 (I+V~:~,) (1+2  Va:v+V2:p) 

+ C a (1+3  V2:p,+Va:,,) (1+3 Va:v+3 Vea,+Va:e). 

2. Total Cost o] an Actual Number o] Claims Whose Expected Total is E. 

The value of E in the first paragraph of section B.2 of this Part must be 
replaced by E (1 + Q) with the result that the following replacements must 
be made in the moments of the second paragraph: 

E (1 + VI:o) for E, E z (1 + 2 Vl:q + Vz:q) for E z, and 
E s (1 + 3 V~:o + 3 V2:o + Vs:o) for E s. 

3. Total Losses When Losses o] E Are Expected. 

The value of E in the first paragraph of section B-3 of this Part must be 
replaced by E (1 + M)  with the result that the following replacements must 
be made in the moments of the second paragraph: 

E (1 + Vl:~t) for E, E 2 (1 + 2 Vl:~t + V~:~t) for E z, 
E s (1 + 3 Vl:at + 3 V2:~t + Va:~t) for E s. 

V. 

CALCULATING METHODS TO OBTAIN ESTIMATES OF U2:R- 

In Part II  all of the calculation of the sampling moments based on the 
formulae developed in Part I involved only the moments of the distribution 
of claims by size of claim. The formulae developed in Part  IV involve these 
moments together with the moments of p, q, m, P, Q, and M. For these vari- 
ables we can not determine the moments by any direct means but must 
always obtain them from data in which these variables are in combination 
with variations due to chance. Most frequently these moments can be calcu- 
lated from the moments of R"  and while at times we will use Us:R,, we will 
usually need only U~:R- and the following discussion will be limited to this 
second moment in order to reduce its length. The methods of approach can 
be extended to the third moment by the reader as necessary. 

Theoretically we can only estimate the value of U2:n,, if we have a suffi, 
ciently large number of risks or classes with exactly the same expected losses. 
This is a condition so rarely met in practice that we must investigate the 
possibilities of obtaining estimates from groups of risks or classes that differ 
as to their expected losses although being contained within a limited range. 
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A. The True Value o/U2:~. 

What we want to calculate from the data of individual risks or classes is 
the value of Us:n. corresponding to the average value of E for a group of 
risks grouped by size of E. From section C-3 of Part IV we have for 

E -- Vi:n 

Vl:r, - -  VI:~ (1 + VI:~) 
V 2  :m ~ V2:r- = Vl:~ (1 + Vl:~) ~ + V21:~ (1 + V2:,~,) (1 + 2. Vl:~ + V2:~,) 

• V - V 2 . ~ -  - z  U2:r- = Vx:~ (1 + i:~)Vli~ + V  1:~ [U2:~ (1 + V2:m,) + V2:,~, (1 + V~:~) 2] 

from which 

Vl:n. - -  1 + Vl:~ and 

Us:n. 1 + VI:~ V2:~. 
- -  Va:~  "V-~..~ + Us:~r (1 + V2:,~,) + V::,~, (1 + Vl:~) 2 

There will also be times when we shall want these moments of R" after 
they have been corrected for the error in the rate level of (1 + V~:af). The 
corrected moments would then be: 

Corrected Vl:n, = 1, and 
1 Vz :~" 

Corrected Ue:R- - -  VI:~ (1 + Vl:a~) "V-~..~- + V~:,¢ 

U~:~r 
+ (1 + V~:,,.) ' (1 + ?~:~)z 

B. Calculations from Individual Values ol R" 

The most obvious procedure would be to calculate the value of R" for each 
risk in the group and to proceed from these to calculate VI:~. and U2:R.. 
Let us then see what the results of this calculation will produce. For a par- 
ticular value of E we would have: 

V1:1~. = 1 + VI:~ 

V2:R. 1 + V1 :~, V2:.. -- E . ~  + (I + V~:,~,)(I + 2"VI:~+ V~:.) 

and as averages for all values of E we would have: 

VI:R- = 1 + V1 :~ 

V2:R', = (I+V~:~) ~ / a v e r a g e  + (1 + V2:~,) (1+2.  VI:~r+V2:~) 
l : x "  \ 

-K~+U2:u/(l+V~:,~,)+Vs:~, (l+Vl..~) ~ U~:n,, = ( l + V ~ . ~ ) ~ ( A v e r a g e  1 .  : .  
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or, if each value of E had been multiplied by (1 + V,:a) before the indi- 
vidual values of R"  were calculated, we would have: 

V, :Adj.sted n- = 1 and 
1 V2:~,, 1 

U2:Adju'tedR" --- (1 + V,:~)" V---'I:-~-:~-" ( A v g ' E )  +V2: . '  
U2 :M 

"-~-(l"{'V2:ra')" (1 .{. VI:~) 2 

For a range of E in which the greatest value of E is r times the least value of 
E we have approximately that:  

( ,p,:~ --  Average " (r + 1) log,o r 

F°r example if r -" 2 then 1-~V,:~ - -  "962( Average 1 )  

Thus this method of calculation of U2:R- overestimates its value by an error 
of approximately: 

Calcula tedU2:n . - -TrueUz: l~ . - - ( l+V,:~)  Vx:~.V~:~" V,:~I [ ( r + l )  log ,o r . .8686  ( r - - l )  1 --  1]  

1 
where the (1 + V,:2~) term becomes if the values of R"  are cor- 

1 + V,:~ 
rected for the error in rate level. 

C. Calculations Based on the Z-Function 

A second method of calculation would be based on the z-function de- 
scribed in section F of Part I. The value of Z would be calculated for each 
risk or class, the moments of these observed Z's calculated and the value of 
U2-n- calculated from these. For a particular value of E we would have: 

V,:, .  - -  V'E-(VI:R- - -  1) - -  V,:~ V'E- 

Y2:z. ---- E(V2:R- - -  2- Y,:s. + 1) 

-- E [1 + V,:~ V~:.- + 
- -  E " V,:~- (l+Vz:,. ,) (1.{.2 V,:•+V2:**) 

- -2  ( I + V , : a ) + I  ] 

- -  ( I + V , : ~ ) ~  -t- E [V~:x+V2:m, (1,{,2 V,: ,+V,:~t)]  

and for all values of E we would have: 

Vz..z- = V, :~ (Average I / E  -) 

Vz:z. = (l+V,:~r) V,:.- + Vx:~ [V~:~r+V2:,n, (1.{.2 V,:s-{-V2:~)] 
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V2 :.~# 
U2:z- = (I+VI:M) ~ + Vt,~ [U2:~ (1+V2:~,)+V2:,~, ( I+VI:~)  2] 

+ [Vl:~--(Average C-E) z] V~t:,. 

U~:R- --- U~:z- 1 + VI:~ V2:~- + U2:~ (l+V2:,~,) + V¢.~, ( l+Vt :~)  ~ 
"'VI':~ - -  Vl:a " Vl:~- 

+ V2,:~ [ 1 --  (Average ~/~-)z'] 
Vl:z A 

As we have approximately that: 

(Average ~/-~)a _ 8 (W,--1) ~ 
V~:~ 9 ( r - -  1) ~ ( r +  1) 

we have that U~:R- is overestimated by this method of calculation by: 

[ 8 (r '/ '--l)~ ] 
Calculated U~:i~. ~ True U~:~. - -  W1 :,, 1 ~ 9 (r ~ 1) ~ (r + 1) 

Obviously the Z-method gives exactly the right answer if the expected losses 
have been balanced to the actual losses prior to the calculation of the indi- 
vidual values of Z, as the value of V~:a then becomes zero. 

D. Calculations based on the z-Function. 

The most readily obtained exact value of U2:R,, (and the closest approxima- 

tion to Us:R-) is calculated from the average value of z 2 (T")2 --  - - k - - '  This, how- 

ever, requires the separate Calculation of z ~ for each risk. 
For a particular value of E we would have : 

Vl:~,- = E (1 + VI:~) 
V2:~ w 

V2:~- = (1 + V,:~)" V,:~"---7 + E(1 + V2:,.,) (1 + 2 V,:~ + V2:~) 

and for all values of E:  
VI:•- = VI:~ (1 + VI:~) 

V " V2:~- [U2:~ VI:~) 2'] V2:~., = ( 1 +  1:~ V----;~:, + VI:~ (1 + V2:,..) 4 ( 1 +  
so that:  
V2:~- (1+V1:~) V2:~- 
VI:~ = VI:~ VI:~- +U2:~ (I+V~:.~,) +V~:,., ( I+VI:M)~+(I+V~:~) 2 

and the true value of U~:R- is seen to be: 

--  Vt:~ \--V-~I:~! 
and the true value of U2:R- corrected for the error in rate level : 
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VI:~ V 2 : z .  1 Corrected Ug.:~. - -  V~:~. 
(T")s 

Note: If Va:, is the average value o f ~ ,  a very close approximation to 

the true value of the corrected U~:~. is given by: 

Vl.~ V~.,,, Corrected U3:~,, VI:~ Va:.,, 3 " " + 2 
- -  Vai:~,,, VZi:~,. 

E. Calculations Based on the W-Function 

The calculation of individual values of R" for a large number of risks 
becomes quite laborious and the calculation of the individual values of Z" 
becomes prohibitive. The data is usually available on punch cards in the 
form of actual losses and either premiums at manual rates or expected losses. 
The following method of computation assumes that expected losses are cut 
on the cards. The necessary adjustments of the formulae to use premiums 
in place of expected losses will be left to the reader. It  will be assumed that 
the reader is familiar with the methods of obtaining sums of squares and of 
cross products of data cut on punch cards and has obtained the values: 

(T' t--E) --• TP'-- XE and X (~rv'--E)2--X ( T " ) ~ + Z E ~ - - 2 X  T " E  

from which values of V1..(~,- _ E) and Vg.:(~.-_~)) have been calculated. 
For a particular value of E we would have: 

Vl:~, = E ( I+VI:~)  
VI:(T--~) = Vi:~,. - -  E = E" Vx:~r 
V2:(~.-~) = V2:~. - -  2 E" VI:~. + E z 

V 2  :x ~ 9. = E ( l+Vi :~)  V--#7~._ + E  [V2:~+Ug.:~'V2:,n,+V2:,~, (l+Vl:2~) ~] 

and for all values of E:  

Vl:~,- = Vi:~ (1 + Vl:~) 

Vt:(~--E) - -  Vi:E" Vx:~ 

V2:(~,--B) = Vx:B (1 + V a . ~ ) ~ + V g . : ~  [V2:~+U2:~" Vg.:,~,+ 
• Vl :~" 

V2:.,, (1+V1:~) ~] 
Now if we calculate: 

VI:(~,--E) Vl:a~ and V2:w V2:(~-~)we have: 
Vl:~,-- Vl:~ - -  - -  V21:~ 

V2.w 1 + Vl:~ V~..~, V2:~ 
• - -  V~:~ " ~  + ~ [V*:~+U*:~" V2:,~, +V~:=, ( l+Vi :x )  2] 

I+Vi.K V2:~- 
Vg.:~, = " • + V2:~ (I+V~:,~,)+V~..=, (l+Vi:~r) ~ 

Vx:~ Vl:," 

+ [.  V2i:~V2:" 1] '[V~: ,+U~:, 'V~: ,~ ,+V~:m,  (l+Vl:a~)9.] 
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and make use of the following approximation: 

V2:~ 1 --  ( r - -  1)z 
V21:~ 3 (r + 1) 2 

we have that U2:w is an overestimate of Uz:R,, having an error of: 

True U~:R- --  U2:~¢,, calculated from U2:w = 

(r --  1) ~ [V2:z~ + U2:~" V2:,~, + V~:,~, (1 + VI:~) 21 
3 ( r + l )  z 

Similarly, if we calculate: 

Vx:~,--" VI:~T,,-m and V2:w, V~:~T-_~ 
V1 :r,, --  V21 :r- 

then U2:r, is an overestimate of the Corrected U2:2¢, having an error of: 

True Corrected U2:n,, - -  U2:n, calculated from U2:~, - -  

( r -  I- + I 
3 (r + 1) 2'[ (1 + Vx:u) 2 _1 

In most cases this estimate of Us:n- is closer to the true value than that 
obtained from the calculation of R"  for each risk. Although not as exact as 
the estimate obtained from the z-function, it is so much more easily obtained 
as to make its use mandatory in all but the most exact studies. 

VI. 

ExcEss :PURE :P~F.~Iu~ RATIOS 

A. The Use of Excess Pure Premium Ratios 

Tables of excess pure premium ratios are made available only to serve as 
the means of calculating the "insurance charge" to be included in the basic 
premium of a retrospective rating plan. All other parts of the final restro- 
spective premium are on an actual cost-plus basis and as such do not repre- 
sent insurance. Because of the complete reliance on tables of excess pure 
premium ratios for the determination of the entire insurance portion of 
retrospective premiums, it is necessary to analyse very carefully all of the 
conditions under which the tabular values of these excess pure premium 
ratios may be in error. 

The "insurance charge" is made up of an expected amount of losses, or 
loss portion, loaded for expenses, such as claim adjustment expenses, that 
are assumed to vary directly with losses and, in some cases, for taxes or 
other expenses which are to vary with the final premium. The loss portion 
of the "insurance charge" is the net difference between the loss portion of the 
"'charge for losses in excess of those contemplated by the maximum premium" 
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and the loss portion of the "saving on minimum premium risks." I t  is cus- 
tomary to express all of these as ratios to the standard premium, P. 

The loss portion of the charge for losses in excess of those contemplated by 
the maximum premium is equal to the product of the average loss ratio, A, 
and the excess pure premium ratio corresponding to the loss ratio necessary 
to reach the maximum premium, B¢~ax). Symbolically this is expressed as: 

Loss on Maximum Premium Risks - - A  (x-ratio for Bern,x), P, A) 
The loss portion of the savings on minimum premium risks is equal to the 

loss ratio contemplated by the minimum premium, minus the average loss 
ratio, plus the product of the average loss ratio and the excess pure premium 
ratio corresponding to the loss ratio necessary to reach the minimum pre- 
mium, B¢m~), i.e.: 

Saving on Min. Prem. Risks - -  Bc~tn ) - -  A t  A (x-rati 0 for Bcmin), P, A) 
In deriving the insurance charges for a retrospective plan, the average loss 

ratio, A, is assumed to be the permissible loss ratio, L. In actual application, 
however, the actual loss level varies considerably above and below the per- 
missible creating considerable differences between the true insurance cost 
and that obtained from the use of the permissible loss ratio and the tabular 
values of excess pure premium ratios. 

When the actual loss level, A, is equal to aL, the true value of the excess 
pure premium ratio is equal to the tabular excess pure premium ratio cor- 
responding to a loss ratio of B/a, a premium size of aP, and the permissible 
loss ratio L. The loss portion of the insurance charge thus becomes: 

aL--B,min,--aL[Cx-ratio f°r B'm~}a , a P, L ) - -  (x-ratio for B,maX,a ,aP, L) ] 

The effect of departures from the expected loss level can best be seen from 
a consideration of specific examples. Let us take a hypothetical plan in 
which the minimum and maximum premiums for a $10,000 standard pre- 
mium risk contemplate loss ratios of .400 and .800 respectively. The loss por- 
tion of the insurance charge included in such a plan, if based on a permissible 
loss ratio of .598, would be: 

.598--.400--.598 [ (x-ratio for .400, $10,000, .598)--(x-ratio for 
.800, $10,000, .598)] --.198--.598 [.467--.213] = .046 

If manual rates were redundant to an extent that the average loss ratio 
was .498, the actual cost of insured losses would be: 

.498--.400--.498 [ (x-ratio for .480, $12,000, .598)--(x-ratio for 
.961, $12,000, .598)] --.098--.498 [.382--.144] ------.021 

If, however, the manual rates were inadequate and the average loss ratio was 
.698; the actual cost would be: 

.698--.400--.698 [ (x-ratio for .343, $8,570, .598)--(x-ratio for 
.685, $8,570, .598)] --.298--.698 [.532--.281] --.123 
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This example illustrates three important points. First, the actual insured 
losses under a retrospective plan may even be negative when the rate level 
is redundant. Second, the actual insured losses may be several times greater 
than provided for, by the insurance charges in the plan, when the rate level 
is inadequate. Third, the actual insured losses under a retrospective plan 
always average to an amount greater than provided for in a retrospective plan 
over any period of years in which the actual loss levels varied although aver- 
aging out to the permissible level. A comparison of the loss portion of the 
insurance charge with the permissible loss ratio also indicates the extent to 
which the hazards of the insurance have been transferred to the risk by the 
carrier with, in most cases, but little change being made by the carrier in 
the charges for the expense of providing it. 

In addition to the variations in the insurance costs due to departures of 
actual average loss ratios from the permissible, there are many other causes 
of variation in these costs due to departures of actual excess pure premium 
ratios from their tabular values. It  will be necessary to study in detail the 
composition of an excess pure premium ratio in order to analyse such varia- 
tion and the conditions under which it will occur. 

The excess pure premium ratio corresponding to a loss ratio of B, a stand- 
ard premium risk size of P, and a permissible loss ratio of L is defined as 
the ratio, to the total of all losses, of losses in excess of B P  per risk. When 
the average loss ratio of all risks is equal to the permissible loss ratio the 
excess pure premium ratio has the form: 

x-ratio for B, P,  L - -  1 - -  | F ( ~  .d  R . d R  " 

0 v O ~  

where F(R) is the probability that a risk of standard premium size P will 
have actual losses of P X L X R when the expected losses are P X R. 

It  is obvious from the above form of the excess pure premium ratio that, 
for fixed values of B and L, any variation to occur must result from variation 
in the value of F(R). It  has been shown that Fen) takes the form of a fre- 
quency distribution with a mean of unity and a variance of :* 

1 V=.., 
U2:R - -  p X L V1.., or- U~:,, + U2:~ + U2:,, U2:af 

where : 
VI:, and V2.-, are the first and second moments, about the. origin, of the 

distribution of amounts of individual claims by size of claim. 
U2:~ is the variance of'the inherent hazards of risks assigned to a classi- 

fication about the average hazard of the classification, (on a percent- 
age basis). 

* The ( ' )  and (rp) notation has been omitted throughout this Pa r t  and must be inferred 
as necessary. 
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U2:~ is the variance of the errors in ratemaking and experience rating 
(on a percentage basis). 

The importance of the variance of FcR~, as a measure of the value of the 
double definite integral in the formula for the excess pure premium ratio, 
can be visualized by recognizing 

BIZ, ~'~ 
.~ FtR) 'd  R as the ogive of the frequency distribution of F~R~. 

0 ~  

This ogive is a continually ascending curve with zero as its minimum and 
unity as its maximum. The greater the variance of F¢~, the less steep will 
be the slope of this ogive. The double definite integral is the area under this 
ogive up to the abscissa B/L and will obviously be greater for an ogive with 
a more moderate slope (corresponding to a larger value of U2:R) than for one 
with a steep slope (corresponding to a small value of U~:R). Thus the fol- 
lowing information as to variation in the excess pure premium ratio can be 
obtained directly from the above equation for U~:R. 

1. The value of the excess pure premium becomes less as the size of the 
risk increases; but will never reach the lowest possible value (zero, 
or1 --B/L if 1 --B/L is greater than zero) except for completely self- 
rated risks whose hazards never change from one year to another. 

2. The excess pure premium ratios will be higher during periods of rapidly 
changing conditions than during periods of comparatively stable con- 
ditions, due to the greater error in manual rates and experience modi- 
fications at such times. 

3. The excess pure premium ratios will vary by state, as a result of the 
V2 :~ material effect of differences in law levels on the value of --~:~ They 

will be higher for states (such as Pennsylvania) that have fewer and 
broader classifications than for states having many special classifica- 
tions, because broadening of classifications increases U2:~ by increasing 
the differences between risks in the same classification. They will be 
lower for states with a large volume of business, because the rates in 
such states will be more accurate and the value of U2:g will be smaller. 

4. The excess pure premium ratios will vary considerably by classification, 
V2: because of variation in the values of ~ by classification arising from 

differences in the expected frequencies of large losses. For homogeneous 
classifications in which the inherent hazard of all risks is very nearly 
the same, they will be lower than for heterogeneous or N.O.C. classi- 
fications, because of lower values of U2 :,~ in homogeneous classes. They 
will be lower for large classifications than for small classes, due to the 
greater accuracy of the manual rates producing lower values of U2:~. 
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5. The excess pure premium ratios will vary by date of valuation of the 
experience; being lower for first reports and higher successively for 
second, third and later reports. This is the result of the use of averages 
as estimated values of unsettled cases in early reports having the effect 

of depressing the value o I ~ o e l o w  its ultimate and correct value. 

B. Computation o] Excess Pure Premium Ratios ]rom Actual Data ]or 
Individual Risks 

The usual procedure for the calculation of excess pure premium ratios 
(hereafter called x-ratios) from actual risk data is shown on Exhibit A on 
the basis that the individual risk data consists of punch cards containing the 
expected and actual losses and the ratio of actual to expected losses. The 
data used as an example in Exhibits A, B and C is that for 173 New York 
State workmen's compensation risks having a standard premium between 
$4,000 and $6,687 and having a governing classification contained in a par- 
ticular group of classifications indicated as Hazard Group 1 by the writer 
and characterized by low average loss cost per claim. Such risks have, as 
would be expected, x-ratios quite different from the average of similar risks 
but of all classifications. 

If the risk data consists of premium, actual losses, and the loss ratio, 
exhibit A would have the following columns: 

Col. (1) Desired Loss Ratio 
Col. ( la) Actual Loss Ratio = (2a) - - F  
Col. (2) Desired Upper Sorting Limit of Loss Ratios - -  (1) X F 
Col. (2a) Actual Upper Sorting Limit of Loss Ratios 
Col. (-g) ~ Tabulated Data --  Number of Risks 
Col. (4) ;~Tabulated Data - -  Premium ~-~e -'*-~ ';~ ~ ' ' '  
Col. ( ~ "  Tabulated Data - -  ActualLosses f 
Col. 46) 7 Premium Cumulated Up ---- Col. (4) Cu~!ulated Up 
Col. (4')~ Actual Losses C~mulated Up --  Col. (5J Cumulated Up 

~ Adjusted I~r~i~'Ceumu~ated Up = (6~'X F Col. 
Col. ~)?'*Excess Losses --  ~?)'---(8} (la) or = (7)--(6)  (2a) 
Col. (10) Excess Pure Premium Ratio = ( 9 ) +  Total (7) 

Total (5) Average Adjusted Premium =Tota?(°3~ 1 (5) 
F - - T o t a l  (4) X P.L.R.' X P.L.R. 

It should be noted that unless the ratios of actual to expected losses or the 
loss ratios for individual risks have been calculated to more decimal places 
than is usually the case, the resulting x-ratios will not correspond to exactly 
the same loss ratios (column la) for all risk size groups. Because some varia- 
tion is bound to occur, it is frequently advantageous to use the same set of 
sorting limits for all risk size groups in order to avoid the need for a hand 
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CALCULATION OF EXCESS PURE PREMIUM RATIOS 

(New York State Workmen's Compensation Risks m Premium Size Group $4,000 to $6,687 - -  Hazard Group 1) 

(1) (2) 

Desired 
Upper 
Limit 

Des/re~ of R 
Loss ,, ( 1 ) , .  
R a t i o  P~/  

.000 .0000 

.200 .3442 

.400 .6884 

.500 .8606 

.600 1.0327 

.800 1.3769 
1.000 1.7211 
1.500 2.5817 
2.000 3.4422 

(2a) 

Actual 
Upper 
of R 
(3a___) 

F 

.00000 

.34497 

.69509 

.87015 
1.03491 
1.38503 
1.72485 
2.57955 
3.44455 
6.18371 

(s) 

Desired 
U p p e r  
Sorting 
Limit 
(2) ×F 

.0000 

.3343 

.6685 

.8357 
1.0029 
1.3371 
1.6714 
2.5071 
3.3427 
Over 
Total 

(Sa) 

Actual 
Upper 

Sorting 
Limit 

.000 

.335 

.675 

.845 
1.005 
1.345 
1.675 
2.5O5 
3.345 
6.0O5 
Total 

(4) ] (el t (6) 
Tabulated Data 

No. 
of Expected Actual 

Risks Losses Losses 
E [ 

106,787 22,8d 
47 142,351 73,362 
15 47,685 35,218 
19 59,321 54,363 
20 62,280 73,393 
13 39,768 57,162 
17 50,727 104,945 

4 12,599 35,545 
4 12,885 62,094 

173 534,403 518,947 

(7) 

Expected 
Lo~ses  

Cumulated 
Up 

Col. (5) 
Cumul. Up 

534,403 
427,616 
285265 
237,580 
178,259 
115,979 

76,211 
25,484 
12,885 

(s) 

Actual 
Losses 

Cumulated 
Up 

Col. (6) 
Cumul. Up 

518,947 
496,082 
422,720 
387,502 
373,139 
259,746 
202,584 

97,639 
62~94 

(9) 

Adjusted 
Expected 

Losses 
Cumulated 

Up 
(7) ×F 

518,960 
415,259 
277,022 
230,715 
173,108 
112,628 

74,009 
24,748 
12,513 

(10) 

E x c e s s  
L o s s e s  

(8)--(9) (2a) 

518,947 
352,830 
230,165 
186,745 
153,988 
103,753 

74,930 
33,800 
18,992 

(11) 

EXCESS 
Pure 

Premium 
Ratio 
(lO) 

Total (6) 

1.00000 
.67990 
.44352 
.35985 
.29673 
.19993 
.14439 
.06513 
.03660 

(lla) 

Actual 
L o s s  
Ratio 

PLR X (2a) 

.00000 

.20043 

.40385 

.50556 

.60128 

.80470 
1.00214 
1.49872 
2.00128 
3.60132 

o 

o 
~o 

518947 .9711 Average Adjusted Expected Loss : 518047 3000 5,164 F --53440-------3 - -  17-----3 - -  3,000 Avg. Adj. Prem. - -  PL-----R-- 

NOTE: Except in very accurate work columns ( l a ) ,  (2a) and (3a) are omitted and columns (1), (2) and (3) are used in their  
place. Although column (9) is usually calculated and used to obtain column (10), i t  should be noted that  column (9) is 
not necessary as column (10) can be calculated as equal to (8) - -  (7) (3a).  
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sort of the cards and the calculation of the desired sorting limit. Resulting 
x-ratios are then plotted against the actual loss ratio to which they corre- 
spond and interpolated values read, from such charts of all risk size groups, 
for the desired loss ratios. 

Whenever it is necessary to make a wide grouping of risk sizes in order to 
obtain a sufficient number of risks, the problem arises as to the effect of this 
variation by size of risk. The above procedure produces x-ratios for the 
observed distribution of risks. If the risks of any one size group were divided 
into two sub-groups in some random fashion, two sets of x-ratios would 
result, which frequently would be widely different. This only illustrates the 
difference between the calculation of the actual x-ratios for a set of observed 
risks and the estimation of the most probable set of x-ratios to use in the 
rating of other risks or of the same risks in future years. To obtain the most 
probable set of x-ratios for future use, some type of smoothing procedure 
should be applied to the observed data. 

One smoothing procedure of considerable value consists of the reference to 
already smoothed values obtained from a much larger group of risks of vari- 
ous risk sizes. Such values are available, for example, in the tables of x-ratios 
for New York workmen's compensation ri~ks prepared by the New York 
Compensation Insurance Rating Board. Such a procedure will, of course, 
include in the smoothing process any imperfections that were incorporated 
in the table used for reference by the methods of its development. 

The most important single statistic characterizing a set of x-ratios is the 
second moment of R, U2:~, of the distribution of risks which it represents. 
Just as the x-ratios can be calculated from the distribution of risks by R, so 
can the value of U2:~ be calculated from the x-ratios. The formula for doing 
this is based on the procedures of determining moments by successive sutn- 
mations and is: 

U2:~ = 2 B ~2 (x-ratios) + B --  1 
0 

class interval of the loss ratios in x-ratio table 
where B - -  

permissible loss ratio of the x-ratio table 

For the New York workmen's compensation table of x-ratios 

.010 
B --  = .016722 

.598 
and the formula becomes: 

U2:• = .033444 Z (x ratios) - -  .983278 
0 

The values of U2:R calculated from this formula for the New York x-ratio 
table are shown on Figure 3 plotted against the standard premium amount. 
Thus the standard premium amount in the New York Table can be read for 
any desired value of U2:R. 
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U2 :~ 
2.000 

FIOURE 3 

STANDARD PREMIUM AMOUNTS FOR VALUES OF U2:2 

NEW YORK WORKMEN~S COI~PENSATION INSURANCE 

ExcEss PURE PRE~IU~ RATIO TABLE 
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In the example we are using the value of U2:R was calculated from the 
individual risk values of R as .794. The equivalent standard premium amount 
from Figure 3 is $10,500. The x-ratios obtained from the New York table 
for this amount are compared below with those calculated from Exhibit A. 

.34497 

.69509 

.87015 

Corresponding 
Loss Ratio 

~-~ R X .598 

.2063 

.4157 

.5203 

From 
Exhibit 

A 

.680 

.444 

.360 

Excess Pure Premium Ratios 

From N. Y. 
x-Ratio Table 

Prem. = $10,500 

.679 

.448 

.361 

Normal Logari thmic 
Freq. Distribution 

(See Following 
Discussion) 

.687 

.453 

.366 
1.03491 .6189 .297 .297 .301 
1.38503 .8282 .200 .198 .199 
1.72485 1.0315 .144 .141 .136 
2.57955 1.5426 .065 .060 .055 
3.44455 2.0598 .037 .024 
6.18371 3.6979 .000 .003 

The x-ratios calculated on Exhibit A or obtained on the basis of the 
moments of R do not correspond to any particular premium size, being only 
averages applicable to the range of risk sizes from which they were obtained. 
The importance of this is seen from the fact that such an average is always 
less than the true value of the x-ratio corresponding to the average risk size 
of the size group. An example using x-ratios from the New York table will 
serve to demonstrate this: 

(1) 

Risk 

A 
B 
C 
D 

Average 
TrueValue 

(2) 

Premium 

5,000 
5,000 

10,000 
20,000 
10,000 
10,000 

E (S) xpected 
Lo~ses 

.598 (2) 

2,990 
2,990 
5,980 

11,960 
5,980 

(4) 
x-Ratio 

for 1~0% 
Loss Ratio 

.237 

.237 

.153 

.109 

.140 

.153 

(5) 
Expected 

Exce~s Loseel~ 
(3) X (4) 

709 
709 
915 

1,017 
837 

There is no way of directly calculating the true x-ratios following any pro- 
cedure such as that of Exhibit A. The proper correction can, however, be 
made in the determination of U2:R by obtaining its value from U2: (Co~ec~d*) 
or from U2:~,, as these functions are designed to provide the function of the 
average expected loss rather than an average function for all expected loss 
sizes in the size group. The value of U2:g determined from the W' moments 
is .883 in our example and corresponds to a standard premium of $9,800 in 
the table of New York x-ratios. Estimates of the true x-ratios on this basis 
compare with the calculated values from Exhibit A as follows: 
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R 

.34497 

.69509 

.87015 
1.03491 
1.38503 
1.72485 
2.57955 
3.44455 
6.18371 

Corresponding 
Loss Ratio 
: R X .598 

.2063 

.4157 

.5203 

.6189 

.8282 
1.0315 
1.5426 
2.0598 
3.6979 

Calculated 
x-Ratio~ 

F r o m  Exh. A 

.680 

.444 

.360 

.297 

.200 

.144 

.065 

.037 

.000 

Estimates of True  z .Rat ios  

F rom N. Y. 
x : Rat io Table 
P rem.  : $9,300 

.684 

.458 

.373 

.309 

.212 

.155 

.070 

Normal  Logar i thmic  
Freq. Distr ibut ion 

(See following 
discussion) 

.688 
.459 
.375 
.311 
.212 
.149 
.066 
.031 
.004 

The above smoothing procedure cannot be applied when it is known that 
the distribution of risks by R has a skewness widely different from that 
underlying the reference table x-ratios of the standard premium amount 
having the same U2:R. It obviously should not be used to develop a new 
table of x-ratio values. An independent procedure making use of all known 
facts should be applied in the latter case. 

There is one peculiar characteristic of an observed frequency distribution 
which should be recognized here. This is, that no matter how many observa- 
tions have been made, there is always the possibility that the next observa- 
tion will have a value greater than any yet observed. Similarly, for the loss 
ratio distribution, if no zero loss ratios have been observed, there is always 
the possibility that one will occur. The result is that any smoothing process 
applied directly to a frequency distribution will include the probabilities of 
more extreme cases occurring than any of those observed. 

This same condition when followed through into the x-ratios will produce, 
from a smoothed frequency distribution, higher x-ratios than those observed 
for high loss ratios and usually higher values for the low loss ratios. Inter- 
mediate values of the x-ratios will be uniformly lower than the observed 
values. Such a consistent departure of the smoothed x-ratios from those 
calculated from observations should not be viewed with alarm but should be 
recognized as the provision against the eventual occurrence of extreme cases. 

The normal logarithmic frequency distribution has been found to satisfac- 
torily fit many distributions of R. In the particular case in hand this distri- 
bution fits very well as shown by the following: 

Range of  R 

0- .19 
.20- .39 
.40- .59 
.60- .79 
.80- .89 

1.00-1.49 
1.50-1.99 
2.00-2.99 

3.00 & Over  

Actual No. 
of Risks 

16 
27 
22 
29 
19 
32 
10 
13 

5 
173 

Expected No. Based 
on Norma l  Log. 

Freq.  Distribution 

18 
25 
26 
23 
18 
80 
15 
12 

6 
173 

(A -- E)~ 

.22 

.16 

.62 
1.57 
.06 
.13 

1.67 
.08 
.17 

X 2 = 4.68 
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The value of 4.68 for Chi-Square, with n - -  6 (obtained by subtracting the 
3 parameters used in fitting the distribution from the 9 groups), represents a 
probability of between .5 and .7 that, purely as a result of chance variation, 
a divergence from the theoretical distribution as great or greater than that 
actually observed would occur. 

This distribution, or any other providing a reasonable fit to the observed 
data, may be used to smooth the observed data prior to the calculation of 
x'ratios from the formula: 

R -- r~fotf_.~ C t ' d t ' dR  
X ( R , ,  ~ )  : 1 - -  

VI:R 
which gives the x-ratio, to be applied when VI:B--1,  for values of 

R 
R' equal to V-~L'R" When the normal logarithmic distribution is used, the 

value of 4,5 and tf_~ ~e'd t can be read from tables of the normal distribution 
directly, and the value of ~fotf_~ 4~t'dt'dR can be calculated from these 
by the application of the Euler-Maclaurin formula which produces: 

~fotf_® dpcd t .dR- - -~  *(")f_~t .dt-[-w E e(,)f_~ dpt.dt 
0 

.03619117 w 2 

.03619117 w 2 
where G - -  to)f_c. ~ , . d t - -  ~,(o) and ao (R--a) 

where t --  loglo (R--a)--lo 
ae and, a, lo and a~ are the parameters of the normal 

logarithmic distribution, and where *f_~ ~t d t and ¢, are obtained for values 

of R starting with 0 and increasing by intervals equal to w. Thus 
R(,) - -  0 + n w and t(,) is the value of t corresponding to R(,). 

The application of this procedure to the previously used data to obtain 
x-ratios is shown in detail in Exhibit B. The results for specific values of B, 
obtained by second difference interpolation from the values in Exhibit B, 
have been previously shown for comparative purposes. 

In the above described processes the x-ratios are obtained on the basis that 
the difference between VI:~ and unity, its expected value, is a significant 
difference that should be carried through as an adjustment to the entire 
distribution of risks according to R. That is, the factor F ~ VI:R has been 
applied to the unit of measurement and, in effect, enters as F 2 into the correc- 
tion of V2:R and as F 8 for Vs.R. The actual facts of the case may be, however, 
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4 
5 
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7 
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10 
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E X H I B I T  B 

CALCULATION OF EXCESS PURE PREMIUM RATIOS BASED ON BEST F/TTING NORMAL L O G A R I T H M I C  FREQUENCY DISTRIBUTION 

(New York  S ta te  W o r k m e n ' s  Compensa t ion  R i s k s -  P r e m i u m  Size Group  $4,000 to $ 6 , 6 8 7 -  H a z a r d  Group  1) 
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that the observed difference between unity and VI:R is entirely the result of 
chance variations. Similarly the values of V2:R and Vs:R used to fit the 
theoretical distribution are likewise subject to chance fluctuations. The 
results of these chance fluctuations are readily seen when the values of t h e  
x-ratios, for a particular loss ratio, are plotted against the average adjusted 
size of risk for several risk size groups. Whatever method of calculation of 
the x-ratios has been used, such a chart will show an appreciable variation 
about a trend. Rather than use some artificial method of smoothing these 
x-ratios by size of risk, it would seem more reliable to use the available 
knowledge of the functional form of the variation in the mutually inde- 
pendent statistics: Vl:e-, (CV) 2, and a3:n-. From the results of C-3 of 
Part IV we have that these statistics are functions of E of the following form : 

E" VI:R~ - -  A ' E  

E" ( c g )  2 = B ' E  + C 

E.as.~. --D.E+F ]/-gq-Gq- H 
• v r ~  

where E is the expected loss and H and G are of least importance and should 
be disregarded unless a very large amount of data is available. In determin- 
ing the parameters in these equations the observed values for the various 
size groups should be weighted by the number of risks in the groups. 

When V~:R shows a consistent downward (or upward) trend as E increases, 
as often happens, the further problem arises as to whether such a trend 
should be recognized in the preparation of a table of x-ratios. If, for example, 
the table were to be used to experience rate all risks, it would be possible to 
have manual rates keyed to the level of losses of small risks and to include 
the credit (or debit) for the larger risks in the x-ratio table. The x-ratios in 
such a table would start at V~:R for a loss ratio of 0 rather than at unity. 
The usual procedure is for the rate structure to correct for any loss level 
differences by size of risk that are definite enough to be recognized. In that 
case, or if the table is not to be used for rating all risks, it is necessary to base 
the table of x-ratios on an adjusted value of VI:R of unity for all risk sizes 
and to carry this adjustment through into the values of E. 

The procedure developed by Mr. Dorweiler consisted of smoothing the 
calculated x-ratios for different size groups by the use of an empirical formula 
having no a priori relationship to the expected form of curve, and then 
smoothing such values for a single risk size by the judicial use of a french 
curve. Such a procedure obviously cannot be used if the data is available 
for only a single size group. Such a method would also produce consistently 
too low x-ratios due to the use of uncorrected size group averages as pointed 
out above. Within the range of the majority of observations, the results of 
different types of smoothing processes would differ only slightly. Beyond the 
range of the majority of observations, all methods are subject to the dangers 
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inherent in any attempt to extrapolate. Thus, the values in any x-ratio table 
for loss ratios above which only a few risks have actually been observed 
should be used only in conjunction with an appreciable "balance for 
contingencies." 

VII. 

T w o  KINDS OF CREDIBILITY 

When two sources of experience indicate different values of a statistic 
(claim frequency, average claim cost, pure premium, or loss ratio), it is cus- 
tomary to use a weighted average of the two using "credibilities" as weights. 
Such credibilities are, or may be, designed to accomplish one but not both of 
two separate results. One type provides an average value which will not fall 
outside of a specified range of accuracy in more than a specified proportion of 
all cases as a result of fluctuations in one value due to chance only. This type 
might be termed the limited fluctuation credibility and is the type generally 
used in developing manual rates. The other type is that designed to provide 
the most accurate average of the two values irrespective of how much varia- 
tion will result in the average and recognizing all types of variation in both 
of the individual values and not just the chance variation in one of them. 
This is the type of credibility that most actuaries have in mind in dealing 
with experience rating plans and which would be most effective if applied in 
retrospective rating plans. 

A. The "Limited Fluctuation" Credibility 

If the two sets of values to be averaged have the same average value, and 
if Z is the credibility given to the value which is subject to chance variation, 
then the variation due to chance in the weighted average will be Z times the 
variation due to chance in the value having such variation. If it is specified 
that B% of all cases may fall outside of the range to be specified, then the 

difference between the values in the ( 2 ) a n d  ( 1 - - 2 )  columns of Tables 5, 
% - - /  ~ - - J  

10, and 11 of Part II give the range of variation of the statistic. Furthermore, 
if the specified range is to be A % of the average, then 

A - - Z [ ( 1 - - ~ B 2 )  Value--  (-B2 --) Value]  

A 
and Z---- 

W o o  

where Z varies from 0 to 1.00. 
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It  has frequently been prescribed in developing credibility formulae that 
A --  B - -  10%. The following table shows the values of Z calculated from 
Tables 5, 11, and 10, respectively, with such specifications for each of claim 
frequencies, average claim costs, and for pure premiums or loss ratios. For 
comparison with these, credibility values are shown calculated from the 
formula: 

,j c 
Z "-- C for 100% Credibility 

It  should be noted that these credibilities for average claim costs, total 
losses, pure premiums, and loss ratios are applicable only to New York 
commercial automobiles--property damage coverage. 

COMPARISON OF "LIMITED FLUCTUATION" CREDIBILITIES 
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* F o r  co lumns  (2 ) ,  ( 3 ) ,  (6 ) ,  a n d  (7) these  a r e  the  expected n u m b e r  of c l a ims ;  
whi le  fo r  co lumns  (4) a n d  (5) t hey  a re  the  ac tua l  n u m b e r  of claims.  

B. The "Greatest Accuracy" Credibility 

In section I of Part I the least squares solution for Z in the formula: 
True Inherent H a z a r d : Z  (Actual Losses) + ( 1 -  Z)(Expected Losses) 

was found to be Z - -  U2:,~ where U2:,~ represented the second moment of all 
U2 :R' 
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types of variation of the actual losses from the expected losses except that 
due to chance, and where U2:R, represented the second moment of the ratio 
of actual to expected losses. In the notation of Part IV we would have : 

Z = U2:w, --  U2:R 
U2:R ~ 

where U2:w, is to be calculated from the data to which the credibilities are 
to be applied as outlined in Part V and where U2:~ is to be calculated from 
the moments of the distribution of claims by size of claim for the same data 
from the formula: 1 Vz..~- 

U2..R ---- ~ - *  V1 :x- 

One very important point in regard to this type of credibility is that it does 
not always or even usually have the range of possible values from 0 to 1.00. 
One extreme case is where the "expected" losses are those based on one year 
of actual experience and the "actual" losses are those of another year in which 
all elements of exposure and hazard remain unchanged. Under these condi- 
tions Z would be .50 irrespective of the value of E. In an application to New 
York commercial automobile property damage experience of individual risks, 
a minimum credibility of approximately .30 and a maximum credibility of 
approximately .85 have been developed. This only serves to remind us that, 
no matter how little experience is available for the most recent period, it is 
worth looking at and considering and, conversely, no matter how much recent 
experience is available, it is worth giving some consideration to the past 
experience. 

From section C-3 of Part IV we wouId evaluate Z as: 
V1 :u V~ =- 

Z : VI:~ " ~ + U2:M (I+V~:.¢) + V~:.¢ (1+V1:~) 2 

U2 :R t 

or, if adjustments have been made to eliminate rate level differences, 

Z : Us:u q- V2:.e -k U2:M" V2:.,, 
U2:R" 

for individual risk experience or 

Z : U2:u 
U2:R n 

for classification experience. In reviewing these formulae, it should be borne 
in mind that U::~ may vary by size of classification and V2:,~, may vary by 
size of risk. 

The most important feature, however, is that this credibility will be great- 
est when the new experience differs most from that underlying manual rates : 
that is, when there is the greatest need for a revision of rates, and will 
approach zero when the new experience evidences only chance variation from 
that underlying the existing rates. 


