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A NOTE ON FULL CREDIBILITY 
FOR ESTIMATING CLAIM FREQUENCY 

J. ERNEST HANSEN* 

The conventional standards for full credibility are known to be 
inadequate. This inadequacy has been well treated in the Mayerson, et. 
al. paper’ and in the ensuing discussions,” where the general problem of 
estimating pure premium was considered. However, in spite of this 
previous treatment, that old, familiar number, 1,082, still enjoys wide- 
spread patronage. 

If, instead of estimating pure premium, we ignore claim severity and 
estimate only claim frequency, 1,082 claims, with the precision in esti- 
mation which it promises, is an acceptable standard, providing we are 
sampling from a homogeneous risk population and accept the usual 
assumption of mutual independence among risks having Poisson claim 
processes. However, we know the insureds are not a homogeneous popu- 
lation. We must provide for a distribution of the Poisson parameter over 
the population, referred to as the structure function.” The structure 
function introduces additional variation into the claim process which 
reduces the precision of estimation promised by the conventional credi- 
bility standards. 

The More General Model 

Let m denote the number of claims of an insured selected at random, 
and let h denote the parameter of his Poisson claim process for a given 
interval of time, i.e., the experience period. Then the unconditional 
probability distribution of m can be represented as: 
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P(m) = 
s 

F(mlh)f(A)dh, m = 0, I, 2, * * * 
A=0 

where P(mlA) is the Poisson claim process of an individual insured con- 
ditional upon A, and f(A) is the structure function describing the manner 
in which A is distributed over a population of insureds. 

The gamma distribution is often used as an example of a structure 
function, where we have: 

p(m) = 
s 

O” ,-AA”“-. &P e-LXX AI+-1 dA 
A=0 m! (/I - I)! 

where (Y and p are the parameters for the gamma distribution. Upon 
integrating, we have: 

Ptm)= (m+P-I)! 

m! (p - I)! (*)P~~)m,m=o,I,2 ,... 

The above representation of P(m) is in the form of a negative binomial 
distribution. 

Therefore, if we assume that individual insureds have independent 
Poisson claim processes and that the Poisson parameter is gamma dis- 
tributed over the population of insureds, and if we select insureds at 
random to observe m, then the number of claims from an insured, m 
has the negative binomial distribution. A number of researchers have 
found the negative binomial distribution satisfactorily fits automobile 
claims data4. 

From the general representation of P(m), again assuming a Poisson 
claim process for individual insureds, and using well known results from 
conditional probability, we can readily determine: 

Also: 

E(m) = EIEfm)lAA 
= E(A) 

Var(m) = Var[E(mjA)] + E[Var(m/A)] 
= Var(A) + E(A) 

4 H. L. Seal, Stochastic Theory of (I Risk Business, John Wiley and Sons, Inc., 
New York, 1969, p. 16. 



These results are immediate when we remember E(mIA) = Var(mlA) = A 

for the Poisson variable m with parameter A. Therefore, even though the 
mixed Poisson process P(m) can be mathematically difficult to work with, 
depending upon what structure function is selected, the mean and variance 
of m ‘are simply related to those of A. Considering a random sample of 
II insureds, we have, by invoking the Central Limit Theorem, the con- 
sequence that the sample mean, F is approximately normally distributed 
with a mean of E(A) and a variance of [Var(A) + E(A)]/n. 

The exponential distribution, with only one parameter, is a convenient 
choice for f(A) for a numerical example. If E(h) = .35, i.e., we expect 
.35 claims per insured for the experience period, then Var(A) = E”(h) = 

.1225 for an exponential distribution and FR is approximately normally 
distributed with the following parameter values: 

E(Z) = E(A) = .35 
Var(Fi) = [Var(A) + E(A)]/n = (.1225 + .35)/n 

= .4725/n 

If we want the estimator Fi? to be within 5% of E(m) with probability 
.90, we determine n as follows:6 

standard normal deviate, Z = iii - E(Z) 

ml 

1.645 = 
.05 x .35 

- 
.4725 - 

n 

n = 4,175 

The number of claims we could expect in a sample of this size would be: 

n l E(m) = 4,175 x .35 = 1,461 

Therefore, assuming an exponential structure function and an expectation 
of .35 claims per insured, we find that the standard for full credibility 
would be 1,461 claims in contrast to the conventional standard of 1,082 
claims. The difference is attributable to the additional variation in m 
introduced by the structure function. 

6 For an exponential structure function, iTi is a maximum likelihood estimator. 
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However, it is difficult to estimate the shape of the structure function 
for a particular population of insureds since an insured’s risk parameter 
is not an observable random variable. We can observe the number of 
claims of a particular insured over time for purposes of estimating this 
risk parameter, the insured’s expected claim frcqucncy, but the true 
expected claim frequency is never known with certainty. 

The conventional standards for full credibility are derived by assum- 
ing the structure function is concentrated at a single point,G i.e., the risk 
parameter A is assumed to be constant over the population of insured3 
and, therefore, Var(A) = 0. If we reconsider the previous numerical example. 
with E(A) = .35, but assume the structure function is concentrated at this 
point, we have: 

Var(m) = (0 + .35)/n 

Then : 

1.645 = .05 x .35 

4 
.35 - 
n 

n = 3,092 
The number of claims we would expect in a sample of this size would be 
3,092 x .35 = 1,082 claims. This is the answer we should have antici- 
pated, the conventional standard for full credibility. 

The conventional standard, being adequate only for an extreme and 
improbable case, violates one of the basic purposes for employing the 
techniques of statistical inference. This is to establish procedures for 
estimation which guarantee a level of precision in the estimates, e.g., a 
probability of at least .90 of being within 5% of the true average claim 
frequency. The levels of precision associated with conventional standards 
represent the most precision possible using these standards rather than the 
least; we have a ceiling on possible precision when what we want is 
a floor. 

Choice of the Structure Function 

An ideal choice for a structure function is one that leads to gen- 

0 Simon has used the term “isohazardous” to characterize such a population of 
insureds in his paper, “The Negative Binomial and Poisson Distributions Com- 
pared”, PCAS Vol. XLVII, p. 20. 
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erally conservative standards for estimating claim frequency. Toward 
this end, we can use the following result from reliability theory: the 
coefficient of variation for all distributions which have an Increasing 
Failure Rate is bounded above by that of the exponential distribution.’ 
In particular, gamma distributions which may be used as structure func- 
tions have increasing failure rates. 8 For such distributions, Var(A) is 
maximized, and Vat-(m) = I/ar(A) + E(A) is maximized by assuming an 
exponential structure function for a given value of E(A). The maximum 
variance of m will then be: 

max. Var(m) = EP(h) + E(A) 

Credibility standards based on this variance will be adequate for the 
entire set of structure functions; the standards will be based on the 
maximum possible rather than the minimum possible variance. 

In practice, the actuary is sufficiently familiar with the data he works 
with to select an upper bound ‘for E(A), the expected claim frequency. 
Then, using an exponential prior distribution, a more adequate standard 
for full credibility can be easily computed, as in the previous numerical 
example. Using the above expression for max. Var(m) and letting E denote 
the tolerance of error as a proportion of E(A), we can rearrange the 
formula of the example as: 

n=li-c!.Ze 
E(A) 2 

7 R. Barlow and F. Proschan, Matl~ematical Theory of Reliability, John Wiley and 
Sons, New York, 1965, p. 33. A distribution, f(x), is IFR, has an increasing failure 
rate, if f(x)/[I-F(x)] increases as x increases. If we restrict a population of insureds 
to lust those for which A > A., an arbitrary value of A, then the chance that an 
insured is close to A, is given by the conditional probability f(h,,)dA/[I-Ffh.)]. 
If f(A) is IFR, this conditional probability increases as A. increases. 

8 Gamma distributions which are asymptotic to the vertical axis are not intuitively 
appealing candidates for structure functions. 
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The following table was constructed using this formula with 2 = 1.645 
and E = .05: 

Full Credibility Standards with a Tolerunce of Error 
of 5% und 90% Confidence 

Upper Bound for Sample Size: No. Expected No. 
Cluim Frequency of Exposure Units of Claims 

.05 22,73 1 1,137 

.I0 11,907 1,191 

.15 8,298 1,245 

.25 5,412 1,353 

.35 4,175 1,461 

.50 3,247 1,624 

.75 2,526 1,894 
1 .od 2,165 2,165 
1.50’ 1,804 2,706 
2.00 1,624 3,247 
3.00 1,443 4,330 
5.00 1,299 6,494 

‘Conclusion 

.The conventional standards for full credibility are known to be 
minimal for the estimation of claim frequency. They are adequate 
only when the structure function is concentrated at a point. The expo- 
nential distribution appears to present a reasonable bounding case with 
respect to the additional variance introduced by the structure function. 
With the assumption of an exponential structure function and the 
selection of a maximum possible mean value for the Poisson risk para- 
meter, an adequate sample size for estimating claim frequency can be 
computed. 


