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FURTHER TABLES ADAPTED FOR MACHINE
COMPUTATION

BY
F.S. PERRYMAN

In my previous paper, Proceedings, Casualty Actuarial Society, XXV,
entitled “Tables Adapted for Machine Computation”—which will be referred
to hereafter as “the previous paper’”’—I gave ten place tables of logarithms
adapted to be used on modern calculating (multiplying) machines. I also
gave some auxiliary tables of interest functions. The logarithm tables, how-
ever, were a little trouble to use, although of course we must expect a little
of that with such condensed tables, so I sought to get an arrangement easier
to use. This I found and it is described in Part II of this paper. Again, in
the previous paper, what I gave by way of interest tables were really only
tables of the fundamental values and not tables of values for immediate use:
the paper gave the procedure for obtaining the required values from the
given fundamental functions. Here again, I was not satisfied and endeavored
to get a set of tables giving the final values directly ; I was principally inter-
ested in tables of weekly annuity values as these occur frequently in Casualty
work. The set-up 1 finally devised is given in Part I of this paper.

Perhaps I should say a word here in anticipation of a type of criticism
that may be levelled against the results given here, by some hasty critics, on
the grounds that ten place logarithm tables and ready to use weekly annuity
tables are unnecessary luxuries or give needless accuracy. I don’t regard the
matter thus. The tables I give are, I believe, useful additions to the tools of
our profession: and it is a fitting example of the principle of division of labor
for one person like myself, who is interested in these things and likes working
them out, to undertake the work of preparing these tools and presenting them
to the profession. If the few pleasant hours I spent in putting this paper
together save members of the profession a few minutes work from time to
time, then my labor was useful as well as pleasant.

Parr 1

As stated above, in the previous paper I gave some tables of interest func-
tions which were merely tables of fundamental values that did not give
directly the values actually required in practice, such as values of annuities
certain.

One example in the previous paper—(8) on p. 142--did give, almost
directly, with the aid of a calculating machine, weekly annuity values at
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3%%% and this example contains the germ of the idea for a table to give such
values for any rate of interest. The first part of this paper will develop this
idea and give the necessary tables.

I will give the full tables for finding weekly annuities and indicate how
they can be used also for annual annuities payable either yearly or at more
frequent intervals.

The present value of an annuity certain of 1 per annum payable 7 times a
year for # years at rate of interest 7 is

1—.—e—8"‘ (T)

Jr

1
where, as usual, § =1log, (I'-+4) and j, =7 {(1 4 4)* —1]. The present
value of an annuity certain of 1 per week, for m weeks at rate of interest ¢, is
r—e"°) (i
Jr
" where 8 and j, have the same values as before and 7 is the number of weeks
~ assumed to be in a year.

As in the previous paper, we will give tables for » = 52 and for r = 52.1775
together with the interpolation procedure to be used for other values of 7,
such as 5214. .

Both (I) and (II) are of the form C (1 — e—F™) where B and C depend
only on the rate of interest and the value of ». So we can get annuity values
if we have tables of

A) {n} = 1 — e—*» for all values of #, £ being a fixed constant.
(B) B = _r% for weekly annuitiesor B = %for annual annuities.
(C) C = _]r_ for weekly annuities

or C= —J!— for annual annuities

for if we calculate # — Bm then the annuity value is

: C({1 —e*) or C{Bm}.

The tables for B and C are easily constructed and can readily be given for
all usual rates of interest and values of 7 required. On the other hand, the
construction of {#} requires some preliminary considerations. First of all,
in theory, it should proceed from # = 0 to n = infinity so as to give annuity
values for extended terms, but in practice it is desirable to limit the table to
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a reasonable size, say to 200 entries. Fortunately, we can do this conveniently
by choosing %, which can be any arbitrary number, so that ¢—200% =15, If
we do this and tabulate {#} for values of #» from 0 to 200, the table will

(i) directly give values for periods up to the number of years in which
money doubles itself at compound interest at rate ¢; namely, about
70/: years (or about 70 years at 1%, about 35 years at 2%, etc.).

(ii) give an easy formula for # greater than 200:
this is because
{n 4+ 200} =] —e—(n+2000k 1 __ %e—nk — 1/2 -+ 1/2 {n}
and {200} = %

—nk 8 _
Similarly {n+2005) =1 — £ -2 =1 {;}
and {200s} = 28; 1
So if n > 200 {n - 200} == 14 L 14 {n}
if > 400 {n 4 400} = 84 4 14 {n}
if » > 600 {n 4 600} = T - 14 {n}, etc.
So we put ¢—20%% — 14 which gives
B=1082 _ 003465735903
200 ’ )

then B, which is —;%—, will be approximately _{—8- and will vary from about .06

for i = 1% to about .4 for i = 714%.
Also for weekly annuities C which is —;— will be approximately %gand vary
r

from about 5200 for 1 = 1% to about 700 for ¢ = T14%.
Now since {#} will go from 0 at # =0 to ¥ at »# == 200, I find it more
convenient to multiply {»#} by 1000 and divide C by 1000 and so tabulate

(A) {n} = 1000 (1 — e="*)

8
(B) B=—¢
I 4
© =5

Thus {n} will go from 0 at =0 to 500 at » = 200, C will go from about
5.2 at 1% to about .70 at 714%, while B, as before, will vary from about
06 at 1% to .4 at T4 %.

One more difficulty remains and that is that of interpolating in the table
for {n}. Even though m is usually a whole number, the number 7, with which
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“we want to enter the table, will usually, except by sheer chance, consist of an
integer plus a decimal portion for it is equal to Bm and B is not integral.
Now as {n} = 1000 (1 — g—%»)
Af{n)= {n-1} —{n} =1000e~% (1 — %)
AM{ny=A{n4+1} — A {r} = —1000 g=* (1 — eg—¥)2
So —aA? {n} is about .012 at » = 0 and decreases to about .006 at 7 = 200.
Thus if we use ordinary first difference interpolation in the table for {n}

2
the maximum error, which is equal to I—A—S{ﬁ}—‘ would be between ,0015, the

value for # = 0 and .00075, the value for 7 = 200.

This is not accurate enough; for example, if # is less than 100 the maxi-
mum error may exceed .001 and thus the result is not reliable to 5 signifi-
cant figures.

We must thus use a more powerful interpolation procedure. We could
use second difference interpolation but it is awkward to do this, even with
a calculating machine, especially for the inverse interpolation which we have
to use to obtain # from {#}. Fortunately, we can get over the difficulty by
a simple procedure based on the fact that the differences of {n} are in
geometrical progression.

This procedure is arrived at as follows:

If we wish to obtain {# -}- ¢} where # is integral and ¢ is less than 1, then

{n+t} — {n} = 1000 e~*» (1 — e~ %)
A {n} = 1000 ¢=** (1 — g—¥)
o (- (m_1-—eH
' A {n} T 1l—ek
Put ? for the expression on the right hand side of the last equation. This is
independent of # and depends solely on ¢, as & is fixed. That this is so, arises
from the fact that A {»} is a geometric series. Thus {n-+t} = {n} + £ A {n}.
In other words, we use first difference interpolation, putting however ¢ for .
Now £ and ¢ are equal if £ =0 or 1 and are nearly equal if ¢ is between 0

and 1, as it is. ’
k:’lﬂ k3t3 _
jo k=12 T3
TR E
2, B
=t4+t(1—)E+t (1 —8) (A —28)%2 4 --
2 12

So if we put u = ¢ — ¢

uz_ﬂl_'_z__i)ﬁ. + .-
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and the maximum value of # is at £ = approximately 14

(more exactly 15 — — — =+ )

3
when © = approximately-g- (more exactly —g—g% + +-) or .00043322 - -

(See the appendix to this paper for mathematical details.)

Thus if we wish to have # and ¢ correct to five decimal places, when A {n}
will be correct to five significant figures or at least four decimal places, we

can get ¢ by adding to ¢ a correction # of less than .00044.

So we prepare an auxiliary table giving the ranges of ¢, to five decimal
places, for which an addition of .00001, or .00002, etc. up to .00043 must be
made to ¢ to get {. Naturally, the end points of these ranges are those for
which % is equal to .000005, .000015, etc. For example, the range of ¢ for
which # equals .00012, that is to say, that in which .00012 must be added to ¢,
runs from the value of ¢ for which # = .000115 to that for which % = .000125
and the table, Table 2, is so calculated. There will be two ranges for a given
value of %, one between 0 and the value of ¢ for which # Is a maximum and
the other between this value and unity (see Table 2). Table 2 is an example
of a so-called “critical table”.

Our complete procedure and a simple one can now be set forth, First, we
have the following tables given at the end of this Part I:—

Table 1 giving the values of {#} and A {#} for n =0, 1, 2, etc., up to 200.
Table 2 giving the value of # for all values of ¢ and ¢.

Table 8 giving the values of B and C for weekly annuities of 1 for r —= 52
and r = 52.1775 for all rates of interest at intervals of 14% from

%% to 1146%.

Second, to find the present value of an annuity for 1 per week for m weeks
at a given rate of interest, » being specified :

(i) Take out of Table 3, the value of B for the given i and 7.

(ii) Multiply m by B and express the result, in the form » + ¢ where n
is a whole number and ¢ a pure decimal to five places.

(iii) From Table 2, get the addition « to be added to ¢ to get ¢.

(iv) From Table 1, calculate {n 4t} = {n} 474 {n}

(v) Multiply {# 4-¢} by C from Table 3 for the given ¢ and r and

the result is the required present value.
The answer will be correct to four figures more than the number of figures
in the integral portion of {# -+ ¢} but in the calculation find {n - ¢} to five
decimal places.
If n exceeds 200, use the formula given at the foot of Table 1. The process

can obviously be reversed to find m, for a given 7 and r, from the present
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value by dividing the given present value by C, entering Table 1 inversely
with the result to get # - £, subtracting the proper value of # to get n 4 ¢,
and dividing #» 4~ ¢ by B to get m.

For working purposes, the method can be expressed a little differently and
perhaps a little more clearly, as follows:—

To find the present value of P per week for M weeks (» and ¢ being
given) take B and C from Table 3 and get

BM = the adjusted number of weeks
and CP = the adjusted weekly payment

Enter Table 1 with the adjusted number of weeks and multiply by the
adjusted weekly payment. The result is the required present value,
namely CP {Ba}.

To find, on the other hand, the number of weeks M, for which the
present value has given value X, find the adjusted number of weeks

BM from {BM} =_(:3£P and then divide by B to get M.

~ The whole procedure, whether direct or inverse, is very readily done
with a calculating machine.

1f we wish to use for 7 a value other than those given in Table 3, this value
will be obviously somewhere near 52 and we proceed by interpolating in
Table 3 for C. For example, for 7 = 5214, if the values of C for r = 52 and

1
r = 52.1775 are C; and C, respectively, we use C = Cy + —1—7/77—5— (Co — Cy).
52 B, '

As for B we use 531, where B; is the value for » = 52.
7k
A similar procedure can be used for annual annuities, i.e. 1 per annum
payable annually, half-yearly, quarterly, etc. The only change required is in
8

the B and C values. We must put B == 8 % 288.5390082, which does

not vary with the frequency of payment, and C = which does change

_1
1000;,
with the frequency of payment. It is usually, however, easier to use

tables of am’"andji, of which there are many available, but for complete-

T
ness I give in Table 4 the necessary information for calculating B and C
for annual annuities.

We can also use the tables for obtaining other interest functions. In fact,
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given the values of ¢ and 7, if for m weeks we calculate the value of
{n + ¢} = Bm we have

{n+ £} = 1000 (1 — o7

so the present value of 1 due m weeks hence is 1 — {___11(3)6;6}
and the amount of 1 accumulated for m weeks is ___19_0_0..__
1000 — {Bm}
and the sum of an an.nuity of 1 per week accumu- 1000 { Bm}
lated for m weeks is T000 — (B

to which we add our first result, the present value
of an annuity of 1 per week for m weeks is C {Bm}

We get similar expressions in connection with annual payments.
In Table 5, I have collected these formulas together for ready reference.
Some examples for the use of these tables follow. Most of these deal with
the same data as in the interest examples in the previous paper.

Exampizs oF THE Use oF THE TABLES

(1) Find the present value at 334% per annum compound interest of an
annuity certain of 12.83 a week for 400 weeks. (52.1775 weeks to the
year).

From Table 3 the “adjusted no. of weeks” is
400 X .20357946 — 81.43178
and the “adjusted weekly payment” is
12.83 X 1.4168287 = 18.177912
Now {81.43178} — 244.76371 - 2.61292 (.43178 4- .00043)
= 245.89304
so the required present value is 18.177912 X 245.89304
= 4469.822 to seven significant figures.
(2) Find the accumulated amount of the annuity in (1) at the end of the

400 weeks.
If V is the present value of 1 due 400 weeks hence, with the given data,

thenV =1 — ﬁl%%%@l = .75410696 and the required amount is the

present value found in (1) divided by V or 5927.305.

(3) Find the present value of 1625.14 at 334% per annum compound inter-
est due 400 weeks hence (52.1775 weeks to the year).
The value is 1625.14 < V or 1225.529.
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(4) Find the amount of 1625.14 accumulated for 400 weeks (52.1775 to the
year) at 384% per annum compound interest.
The amount is 1625.14 — V or 2155.052.

(5) Find the present value of the annuity in (1) if a year be assumed to
have 52 weeks. ' '

The “adjusted no. of weeks” is 400 3 .20427437 or 81.70975 and the
“adjusted weekly payment” is 12,83 3 1.4120072 or 18.116052 and the
present value is

18.116052 {81.70975}
or 18.116052 [244.76371 - (.70975 -+ .00036) 2.61292]
or 18.116052 X 246.61917
or 4467.766 to seven significant figures.
{6) For how many weeks will a payment of 1000 suspend an annuity certain

for 12 per week, at 3% per annum compound interest, allowing 52.1775
weeks to the year?

If w is the number of weeks we have
“adjusted no. of weeks”is 16345872 X w =n
“adjusted weekly payments” is 12 X 1.7647103 or 21.176524

and 21.176524 {»} = 1000.
So {n} = 47.22210
7 =13 4 (95770 — .00007)
for {n} — {13} = 3.16742 = .95770 X A {13)
= 13.95763
so 1w = 85.3893
(7) By how many weeks will a payment of 1000 now shorten an annuity
certain of 12 per week payable for 300 weeks, at 3% compound interest
per annum, 52.1775 weeks to the year?
If x is the number of weeks in the shortened annuity we have

B = .16345872
C = 1.7647103
and 1000 = 12 [C {800 B} — C {Bx}]
{Bx} = —47.22210 + {300 B} = —47.22210 4 {49.03762}
= 109.07210
So Bx = 33.32388
and x = 203.8673

So the annuity is shortened by 96,1327 weeks.
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(8) Find the present value of an annuity of 1 per week payable for 467 weeks
(52.1775 to the year) at 314% per annum compound interest.
Adjusted no. of weeks — 88.84124
Adjusted weekly payments — 1.5162249
Present value is 1.5162249 {88.84124} or 401.8169.

(9) Find the present value and amount of an annuity of 1, payable half-
yearly, for 50 years at 215% per annum.
B (= 52 B for weekly annuities 52 weeks to year) = 7.1247821
Adjusted number of years — 356.23911
{356.23910} = 500 -+ 14 {156.23910} = 709.05781
Divide this by 1000 j(2) (from Table II of the previous paper) which is
24.845673 and we get the required result of 28.53848.
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TABLE 1
n {n} A {n} n {n} A {n}
0 0.00000 3.46974 33 108.07148 3.08584
1 3.45974 3.44776 34 111.15732 3.07516
2 6.90750 3.43584 3b 11423248 3.06452
3 10.34334 3.42396 36 117.29700 3.05392
4 13.76730 3.41210 37 120.35092 3.04336
5 17.17940 - 3.40030 38 123.39428 3.03282
6 20.57970 3.38854 39 126.42710 3.02234
7 23.96824 3.37681 40 129.44944 3.01187
8 27.34505 3.36513 41 132.46131 3.00146
9 30.71018 3.35349 42 135.46277 2.99107
10 34.06367 3.34189 43 138.45384 2.98072
11 37.40656 8.33032 44 141.43456 2.97041
12 ~ 40.73588 8.31880 45 144.40497 2.96014
13 44.05468 3.30732 46 147.36511 2.94989
14 47.36200 3.20588 47 150.31500 2.93969
15 50.65788 3.28447 48 153.25969 2.92951
16 53.94236 8.27311 49 156.18420 2.91939
17 57.21546 3.26179 50 159.10359 2.90928
18 60.47725 3.25050 51 162.01287 2.89921
19 63.72776 3.23926 52 164.91208 2.88919
20 66.96701 3.22805 53 167.80127 2.87918
21 70.19506 3.21688 b4 170.68045 2.86923
22 73.41194 3.20575 55 173.54968 2.85930
23  76.61769 3.19466 56 176.40898 2.84941
24 79.81285 3.18361 B7 179.25839 2.83955
25 82.99596 3.17259 | 58 182.09794 2.82973
26 86.16855 3.16162 59 184.92767 2.81993
27 89.33017 3.15067 60 187.74760 2.81018
28 92.48084 3.13978 61 190.55778 2.80046
29 95.62062 3.12892 62 193.35824 2.79077
30 98.74954 3.11809 63 196.14901 2.78111
31 101.86763 3.10730 64 198.93012 2.77149
32 104.97493 3.09655 65 201.,70161 2.76191
33 108.07148 3.08584 66 204.46352 2.75234
{n+t)={n} +ta{n)
where ¢ = ¢ -} x from table 2
{n} =1000 (1 —e~*) €20%=2 % =.002465735903
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TABLE 1 (Continued)

79

”n {n} A {n} n {n} A {n}
66 204.46352 2.75234 100 292.89322 2.44640
67 207.21586 2.74283 101 295.33962 2.43794
68 209.95869 2.73333 102 297.17756 2.42951
69 212.69202 2.72388 103 300.20707 2.42110
70 215.41590 2.71446 104 302.02817 2.41272
71 218.13036 2.70506 106 305.04089 2.40438
2 220.83642 2.69570 106 307.44527 2.396056
73 228.53112 2.68638 107 309.84132 2.38777
74 226.21750 2.67709 108 312.22909 2.37951
75 228.89459 2.66782 109 314.60860 2.37127
76 231.56241 2.65859 110 316.97987 2.36307
77 234.22100 2.64940 111 319.34294 2.35490
78 236.87040 2.64022 112 321.69784 2.34674
79 239.51062 2.63110 113 324.04458 2.33863
80 242.14172 2.62199 114 326.38321 2.33054
81 244.76371 2.61292 115 328.71375 2.32247
82 247.37663 2.60388 116 331.03622 2.31444
83 249.98061 2.69487 117 333.35066 2.30693
84 252.57538 2.68589 118 335.656709 2.29845
85 2b5.16127 2.57694 119 337.95654 2.29050
86 257.73821 2.56804 120 340.24604 2.28258
87 260.30626 2.55914 121 342.52862 2.27468
88 262.865639 2.565029 122 344.80330 2.26681
89 265.41568 2.54147 123 347.07011 2.25896
90 267.95716 2.53268 124 349.32907 2.25116
91 270.48983 2.52391 125 351.58022 2.24336
92 273.01374 2.61518 126 353.82358 2.23561
93 275.52892 2.50648 127 356.06919 2.22786
94 278.03540 2.49781 128 358.28705 2.22016
95 280.53321 2.48917 129 360.50721 2.21248
96 283.02238 2.48055 130 362.71969 2.20482
97 285.50293 2.47197 131 364.92661 2.19719
98 287.97490 2.46342 132 367.12170 2.18960
99 290.43832 2.45490 133 369.31130 2.18201
100 202.89322 2.44640 134 371.49331 2.17447
{n41t} ={n} +-24{n}

t = ¢ + u from table 2
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TABLE 1 (Continued)

n {n} A {n} n {n} A {n}
134 371.49331 2.17447 167 439.41696 1.93947
135 373.66778 2.16695 168 441.35643 1.93276
136 375.83473 2.15944 169 443.28919 1.92007
137 377.99417 2.15198 170 445.21526 1.91941
138 380.146156 2.14453 171 447.13467 1.91277
139 382.29068 2.13711 172 449.04744 1.90015
140 384.42779 2.12972 173 450.95359 1.89956
141 386.55751 2.12235 174 452.85315 1.89298
142 388.67986 2.11501 176 45474613 1.88644
143 390.79487 2.10769 176 456.63257 1.87991
144 392.90256 2.10040 177 458.51248 1.87340
145 395.00296 2.09313 178 460.38588 1.86692
146 397.09609 2.08589 179 462.28280 1.86047
147 399.18198 2.07867 180 464.11327 1.85403
148 401.26068 2.07148 181 465.96730 1.84761
149 403.33213 2.06431 182 467.81491 1.84122
150 405.39644 2.05717 183 469.65613 1.834856
151 407.45361 2.06006 184 471.49098 1.82850
152 409.50367 2.04296 185 473.31948 1.82218
153 411.54663 2.03590 186 475.14166 1.81687
154 413.582563 2.02885 187 476.95753 1.80959
156 415.61138 2.02183 188 478.76712 1.80333
156 417.63321 2.01483 189 480.57045 1.79709
157 419.64804 2.00787 190 482.36754 1.79087
158 421.65591 2.00092 191 484.15841 1.78468
159 423.65683 1.99399 192 485.94309 1.77850
160 425.65082 1.98710 193 487.721569 1.77235
161 427.63792 1.98022 194 489.49394 1.76621
162 429.01814 1.97337 195 491.26015 1.76011
163 431.59151 1.96655 196 493.02026 1.76402
164 433.55806 1.95974 197 494.77428 1.74794
165 435.51780 1.95296 198 496.52222 1.74191
166 437.47076 1.94620 199 498.26413 1.73587
167 439.41696 1.93947 200 500.00000

(n+t) = (n} +Ta(n)

where t — ¢ + « from table 2

{r - 200} = 500 4 14 {n} _ 1000 | {n}
{n + 400} = 750 + 1 {n} {4+ 2005} = 1000 5= + 5
{n 4 600} = 875 + 14 {n}

etc.
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TABLE 2
t u t t ] ¢
.00000 0 .00000 43100 43 43143
.00290 1 .00291 56872 42 56914
.00873 2 00875 .60240 41 .60281
01464 3 01467 62748 40 62788
.02061 4 .02065 64838 39 64877
02667 b 02672 66668 38 66706
.03280 6 .03286 68317 37 68354
03902 7 .03909 .69829 36 69865
04532 8 04540 71234 35 71269
05170 9 05179 72552 34 12586
05818 10 .05828 J8797 33 .73830
06478 i1 .06487 74980 32 75012
07144 12 07158 76109 31 76140
07822 13 07835 77192 30 77222
08512 14 .08526 78232 29 78261
.09213 15 09228 79237 28 19265
09926 16 .09942 80208 27 80235
.10626 17 10543 81148 26 81174
.11393 18 11411 .82061 25 82086
12147 19 12166 82949 24 82073
12917 20 12937 83814 23 83837
13703 21 13724 84657 22 84679
.14507 22 14529 85480 21 85501
.15329 23 .15852 .86284 20 .86304
16172 24 16196 87071 19 87090
17035 25 17060 87841 18 87859
17923 26 17949 88597 17 .88614
18835 27 18862 89464 16 89480
19775 28 19808 90064 15 90079
20746 29 20775 90778 14 90792
21749 30 21779 91480 13 91498
22789 31 22820 92170 12 92182
23871 32 23903 92849 11 92860
.25000 33 25033 93518 10 93528
26182 34 26216 94176 9 94185
27426 35 27461 94825 8 94883
28742 36 28778 95464 7 95471
30147 37 .30184 96095 6 96101
.31659 38 .31697 96717 5 96722
33307 39 .33346 97331 4 973356
35137 40 .35177 97937 3 97940
37226 41 37267 .98536 2 985388
.39734 42 39776 99127 1 99128
43100 43 43143 99711 0 99711
t—=1¢t-u

For values of ¢, or ¢, bethen the values given use for # the value for the
next smaller value of £, or £.
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TABLE 3
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Values of B and C for Weekly Annuities of 1

r =52 r = 521775
i B C B Cc
% % 013854756 20.825489 .013807625 20.896578
%% 027675005 10.425478 027580859 10.461067
% % 041460918 6.9588010 041319874 6.9825563
1 % 0565212665 5.2254569 055024840 5.2432956
1%% .068930415 4.1854462 068695924 4.1997348
1%% 082614336 3.4921021 .082333295 3.5040223
18, % .096264594 2.9968534 095937117 3.0070848
2 % 10988135 2.6254142 .10950755 2.6343760
21,9 12346478 2.3365147 12304477 2.3444920
214 % 13701504 2.1053930 13654893 2.1125814
2% % 15053228 1.9629916 15002020 1.9228345
3 % 16401668 17587053 16345872 1.7647103
314 % 17746839 16253616 17686467 1.6309113
3% % 19088202 1.5110653 19023820 1.5162249
3% % 20427437 1.4120072 20357946 1.4168287
4 % 21762896 1.3253301 .21688861 1.3298568
4% % 23095148 1.2488491 23016581 12531137
4% % 24424209 1.1808649 24341121 1.1848974
4% % 25750094 11200358 25662496 1.1238607
5 % 27072818 10652887 26980721 1.0689267
5% 28392397 1.0157546 28295811 1.0192235
5% % 29708846 97072263 29607781 97403786
5% % 31022178 92960566 .30916645 .93278054
6 % .32332410 89191428 .32222420 .89496050
64 % 33639554 85723741 33525118 .86016526
614 % 34943627 82522723 34824754 82804582
634 % .36244642 79555093 36121343 79830486
T % .37642614 76806409 .37414900 77068755
1% % .38837557 74243822 38705437 14497420
%% 40129485 /71852009 .39992970 12097443
Weekly Annuity of 1 for W weeks = {W X B} X C
Values of {W X B} from Tables 1 and 2.
C Ce "

Note: B = 288.5390082 X -

1000 j,
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TABLE 4

Annual Annuities

Value of annuity of 1 per annum, payable 7 times a year for ¥ years,

= {V X B} XC
here B — 288.5390082 X &
e >§ lValue of 8 (=7,) and j, from Table
€= 0005 |T1 PCAS. XXV p. 1301
Value of {¥ X B} from Tables 1 and 2; or, preferably, value = {._____ifo())f)? }

where B = 52 X value of B for r = 52 in Table 3 and j, is taken from
Table IT P.C.A.S. XXV p. 130-1.

TaBLE 5
If a5, value of an annuity = C{N}
.. 1000
then s;7, amount of the annuity = 1000 — (N} X C{N}
and ", present value of 1 for the 1000 — {¥}
term of the annuity, = ~ 1000
1000

and (1 + #)", tofl ~ 1000 — ()
(1+4)7, amount of 1 for the term = 75o0——rrry
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Part II

In the previous paper I also gave tables for taking out rapidly, with the
aid of a calculating machine, logarithms and antilogarithms to ten figures,
These tables are based on the well-known factorial method and are reason-
ably accurate and rapid. Nevertheless, their use requires the splitting of a
number into four factors which takes a little time and care. If a method
could be devised to reduce the number of factors, to say two, the procedure
would be much simplified and speeded up. This method I shall give in this
Part IT; it rests on the same method of interpolation used in Part I for {z}.
We have seen that this stems from the circumstance that A {#} is a geo-
metrical series; if the differences of log #& for successive values of # formed
a geometrical series we could use the same method; however, this is not so
but the differences of antilog n% are, since *log—! nk = 10" which is itself
a geometric series for successive values of # and therefore its differences are
also. In fact Alog—1ink =1log~! (n+1) £ —log—' nk = 10" (10*—1). As
a matter of fact {#} in Part I is a kind of table of antilogarithms since {#}
is a thousand times the complement of the antilogarithm of n to the rather
unusual base of e—¥= .9965402.

The circumstances that we have to tabulate antilogarithms instead of
logarithms to be able to apply the special method of interpolation to obtain,
from a short table, results to a large number of figures, is no disadvantage;
for in using tables of logarithms or antilogarithms, we almost always have to
enter the tables first directly or inversely to get a logarithm and then later,
enter the table the other way to get an antilogarithm. In fact, some modern
calculators find advantages in tabulating antilogarithms instead of loga-
rithms. For example, Frederic Deprez, in the introduction to his “Tables for
Calculating, By Machine, Logarithms to Thirteen Places of Decimals” pub-
lished in Switzerland in 1939, states “It is well known that a table of
logarithms may be used directly for finding logarithms and inversely for
finding antilogarithms. After extensive research, the author has found it
better, when viewing the subject with the availability of calculating machines
in mind, to produce a table of antilogarithms, which is used directly to find
antilogarithms and inversely, to find logarithms. The advantages of this
method will be enhanced when the log of the final number desired can be
formed from tabulated logarithms, as is usually the case in interest calcula-
tions; this means that the tables are used more frequently directly than
inversely”. Incidentally, it is interesting to note that Mr. Deprez’ tables are
constructed on the factorial method.

* Note: We shall use, as convenient, both of the notations antilog N and log—1 N to
denote the antilogarithm of N, i.e. the number whose logarithm is N.
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As will be seen, our two tables for the two factors to which we shall reduce
the taking out of logarithms and antilogarithms will be, one, a log table and
the other an antilog table.

Let us then analyze a table of antilogarithms to base 10 with an interval
of 10—, that is to say, a table of log—* 10—" # as follows:

log=* .00+ (r — 1zeros)-+ 01
log—t.00--« (r — 1 zeros) - - - 02
log=* .00+« - (r — 1 zeros)+++ 03
etc.
(it is, of course, only necessary to tabulate antilogarithms between 0 and 1).
The differences are shown below where R is put for
10— = .00 - (r — 1 zeros)---.001
log A A?

Rn 10%» 10F» (10 —1) 10B» (10% —1)2

R(n<4-1) 10BGt+1)  J0B (»+1) (10 —1) 10% (»+D (10 —1)2

R{n<42) 10B®0+2) J0B (42 (108 — 1) 108 3+2) (108 — 1)%

etc.

A little study of this shows that ordinary first difference interpolation gives
about 27 places correct. Let us see how to increase this accuracy by a
‘method similar to that in Part I. Let us for shortness put temporarily
[n] for 10%»,

Then (4 1] = 10R™+D

A [n] = 10%» (10® —1)
[n+t] —[n]  10R—1
A [n] — 108 -1
and [n4t] = [n] + A [n]

where as before £ > 0 and < 1 and ¢ is nearly equal to ¢, for putting

£ = Rlog,10 = R X 2.30259: - -so that 10F — ¢*
ekt 1 _t(l—t)k

=71 say

?"—=7—’_—‘1" =1 5 -+ etc.- -+
and u::t—_"—-_—f—(l—z_.—t)k_ t(l—t;2(1—2t) B2 4+
The maximum value of # is when
t=1%+ 2_’54 _
and isu=—§——_5%%+...
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Now 2= R X 2.30259--- = .00 -+ (»r — 1 zeros) - - - 0230259~ - -

So the maximum value of # is approximately .00---(r zeros)---02878---

which is its value when ¢ = .500-- - (r 1 1 zeros)---096- - - approximately.
Thus if in the formula

[n4t]=1In] + (¢t —u) Aln]

we have [#] tabulated to 2 r 4 s significant figures then A [#] will contain
r 4 s or r -} s 1 significant figures and ¢ — % should consist of 7} s
significant figures, i.e. # must be found to s figures.

For example, to take the case of r =4 or R =.0001, 2 will equal
.0002302585- - - and the maximum value of # is .00002878 - - -, so if we want
results to 10 places, we must tabulate log .0001, log .0002, etc., to 10 places
which will give first differences with 6 or 7 figures. Then we must have
¢ =1 —u to 6 places at least, which means we must calculate # to two sig-
nificant figures and use ¢ with 6 figures. Thus # will not be greater than
.000029 and we will need a table of the values of #, for which # is to be taken
as .000000, .000001, .000002, etc., up to .000029. What we do is to calculate.
¢ to 6 significant figures for » — .0000005, etc., in a manner similar to that
explained in Part I. These values are given in Table III. Asin Part I, there
will, of course, be two ranges for which u is equal to a given value, the first
between 0 and the value of ¢ for which # is greatest and the other between
that value gnd unity.

We could, when and if we wanted to, proceed similarly for other values of
r and 5. For example, we could get 14 place antilogarithms by taking r =5
and s =4 when we would have to calculate the ranges of ¢ for # from

.000000001 up to .000002878.

To return to our 10 place tables, all we need now is a table of antiloga-
rithms of .0000, .0001, .0002, etc., up to .9999, together with the first differ-
ences (for they are convenient in performing the first difference interpola-
tions to which we have reduced the taking of values out of the table). This
would mean a table of 10,000 entries, too many to give in this paper. We
can, however, reduce this by using the same factorial method given in the
previous paper. The Table III of that paper gave the logarithms to 10 places

of 1.00, 1.02, etc., up to 10.00 at varying intervals such that the difference
between any two successive logarithms did not exceed the log of 1.022---

or .009545- - - so if we use this table—and it is given in this paper as Table 1
—and a table of antilogarithms of .0000, .0001, etc., up to say .0096 (about
100 entries) —see Table II—we can rapidly obtain 10 place logarithms and
antilogarithms.

The complete procedure is:
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First, the tables are:

Tablel. Values of log N for values of N from 1.00 to 10.00

Table II. Values of log—* M and Alog—*M for values of M by
intervals of .0001 from .0000 to .0100.

Table I1I. Values of ¢, % and 7.
Second, to find the antilog of a log supposed given to 10 decimal
places. Subtract the largest log in Table I that is less than the given log.

The remainder will be less than .0096. The first four decimals will be #
and the next six £. From Table III take out # and subtract it from ¢

to get £. Then log— (n +¢t) will be log=*n + ¢ Alog—!#n. Multiply
this by the number from Table I, whose log was subtracted in the first
step and the product to 10 places is the required antilog.

Third, to find the log of a number supposed given to 10 significant
figures, we reverse the process. Divide the number by the largest num-
ber in Table I that is less than the given number. Take the result to
10 significant figures and enter inversely in Table IT getting a result of
10 decimals. Adjust the last six from Table III by adding the proper
value of #. Finally add the log from Table I of the number used as
divisor in the first step. This gives the desired log.

Except for (i) the preparation of dividing by a number or subtracting by a
log from Table 1 and (ii) the completion by adding the corresponding
logarithm or multiplying by the corresponding number from Table I, the
whole operation consists of a first difference interpolation, either direct or
inverse, in Table I using an adjusted fractional part (¢ adjusted to ¢) from
Table IIT and it is decidedly easier and quicker than the fractorial method
of the preceding paper.

It might have been theoretically more consistent if instead of the table of
logs in Table I, T had given a table of antilogs of .01, .02, etc., up to 1.00,
as then we would be using antilog tables throughout and not one log and one
antilog table; but in practice this would not be so convenient for when
carrying out the multiplication in the last step of taking out an antilog, or
the division in the first step of taking out a log, we would be multiplying or -
dividing by a 10 figure number whereas in the procedure given above the
multiplication or division is by a 8 figzure number and this is a little easier.
Furthermore, as it happened, Table I was already available.

The arrangement of logarithmic tables as given here for 10 places is obvi-
ously, and as indicated above, applicable to tables with more or less figures.
I trust the 10 figure tables will prove useful. Tables of this power are not
very accessible.

A word as to the accuracy of these tables and logarithm tables in particu-
lar. No ten figure table is absolutely accurate to the tenth figure; it can’t
be, from the nature of things. The same is true of five or seven or any other
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figure tables. I will illustrate with seven figure logarithms for we can check
these with our ten figure table. A complete seven figure table gives, in effect,
the logs to seven decimals of all numbers from 1,000,000 to 9,999,999 or
10,000,000 and the logarithms go from .0000000 to 1.0000000: there are
9,000,000 possible numbers and 10,000,000 possible logarithms so there can-
not be one unique number for each logarithm. In actual fact the situation
is even worse because at the beginning of the table, say just over 1,000,000
the logarithms increase faster than the numbers and at the end of the table,
say near 9,999,999 the situation is reversed. Thus we get this sort of thing—
Near beginning of table:

log_N N (10 places) N (7 places)

~.0004004 1.000922380 1.000922

.0004005 1.000922610 )

.0004006 1.000922841 | *

10004007 1.000923071 1.000923

.0004008 1.000923302

0004009 1.000923532 )

.0004010 1.000923763

.0004011 1.000923993 1.000924

.0004012 1.000924224

.0004013 1.000924454

0004014 1.0003924685 1.000925

Near end of table:

N log N (10 places) log N (7 places)
9.600002 9822713233 9822713
9.600003 9822713684
9.600004 9822714136 9822714
9.600005 9822714588

- 9.600006 9822715039 9822715
9.600007 9822715491
9.600008 9822715943 9822716

At the beginning, to one seven-place number there belong 4 or even 5, seven-
figure logarithms: at the end, to one seven-figure logarithm there belong 2,
or even 3, seven-place numbers.

~ Absolute accuracy to the last place accordingly is not possible even apart
from the errors introduced by rounding in the course of the work. It is
remarkable, however, how little inaccurate seven-figure logarithm work is;
except for long calculations or special circumstances it is usually reliable to
six figures but if absolute seven-figure reliability is needed larger tables must
be used. That is one reason why I have prepared the ten-place tables: how-
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ever, it must be remembered that, similarly, these do not produce results
absolutely accurate to the last, tenth, figure.

In the appendix, I give for the more mathematically minded, some details
for the formulae for ¢ and «.

There follow now some examples of the use of these tables: most of them
are based on the same data as used in the examples of the previous paper.

Exampries oF THE UsE oF THE TABLES

(1) Find log 1.05:

Divide 1.05 by 1.04 the next largest number in Table I: the result is
1.009615385, to ten figures.

Antilog 1.009615385 comes between .0041 and .0042 in Table II. Sub-
tract antilog .0041 from 1.009615385; we get 0.000130083 which we
divide by A antilog .0041 or 0.000232469 getting .559571. This is ¢
which we adjust to ¢ from Table III by edding 28 units: ¢ = .559599.
So log 1.009615385 = .0041559599 and to get log 1.05 we add log 1.04
from Table I.

So log 1.05 = 0211892992,

(2) Find log—! .6:

Subtracting from .6 the largest possible log from Table I, namely,
log 3.92, we get .0067139330.
Then
log—1.0067139330 = log—*.0067 -}- (.139330 — .000014) Alog—* .0067
where the adjustment (subtraction) of .000014 is taken from Table III.
So from Table IT  log—!.0067139330 = 1.015546936 - .000032581
= 1.015579517

and log—?! .6 = 1.015579517 X 3.92

= 3.981071707

(3) Evaluate 1.23456789°-87654321 ;

1.23456789 + 1.22 = 1.011940893
log—1.0051 = 1.011812406

000128487

Divide by A log—*.0051 == .000233005 and we get .551435 which we
adjust by adding .000028.
So log 1.011940893 — .0051551463
Add log 1.22 = .0863598307

log 1.23456789 = .0915149770.
So log 1.234567899-87654321 — 1 0915149770 XX 9.87654321

= 10.7803948347.
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(4) Find ='?: (a) assuming r =
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To find log—! .7803948347 we subtract log 6 and get .0022435843 and
from Table III adjust the last six figures downward to 435815,
So log—1.002235843 =log—* .0022 4 .435815 A log—* .0022
= 1.005179411
and log 7803948347 — 6 X 1.005179411 = 6.031076466
Thus 1.234567399-87654321 — 60,310,764,660 nearly.
(The correct figure is 60,310,764,802.44- - -)

355

i3 (b) using the true value of

3.141592654- - -
We find log {'ﬁg 4971499094, log = = .4971498726.
Taking the antilogarithms of 19 times these we get

355\
(1—15) — 2,791,568 434

19 = 2,791,563,937

(5) Find a number such that its common logarithm (ie. to base 10) is

one-tenth of the number:

N
10 =logN.

If we make N go from O to plus infinity we find that ——

Let N be the required number. Then we have—
N .
10 —log NV is
plus infinity for N = 0, and plus infinity for ¥ = plus infinity.

1 loge

Its differential coefficient with respect to N is 0 W —=2"which is

tnegative from N =0 to N = 10loge =4.343--- and positive from

N
10 —log N = —.204 s0
therefore %— log V decreases continually from a positive value for
N = 0 to a negative value for N = 4.343 and then increases continu-

ally to a positive value for N — infinity. So there are two values of

there to N = plus infinity. At N =10 loge

N for which ——equa.ls log N, namely one value below 4.34--- and

one above 4.34--
As to the second value we recognize at once it is N =10 since
log 10 =1.

As to the first we find it is greater than 1 sincei% —log 1 is positive.
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From Table I we find N is between 1.36 and 1.38

N N
10 log ¥ 1o —log¥
.136 .1335389. - + .0024611- -
138 1398791- - — ,0018791- -
Difference .0063402- - .0043402- -

Since an increase in log N in the second column by .0063042 brings a

change (decrease) of .0043402 in y_ log N in the third column, a

10
change of .0024611 (which will make i’% — log N = 0) will be brought
about by an increase in log N of approximately .0063402 X %(%

or .0035952. So log ¥ must be increased by an amount between .0035
and .0036.
Making use of Table IT we get the following
log 1.36 -} .0035 = .1370389084 = log (10 X .1371004588)
log 1.36 4 .0036 == .1371389084 == log (10 X .1371320311)
Now what we want is to find ¢ such that in
log 1.36 4- .0001 (35 + ¢) = .137089084 - .0001 ¢
= log 10 (.1371004588 -+¢.0000315723)
we have
1370389084 + .0001 ¢ = .1371004588 —}-7 .0000315723
or t — .315723¢ = .615504.
As a first approximation we put £ = ¢; then we get ¢ = .899495 and for
this value of ¢ the value of « is .000010 and ¢ = ¢ — .000010. So putting
this value of £ in the equation we get £ — .899492.
Thus log 1.371288576 — log 1.36 -+ .0035899492 = .1371288576.

So 1.871288576- - - is the second value for which—l‘% =logN.

These two values, 10 and 1.371288575---, are examples of numbers
whose logs to base 10 have the same significant figures as the numbers.



Logarithms of Numbers from 1.00 to 10.00

TABLE I
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N log N N log N
1.00 .00000 00000 1.80 25527 25051
1.02 .00860 01718 - 1.83 26245 10897
1.04 .01703 33393 1.86 26951 29442
1.06 02530 58653 1.89 27646 18042
1.08 .03342 37556 192 28330 12287
1.10 04139 26852 1.95 29003 46114
1.12 04921 80227 1.98 29666 51903
1.14 05690 48513 2,01 30319 60574
1.16 06445 79892 2.04 30963 01674
1.18 07188 20073 2.07 31597 03455
1.20 07918 12460 2.10 32221 92947
1.22 08635 98307 2.13 32837 96034
1.24 09342 16852 2.16 33445 37512
126 . .10087 05451 2.19 34044 41148
1.28 10720 99696 2.22 34635 29745
1.30 11394 33523 2.25 .35218 25181
1.32 12057 39312 2.30 36172 78360
1.34 12710 47984 2.35 37106 78623
1.36 13353 89084 2.40 38021 12417
1.38 18987 90864 2.45 .38016 60844
1.40 14612 80357 2.50 39794 00087
1.42 15228 83444 2.55 .40654 01804
1.44 15836 24921 2.60 41497 33480
1.47 16731 73347 2.65 .42324 58739
1.50 17609 12591 2.70 43136 37642
1.53 18469 14308 2.75 43933 26938
1.56 19312 45984 2.80 44715 80313
1.69 20139 T1243 2.85 45484 48600
1.62 20951 50145 2.90 46239 79979
1.65 21748 3D442 2.95 46982 20160
1.68 22530 92817 3.00 47712 12547
1.71 23299 61103 3.05 48429 98393
1.74 24054 92483 3.10 49136 16938
1.77 24797 32664 3.16 .49831 05538
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TABLE 1 (Continued)

Logarithms of Numbers from 1.00 to 10.00

4

log N N log N
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TABLE II
M Antilog M A M Antilog M A
0000 1.000000000 230285 0025 1005773063 231614
.0001 1.000230285 230338 .0026 1.006004677 231668
0002 1.000460623 230391 0027 1.006236345 231721
0003 1.000691014 230444 .0028 1.006468066 231775
.0004 1.000921458 230498 0029 1.006699841 231828
0005 1.001151956 230550 .0030 1.006931669 231881
0006 1.001382506 230603 0031 1.007163550 231935
0007 1.001613109 230657 .0032 1.007395485 231988
.0008 1.001843766 230709 .0033 1.007627478 282041
.0009 1.002074475 230763 0034 1.007859514 232095
.0010 1.002305238 230816 .0035 1.008091609 232149
0011 1.002536054 230869 .0036 1.008323768 232202
0012 1.002766923 230922 0037, 1.008555960 282255
.0013 1.002997845 230976 .0038 1.008788215 232309
0014 - 1.003228821 231028 .0039 1.009020524 232362
0015 1.003459849 231082 .0040 1.009252886 232416
0016 1.003690931 231135 0041 1.009485302 232469
.0017 1.003922066 231188 0042 1.009717771 232523
0018 1.004153254 231242 0043 1.009950294 232577
0019 1.004384496 231294 0044 1.010182871 232630
.0020 1.004615790 231348 0045 1.010415501 232683
0021 1.004847138 231401 0046 1.010648184 232737
0022 1.005078539 231456 0047 1.010880921 232791
.0023 1.005309994 231508 0048 1.011113712 232844
.0024 1.006541502 231561 0049 1.011346556 232898
.0025 1.005773063 231615 .0050 1.011579454 282952

Antilog (M - .0001 ¢) = Antilog M + ¢ A
where £ = ¢ —u from Table III
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TABLE 1I (Continued)

M Antilog M A | u Antilog M A
.00650 1.011579454 232952 0075 1.017419366 234297
.0051 1.011812406 233005 0076 1.017653663 234350
0062 | 1012045411 | 233059 0077 | 1017888013 | 234404
0053 1.012278470 233113 0078 1.018122417 234459
0054 1.012511583 233166 0079 1.018356876 234512
0055 | 1012744749 | 233220 | .0080 | 1.018501388 | 234566
0056 1.012977969 233273 0081 1.018825954 234621
0057 | 1013211242 | 233328 0082 | 1.019060575 | 234674
0088 | 1013444570 | 233381 0083 | 1019295249 | 234729
0059 1.013677951 233435 .0084 1.019529978 234782
.0060 1.013911386 233488 0085 1.019764760 234837
0061 | 1014144874 | 233543 0086 | 1.019999597 | 234890
0062 1.014378417 233596 0087 1.020234487 234945
0063 | 1014612013 | 233650 0088 | 1020469432 | 234999
0064 | 1.014845663 | 233704 0089 | 1020704431 | 235053
0065 | 1015079367 | 233757 0090 | 1020039484 | 235107
0066 | 1016313124 | 233812 0091 | 1021174591 | 235161
.0067 1.016546936 233865 0092 1.021409762 235215
10068 | 1015780801 | 233919 0093 | 1021644967 | 235270
0069 | 1016014720 | 233973 0094 | 1021880237 | 235324
0070 | 1016248693 | 234027 0095 | 1022115561 | 235378
0071 | 1016482720 | 234080 0096 | 1022350939 | 235432
0072 1.016716800 2341385 0097 1.022586371 235486
0073 1.016950935 234189 0098 1.022821857 235540
0074 | 1017185124 | 234242 0099 | 1023057397 | 235595
0075 | 1.017419366 | 234207 0100 | 1023292992

Antilog (M -+ .0001¢) = Antilog M + £ A
where ¢ = ¢ — % from Table ITI
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TABLE III
t u K t % T
.000000 0 000000 450491 29 450462
004363 1 004362 549529 28 549501
013204 2 013202 605547 27 605520
.022209 3 022206 640807 26 640781
.031387 4 0313383 668857 25 668832
040749 b 040744 692871 24 692847
.050305 6 050299 714208 23 714185
060069 T 060062 7133605 22 733584
.070054 B 070046 151510 21 761489
080277 9 080268 768222 20 768202
.090756 10 090746 .7183953 19 783934
101509 11 101498 198856 18 798838
.112561 12 112549 813051 17 8130634
.122938 13 123925 826629 ~16 826613
.135669 14 1356565 839665 15 .839650
147791 15 147778 852219 14 852205
160346 16 160330 864341 13 864328
173383 i7 173366 876072 12 876060
186962 18 186944 887448 11 887437
201157 19 201138 898499 10 .898489
..216061 20 216041 909252 9 909243
231792 21 231771 919729 8 919721
248505 22 248483 929952 7 320945
266411 23 266388 939936 6 939930
285808 24 285784 949700 b 949685
307147 25 307122 959255 4 959251
331161 26 331135 968616 3 968613
359212 27 359185 877793 2 977791
.3944735 28 .394445 986798 1 986797
.450491 29 450462 995639 0 995639
T=t—u

For values of ¢, or ¢, between the values given use for # the value for the
next smaller values of ¢, or £.
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APPENDIX
In Part II we have ]
u=t—t=1t— ‘Z::ll
_! (12-t)k__z(1—%1—201‘22__:‘-’ (;;——t)2 2t r (@)
L (1—t) (1—27t2)0(1+3 £—310%) 0 ...

which is the fundamental equation.

In our case % is .0002302585--- and comes from e*=10%001 5o that
k = .0001 X log, 10.

Let the maximum value of #, for £ > 0 and < 1, be denoted by U, and let
the value of ¢ that produces UV be denoted by 7.

Differentiating the second equation of (i) by ¢ and setting du/d: equal to
zero to get the maximum value we have

kekT
ek —1
ek —1
E .

0=1-—

whence ¥ =

1 k1
and T = ~k~loge—e—k—

8 81
=%+ag gyt DT IR D)

where the numbers B, , are Bernouilli’s numbers.
Putting these values of T and ¢*7 in (i) we get

1 1
_E_ B L @stl) Byt
=g ~met ot ey —+ (it}

The main problem, however, that we have with equation (i) is to determine
the values of ¢ for which # has a given value. We could do this by solving
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directly the third equation of (i), by putting T: 1 — 22 =w and we get

_ w (2 —w) w (2 —w) .
b=Yh 5 gp 24 988z &t @ R (iv)

and for our purposes the first three terms of this are accurate enough and give'
t=1%%+ 5 £ 41

=%+g 4l 2L v)

However if z is small, i.e. if % is near to U, the series in (iv) is divergent

(this is because U <—%and so z = 0 gives imaginary roots in the third equa-
tion of (i)).
The correct method of finding ¢ accordingly is: from the second equation
of (i) and the first of (iii) we get
E(U—u)=e=D _k(—T)—1 (vi)
and we solve this for £ —7': note it is satisfied by u = U, t =T.

' 2
Ife"-—x—l:.—l

2
N ST SR AT A
then x=y— <+ 35— 375 + 1330 ~ Tioo T
N . —k¢2 —k2¢2—
so putting U/ —u = 5 and k(U —u) = 5 = 5

y2
we get k(t—T):y——€—+--

and

2(U =) op ...

t=TE¢——g—F—35 *t— 713

=1/2+1§___2ﬂ_13%1‘£k2_...+¢[1+ “py . ] (vii)

The first three terms of this are accurate for the calculations of this paper

and give
t=1/2+%—.i:{_2._(ik:& (viii).

which of course is practically the same as (v).
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For the Part I calculations we have to change the sign of %, and of #, and
we get similarly to the above

1— ek

k=g !
E o, &

[ VA, — e s
T=%— 317 3880

kR
U=g—%m T
t=T=*x=¢+ U—3—ui
_ " 9 (U —
"‘%_"é‘i ‘/—————*—( A “) near

or::%,——%:t ‘/%__giei enough.



