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ESTIMATING CASUALTY INSURANCE LOSS AMOUNT 
DISTRIBUTIONS 

GARY PATRIK 

I. INTRODUCTION 

It is often necessary to estimate probability distributions to describe the loss 
processes covered by insurance contracts. For example, in order that the pre- 
mium charged for a particular contract be correct according to any reasonable 
premium calculation principle, it must be based upon the underlying loss process 
for the contract. Practically, it is impossible to know the true underlying loss 
process, but a reasonably accurate estimate of this process can provide the basis 
for a reasonably accurate premium. One may discuss the loss process for an 
individual insured with a single coverage provided by a single contract, or for 
a group of insureds with multiple coverages provided by many contracts. 

This paper considers the estimation of individual loss amount (severity) 
distributions. The term “loss amount” is used to signify the total settlement 
value of a single loss event. The term “contract” will be used to define any 
particular situation: the context should make clear whether individual or group, 
single or multiple coverages and contracts are being discussed. 

I assume that for a particular contract at any point in time, there exists a 
probability distribution governing the loss amount for any loss event occurring 
at that time. There may be different distributions at different times, and they all 
may be interrelated and mutually dependent upon the number of events and their 
times of occurrence (Biihlmann (1970), p. 54ff). The distribution of loss 
amounts over a contract period is a function of the point-of-time distributions, 
the number of events and their timings. 

This paper concentrates upon probability model-building and statistical tech- 
niques for estimating and testing the model parameters. I describe a general 
procedure for selecting a “best” parameterized model based upon loss amount 
data. This solves only part of a broader problem, which is to estimate loss 
amount distributions for future coverage periods or (future) final-valued loss 
amount distributions for past coverage periods where the losses are not all 
settled or even known. To solve this broader problem it is necessary to specify 
models of the overall insurance loss processes, defining how the future relates 
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to the past and how the individual insured relates to the whole insurance 
portfolio. These models may be very simple or very complex, very loose or 
very mathematically precise, but we implicitly create them whenever we specify 
these future/past, individual/whole relationships. I will argue that a key com- 
ponent of the broader problem’s solution is the use of probability models for 
loss amount distributions. Although this paper ignores some of the broader 
issues such as trend, loss development, population structure (classification), 
etc., I believe that precise model-building and testing would also resolve many 
of the problems connected with these. 

This paper extends the work of Weissner (1978), who estimated report lag 
distributions from truncated data, to the estimation of loss amount distributions 
using censored and truncated data. The particular techniques were developed 
both for the estimation of commercial liability increased limits factors and for 
excess-of-loss reinsurance pricing. I would like to thank the following people 
for their contributions to this paper: Charles Hachemeister, Russell John, Mark 
Kleiman, Aaron Tenenbein, and Edward Weissner. 

II. MATHEMATICAL MODELS 

There are compelling reasons to use mathematical models to describe insur- 
ance loss amount distributions. In general, a model is a simplified, idealized 
interpretation of reality. A mathematical model describes the behavior of a real 
system by use of mathematical symbols, functions and equations. All science 
is a continuing process of model-building and model-testing (Kuhn (1970)). 
Wagner (1969) describes the purpose of a model as follows: 

Constructing a model helps you put the complexities and possible uncertainties 
attending a decision-making problem into a logical framework amenable to 
comprehensive analysis. Such a model clarifies the decision alternatives and their 
anticipated effects . . . In short, the model is a vehicle for arriving at a well- 
structured view of reality. (p. 10) 

But we must be careful: “The scientist who uses models in his reflections 
must always remain alert to the possibility that his questions are inspired only 
by properties of the model, having nothing directly to do with the subject matter 
itself” (Hanson (1971), p. 79). Because of this, some actuaries believe that we 
should not attempt to describe real loss amount distributions with mathematical 
models, but rather we should work with the raw data. This would be fine if all 
we wished to do was discuss sample realizations of historical loss amount 
distributions. However, as has been argued in the introduction, whenever we 
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want to extend or compare our various information, we must use some kind of 
model. Since this is the case in insurance work when we want to predict future 
possibilities, it seems clear that we should use mathematical models to describe 
loss amount distributions. 

However, we should not believe that we can build models which will 
completely describe reality.’ What we can hope for instead is to discover models 
which describe the salient features of a real system with some degree of accu- 
racy. Whenever we specify a model, we should test it to see if it adequately 
describes the real system it is meant to describe. 

I suggest that the type of model we should construct for a given loss amount 
distribution should be a probability model with only as many parameters as 
warranted by the data against which we will be testing it. Too few parameters 
and it is unlikely to adequately describe any given loss amount distribution; too 
many parameters and it becomes difficult to understand, difficult to work with 
and difficult to specify and test. Some of the advantages of such a “parsimon- 
ious” probability model are as follows: 

1. It can be easily understood. Its main characteristics can be clearly de- 
scribed and measured. 

2. It can be easily manipulated. For instance, loss development and infla- 
tionary trends might be accounted for simply by adjusting a few param- 
eters. 

3. It can be easily extended to more general cases or to analogous cases in 
a consistent manner. For example, some knowledge of the distribution 
of loss amounts up to certain policy limits might indicate something 
about the tail of the unbounded distribution. Also, we might expect that 
the loss amount distributions for similar lines of insurance would have 
the same general form. 

1 GCdel’s proof that any axiomatic system for the natural numbers must be incomplete (Giidel 
(1931), (1934) and Edwards (1967)) should lead us to suspect that if an abstract idealized mathe- 
matical system cannot be completely described, then any real system must be too complicated to 
be completely described by a model. 
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4. It can be easily restricted to particular cases in a consistent manner. For 
example, the distribution of Owners, Landlords and Tenants liability loss 
amounts for small grocery stores in Kansas might be a special case of the 
general countrywide distribution of Owners, Landlords and Tenants li- 
ability loss amounts. Also, the distribution of loss amounts for any 
particular policy limit might be a restriction of some general distribution 
of unlimited loss amounts. 

5. It can be tested using explicit statistical methods. For example, the fit of 
any probability model to any set of loss amount data can be tested via 
the Kohnogorov-Smirnov statistic or by other statistical tests. 

6. It can be used to compare or combine various contracts or sets of data. 
For example, for a given set of contracts, the probability models for 
various years can be explicitly compared in order to determine the effects 
of inflation. Or perhaps the relationship of the probability models for 
different contracts can be tested to see if it would be better to specify a 
single “credible” probability model for the group. 

Many possible forms of probability models for loss amount distributions 
have appeared in the literature. The Bibliography is a fairly comprehensive 
listing of relevant English-language papers and books; Johnson and Kotz (1970) 
is especially useful. 

The purpose of this paper is to describe a general procedure for selecting an 
adequate model for any particular loss amount distribution; I do not advocate 
any particular model. However, for illustration I will use the Pareto distribution 
of the second kind, also called the Lomax or Pearson Type VI distribution 
(Johnson and Kotz (1970), p. 233ff). Its cumulative distribution function 
(c.d.f.) for the random variable X is defined by: 

for all x 2 0 (2.1) 

where p > 0, 6 > 0 are parameters. 

This Pareto distribution is very easy to work with; a catalog of its main properties 
is given in Appendix A. The graph of its probability density function (p.d.f.) 
is shown in Figure 2.1. 
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PIGURE 2.1 
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In a slightly more complex form (to be discussed later), this model has been 
very useful both to myself and to the Insurance Services Office Increased Limits 
Subcommittee. It appears to more accurately account for large liability loss 
amounts than does the lognormal or other c.d.f.‘s we have tested. Other inves- 
tigators, such as Benckert and Stemberg (1957), Benktander and Segerdahl 
(1960), Mandelbrot (1964), Benckert and Jung (1974), Ramachandran (1974), 
and Shpilberg (1977) have found that this or the usual form of the Pareto 
describes fire loss data fairly well. 

We will next consider how to estimate parameters for any probability model. 

III. MAXIMUM LIKELIHOOD ESTIMATION 

Suppose that we have postulated a probability model, such as the Pareto 
distribution (2.1), to describe a given loss amount distribution. The next step 
in our procedure should be to estimate values for the parameters of the model. 

Suppose that we have a random sample of loss amounts and let us assume 
that they are properly adjusted to the level of the (future) distribution we are 
interested in. This is a strong assumption since, as already mentioned, we never 
see proper data because of the problems of individual loss reserve development, 
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IBNR, and time and population differences. However, let us start here; later we 
will discuss a simple way of handling the time (trend) problem. We can estimate 
the parameters first via the method of maximum likelihood. 

The situation is as follows: 

1. We are given a sample x1, x2, . . . , x,, which we believe to be distributed 
according to a c.d.f. of a certain form, F(x ) (3) = Prob [X 5 xl, where 
X designates the random variable and 8 = (13,) . . . , O,.} designates the 
indeterminate general parameter (actually, a set of individual component 
parameters) for the c.d.f. 

2. We want to find a paramter 8 such that the model with 8 as the value of 
0 “best” describes the data. 

The method of maximum likelihood chooses that parameter 8 which maxi- 
mizes the likelihood function: 

(3.1) 

wheref(xi 1 f3) is either the probability of xi given 8 or the p.d.f. evaluated 
at x given 0, depending upon whether or not the distribution function has a 
jump or is absolutely continuous at xi. 

Thus, 8 is “best” in the sense of being “most likely” given x1, x2, . . , xrl. 

For example, if F(x / 0) is our Pareto c.d.f. (2.1), then 8 = (0, S} and 

(3.2) 

Maximum likelihood estimation is a standard statistical method and much 
is known in general about the properties of maximum likelihood estimates 
(MLE’s). Kendall and Stuart (1967), Dudewicz (1976) and many other standard 
statistical texts discuss the general MLE properties, and many papers discuss 
particular examples. Appendix B outlines the general properties and describes 
how to calculate the estimates in the case of Y parameters. Essentially, we can 
expect that for large samples, MLE’s will be more accurate than any other 
estimates. Because of this it is surprising that the maximum likelihood method 
has not been used more often by actuaries. I believe the reason for this is that 
MLE’s are usually difficult to calculate-we must have detailed data and usually 
we must use some fancy iterative technique to approximate the MLE’s. How- 
ever, with modem computers the method is much easier; even mini-computers 
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can be programmed to approximate MLE’s very quickly for many of the 
standard probability models. 

The standard procedure is to set the first partial derivatives of the natural 
logarithm of (3.1) equal to zero. These first partials are of the form: 

(3.3) 

forj = 1, 2, . . . , r 

Setting these equal to zero gives us a system of r equations in the r unknowns 
8 1, * . ., (3, which we can solve by the Newton-Raphson iterative technique 
outlined in Appendix B. 

We will consider a few examples in this paper to illustrate that MLE’s can 
be much better than the standard method-of-moments estimates most often used 
in the actuarial literature. These are not presented as proofs; the proofs are in 
the statistical texts. These are simply illustrations. 

Let us begin with the simple case of our Pareto c.d.f. (2.1). Suppose the 
data are the set of loss amounts listed in Appendix C (column 1); these 200 
values are computer-generated pseudo-random Paretian values with parameters 
p = 25,000 and 8 = 1.5. These are realistic parameters for commercial liability 
losses. We can easily compare the MLE’s and the method-of-moments estimates 
to these values. To compute the MLE’s we must maximize the likelihood 
function (3.2). It is equivalent to maximize the loglikelihood: 

log L = log L(j?, 6) 

= n*log6+nS*logP-(6+ I)ilog(Xi+fl) (3.4) 
i=l 

If log L has second partial derivatives with respect to p and 6 existing 
throughout its range, then a necessary condition for a point (8, 8) to maximize 
log L is that the first partials evaluated at (p, 8) be equal to zero. The first 
partials are: 

y = fZS~* - (S + 1) * i$(Xi + p)-’ 

dlogL=n61+ 
as 

t2 . log p - 2 lOg(Xi + @) 
i=l 

(3.5) 

(3.6) 
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The second partials are: 

!!F-!!& = -&j w * P-” + (6 + 1) ’ j$l(& + P)-" 

* _ a2 log L n 

ati, ap ap . a* = W’ - jzl(x2 + P)-’ 

a2 = -&-2 
asz 

(3.8) 

(3.9) 

Since /3 > 0 and 6 > 0, the second partials exist throughout the range of 
log L. Thus, setting (3.5) = 0 and (3.6) = 0 defines a point (b, 8) which may 
maximize log L. We should check to be sure that (8, 8) indeed gives a maximum 
(see Appendix B). The equations can be solved by a simple iterative technique 
such as the Newton-Raphson technique (see Appendix B). 

For our Pareto example, the calculated MLE’s and the implied tail proba- 
bilities for amounts greater than 100,000 and l,OOO,OOO (calculated via (2.1)) 
are displayed in Table 3.1. 

TABLE 3.1 

PARETO 

P 6 Prob [X > lOO,OOO] Prob [X > l,OOO,OOOl - - 

Model 25,000 1 so0 ,089 ,004 
MLE 26,297 1 S86 .083 .003 
Method-of-Moments 56.042 2.371 .088 .OOl 

The corresponding method-of-moments estimates p’, 6’ are obtained by 
solving the two equations: 

p’ = sample mean = 40,880 
6’ - 1 (3.10) 

6’ . p2 

(8’ - 2). (6’ - 1)’ = sample variance = 10.683 X 10’ 

The method-of-moments implied probability that X > 100,000 is close to the 
true value, but the implied tail probability beyond 1 ,OOO,OOO is understated. 
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One property of the Pareto distribution is that any non-central moment E[Xk] 
for the unbounded c.d.f. exists only if k < 6 (see Appendix A). The method- 
of-moments estimates, by assuming the existence of the variance and thus of 
E[X], automatically forces 6’ > 2. Consequently, the method-of-moments es- 
timates based upon Pareto data with the true 6 < 2 will always produce an 
estimated c.d.f. with relatively fewer large losses than the true model. Let us 
note here that values of 6 less than 2 are typical for liability loss amount data. 

Next we will consider how to test a probability model with estimated 
parameters against the sample data, and we will discuss how we may select 
final models and parameter values. 

IV. MODEL TESTING AND PARAMETER SELECTION 

Now suppose that we have postulated a probability model to describe a 
particular loss amount distribution and from sample data we have calculated 
MLE’s of the parameters. The next step in our procedure should be to test the 
model and perhaps to modify the parameters for other considerations, such as 
credibility. 

We know that any model cannot be a perfect descriptor of reality, so we 
should only be looking for one that is good enough for the use to which it is to 
be put. I suggest that the following two tests are useful for determining whether 
or not a particular probability model with specified parameters adequately de- 
scribes a random sample from a particular loss amount distribution: 

Test 1: The Kolmogorov-Smirnov Test 

This is a standard statistical test that attempts to decide whether or not a 
given sample was generated according to a specified c.d.f. See Massey (1951), 
Kendall and Stuart ( 1967) or Conover (197 1) for good general discussions of 
the test. The test statistic is the maximum absolute difference between the 
specified c.d.f. and the sample c.d.f. That is, the test statistic D,, is defined by: 

where {xi} is the ordered sample x1 5 x2 5 . * . 5 x, 

S,,(xF) = + ; the value of the sample c.d.f. before the jump at xi 

(4.1) 

S,(,$) = f ; the value after the jump 
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Y 

F(xy ( 6) = lim F(x ( 0); the limit from the left of the values of the 
x’s;- 
specified c.d.f. 

F&X: ) 0) = lim F(x ) 13); the limit from the right. 
X+X,+ 

FIGURE 4.1 
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For any pre-specified confidence level, one rejects the hypothesis that the 
sample was generated according to a specified c.d.f. if the test statistic is greater 
than some critical value. Appendix C displays the K-S test of our Pareto c.d.f. 
with MLE parameters (Table 3.1) against the sample Pareto data. The K-S test 
statistic is .032 (Appendix C). Thus, using K-S test critical values from one of 
the aforementioned texts, we would not reject the hypothesis that the sample 
was generated by the specified Pareto c.d.f., if we were testing at a 5% 
significance level.* 

* K-S test critical values should be smaller when the parameters are estimated from the sample. For 
example, see Lilliefors (1969) and Dropkin ( 1964). 
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The K-S test is more powerful than the chi-square test, since it takes into 
account the natural order of the data while the chi-square test ignores this order. 
See Massey (1951) and Conover (1971) for comparisons of the two tests. In 
fact, a problem with the K-S test is that in practice it seems to be too powerful 
for testing c.d.f.‘s of loss amount distributions. At a 5% significance level it 
rejects any probability model yet tried for liability loss amount data. We will 
see an example of this later. Of course, the data we have may not be truly 
representative of the underlying loss amount distributions because of the pre- 
viously mentioned problems (development, IBNR, etc.). I believe that we 
should continue to use the K-S test because its properties are well known, and 
the value of the K-S statistics can help us decide among different c.d.f.‘s. 
However, we should have another test, to use in conjunction with the K-S test, 
which will not reject every probability model. The following test gives much 
useful information to an actuary. 

Test 2: Expected Value Comparison (EVC) Test 

This is a test of the expected value functions of the specified c.d.f. and the 
sample c.d.f. Define the following functions: 

G(x ) 6) = IsX * dF(X 1 0) + x * (1 - @ 1 0)) (4.2) 
0 

G,(x) = ; { 2 xi + x - (number of xi > x) 
Eiz%r 

A suitable EVC test statistic might be the vector of values: 

where x1 5 xz 5 * * * I x,, is again the sample. 

This test statistic is simply the relative difference of the expected value 
functions G(x ) 0) and G,(x) at each sample point. It is similar to the K-S test 
vector (not just a maximum). I don’t know of any statistical work which 
investigates the properties of this statistic, but it is certainly a good statistic for 
actuaries who are interested in losses per layer. Appendix C (last column) 
displays the EVC statistic (as a percentage) for our Pareto c.d.f. with MLE 
parameters (Table 3.1) against the sample Pareto data. Note that for these 200 
data points, the EVC statistic changes sign ten times and the largest absolute 
value is .0194 (-1.94%). 
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A reasonable decision rule might be: choose the probability model which 
has a low K-S test statistic and also has an EVC statistic which is close to the 
O-vector and which has random-looking sign changes. We will see applications 
of this rule in the following sections. 

After deciding which c.d.f. best describes a given sample of loss amounts, 
we should have further decision criteria which use additional information and 
knowledge to judge the reasonableness of the particular model. We want to 
know, for instance, that the particular model does not contradict our general 
knowledge of what loss amount distributions should look like based upon 
analogous data. Of the six advantages of mathematical models listed in section 
II, three have to do with extending to, restricting to, or comparing analogous 
cases. If we had a good broader model for how loss amount probability models 
should differ for different but similar contracts, we could test any particular 
c.d.f. against the general criteria. This is a deep problem in the realm of 
credibility theory, and it is certainly beyond the scope of this paper. However, 
in practice, since we actuaries do not yet have a comprehensive credibility 
model, we all use “actuarial judgment” to specify other pieces of the broader 
model. 

Next we will consider some practical modeling and estimation problems and 
revise our basic probability model to handle them. 

V. MODELING AND ESTIMATION PROBLEM 1: 

POLICY LIMITS BOUND THE LOSS AMOUNT DATA 

For most lines of insurance, loss amounts are inherently bounded by policy 
limits. If the parameters of an unbounded c.d.f. are estimated from bounded 
data, then the c.d.f. with the estimated parameters may greatly understate the 
true tail of the loss amount distribution. This happens because the unbounded 
c.d.f. does not expect the tail of the loss amount distribution to be cut off by 
the policy limit. 

For example, suppose our Pareto data in Appendix C (column 1) is limited 
to 200,000; we will then have 7 data points limited to the value 200,000. If the 
parameters are estimated by the method-of-moments formulas (3. lo), we obtain 
the results displayed in Table 5.1. The “censored” MLE results will be derived 
later. 
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TABLE 5.1 

PARETO (DATA LIMITED TO 200,000) 

P 6 Prob [X > lOO,OOO] Prob [X > l,OOO,~l - - 

Model 25,000 1.500 .089 .004 
Method-of-Moments 96,773 3.984 .059 .ooOl 
“Censored” MLE 25,119 1.533 .085 ,003 

Since the lognormal model has been used so often for loss amount distri- 
butions, I thought that a lognormal example would also be instructive here. 
Appendix D lists 200 computer-generated pseudo-random lognormal values with 
parameters and tail probabilities given by /.L = 9.0 and (+ = 2.0, where the 
parameterization used is the usual one with: 

F’rob [X I x] = 4 (log “,- “) 

where #‘y) is the normal (0, 1) c.d.f. 

The standard method-of-moments estimates p’ , (T’ are obtained from the 
data limited to 200,000 by solving the two equations: 

exp[y’+$) = sample mean = 28,166 

(exp {@} - 1) . (mean)” = sample variance = 2.204 X log 

(5.2) 

Solving these we obtain the results displayed in Table 5.2 as “Method-of- 
Moments I.” 

TABLE 5.2 

LOGNORMAL (DATA LIMITED TO 200,000) 

El. (T Prob [X > lOO,OOO] Prob 1X > 1,000,0001 - - 

Model 9.000 2.ooo .104 .008 
Method-of-Moments I 9.581 1.153 .047 .OOOl 
Method-of-Moments II 8.950 1.897 .088 ,005 
‘ ‘Censored” MLE 8.980 1.973 .lOO .007 
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Alternative method-of-moments estimates p”, o-” can be obtained by con- 
sidering the natural logarithms of the data limited to 200,000 to be normally 
distributed and taking the usual method-of-moments estimates for the normal 
distribution, e.g., $’ = mean of the logs, etc. The results are displayed in Table 
5.2 as “Method-of-Moments II.” The “censored” MLE results will be derived 
later. 

The c.d.f.‘s with the method-of-moments estimated parameters underesti- 
mate the tail probabilities. These examples are important because this method 
has been used exactly as shown here so often in actuarial work. 

Thus, our probability model must account for the effect of policy limits. 
When policy limits have been recognized in the actuarial literature, there seems 
to be a standardized model for liability losses. See Benktander and Segerdahl 
(1960), Lange (1969), Miccolis (1977) among others. They postulate that for 
liability loss amounts, for each particular type of business and type of coverage, 
there exists a unique underlying probability law dictating the distribution of loss 
amounts in the absence of policy limits; call this implied c.d.f. F(x ) 0). The 
standard model hypothesizes that any policy limit c acts on the losses as a 
“censor” in the following sense: any loss which naturally would be greater than 
c is artificially limited to amount c. The bounded c.d.f. F(x 1 0; c) for policy 
limit c can be written: 

F(x 1 8; c) = (:” ’ @ ifx<c 
ifxrc (5.3) 

The probability functionf(x 1 8; c) is given by Ax 1 8; c) = f(x ) 0) for x < c, 
and there is a discrete probability point massf(c 1 0; c) = 1 - F(c- I f3) at the 
point c, where F(c- 1 0) = lim,,,- F(x 1 0). The graph of f(x 1 8; c) may be 
illustrated loosely by Figure 5.1. 

There is no standard model for property loss amount distributions. See 
Benckert and Stemberg (1957), Bickerstaff (1972), Benckert (1962), Benckert 
and Jung ( 1974), Shpilberg (1977) among others. Many investigators have 
studied the distribution of the individual loss amount ratioed to the policy face 
amount for particular groups of fire insurance contracts. They have proposed 
either an inherently bounded c.d.f. such as the Beta distribution or some kind 
of censored model similar to the standard liability model. 

We proceed with the censored model (5.3). 
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FIGURE 5.1 
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Suppose that x1, x2, . . . , x, is a sample of loss amounts which we believe 
to be distributed according to a censored c.d.f. of the form (5.3), where c is the 
policy limit. We may reorder the Xi’s so that the first n - m are less than c and 
the remaining m are equal to c, i.e., 

x1 I x2 5 . . * 5 x,,-, < c, x7,-,+* = - * * = x,, = c. 

In this case, the likelihood function for the censored c.d.f. (5.3) can be written: 

L( 8; c) = [ ‘zf(Xi 1 ej} * { 1 - F(c- I e)p 
i=l 

(5.4) 

We can continue from here to find MLE’s for the parameters by using the 
standard techniques discussed in Appendix B. Note that we will be solving a 
system of equations of the form: 

a log L 
~ = T~(x[ I e)-1 . (w) 

%j 

- m . (1 - F(c- 1 e)>-1 . (V) (5.5) 

forj = 1, 2, . . . , r 
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This is simply (3.3) with the addition of a censorship term. (Remember that II 
in (3.3) corresponds to n - m in (5.5).) Note that the resulting MLE’s are the 
parameters for the unbounded c.d.f. F(x / 6). 

We can illustrate this with our Pareto example. The Pareto censored c.d.f. 
is given by: 

1 - [P/(x + PP F(x~/~,&c)=[~ for 0 5 x < c 
for x 2 c (5.6) 

where /3 > 0, 6 > 0 

The loglikelihood function is then: 

log L = (n - m) * log 6 + nS * log j3 
n-m 

- mS . log (c + /3) - (6 + 1) + C log (xi + p) (5.7) 
i=l 

Note that this is simply (3.4) with the addition of the censorship term: 
mS . log /I - mS + log (c + p). (To see this, note that n in (3.4) becomes 
n - m in (5.7).) We can compute the first and second partials as before and use 
a Newton-Raphson iteration to approximate the MLE’s. For our Pareto data in 
Appendix C (column 1) censored to 200,000, we obtain MLE’s and estimated 
tail probabilities displayed in Table 5.1 as “censored” MLE. These are quite 
different from the method-of-moments estimates in Table 5.1 and are quite close 
to the true values. 

The MLE’s and estimated tail probabilities for our lognormal data in Ap- 
pendix D censored at 200,000 are displayed in Table 5.2 as “censored” MLE. 
Again, these are quite different from the method-of-moments estimates in Table 
5.2 and are quite close to the true values. Of course, we could compute correct 
method-of-moments estimates accounting for the policy limit censorship. But 
the equations that must be solved are much more complicated than the general 
equation (5.5). 

Insurance loss amount data are usually from a mixture of contracts with 
different policy limits. Since the standard liability model postulates a single 
underlying distribution F(x 1 13) for unbounded loss amounts for a particular type 
of business at a particular time, the data from all policy limits should be used 
simultaneously to estimate the model for this distribution. The maximum like- 
lihood method allows us to do this very easily. 
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Suppose that {xki} is a sample of loss amounts which we believe to be 
distributed according to the same unbounded c.d.f. except that for each k, the 
Xki’s are censored by policy limit c le. Again, we may reorder the Xki’s so that for 
each k, the first TZ~ -mk xki’s are strictly less than ck and the remaining mk are 
equal to ck. In this case, the general likelihood function for the total sample is 
simply the product of the likelihood functions for each policy limit: 

L(B; Cl, . . . ) 6) = kfilL(e; ck) (5.8) 

Since the general likelihood function is a product, the loglikelihood and all 
its partial derivatives will be sums of the individual censored components. 
Writing it all out results in equations terrifying to behold, but whose solution 
is really quite straightforward in practice. For example, (5.5) becomes: 

(5.9) 

forj = 1, 2, . . . , r 

There may be a problem with the MLE’s in this general censored case. 
Since the general likelihood function (5.8) is a product of likelihood functions 
with respect to different c.d.f.‘s (because of different censorship points), the 
properties discussed in Appendix B may not hold. The theoretical results on the 
properties of MLE’s have been derived for a likelihood function with respect to 
a single c.d.f. I have not seen any derivation of the properties of MLE’s for the 
general likelihood function (5.8). However, in practice thus far we have noticed 
no strange behavior of the resulting 6. 

We will see an example of data from mixed policy limits in section VIII 
when we consider the problem of having data from many dates of occurrence. 

VI. MODELING AND ESTIMATION PROBLEM 2: 
THERE ARE MORE SMALL LOSSES THAN CAN BE PREDICTED BY THE USUAL 

MODELS 

A problem encountered when we attempt to describe liability loss amount 
data by one of the usual c.d.f.‘s, such as the Pareto or lognormal, is that there 
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are more small loss amounts than the model predicts. Appendix E, Part 1, 
displays an IS0 Owners, Landlords and Tenants bodily injury liability loss 
amount data summary for policy limit $300,000 for policy year 1976 evaluated 
as of March 31, 1978. The number of losses below $8,000 is more than 
predicted by any model that I or the IS0 Increased Limits Subcommittee have 
tried. Forcing one of these probability models to fit the total distribution will 
cause the model to greatly understate the potential tail. 

To account for the many small “nuisance claims,” Hewitt and Lefkowitz 
(1979) worked with mixed c.d.f.‘s such as: 

where 0 5 p 5 1 

G(x 1 0,) is gamma with parameter 0, 
H(x / 0,) is loggamma or lognormal with parameter OH 

The rationale for this model is that there may be two distinct loss amount 
generating processes, where some losses are “regular” large losses and may be 
described by a c.d.f. H(x 1 0,), while others are “nuisance” small losses which 
may be described by a c.d.f. G(x ) 0,). 

For a sample xi, . . . , x,, generated according to this loss amount distri- 
bution, the loglikelihood function is: 

10gL=i~llog~~g(xi/8,)+(1-p)~h(x,/BH)} (6.2) 

where g and h are the relevant p.d.f.‘s. 

We can certainly calculate MLE’s for this model, although one can see that the 
equations will be complicated and that we will have many parameter components 
0,) 0, and p to consider simultaneously. 

A much simpler alternative model may be used if we are primarily interested 
in the large losses and thus want to concentrate upon estimating the tail of the 
loss amount distribution. This model assumes that the overall distribution splits 
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into two distinct pieces above and below some truncation point t. The overall 
c.d.f. F(x) can be written as follows: 

F(x 1 ect &, t, P) = (6.3) 

1 
(*) * G(x ’ eG) for x 5 t 

( 
1-P 

p + i - fqt I e,) > 
- cm I 0,) - wt I 68 for x > t 

whereO5pS 1 andtr0 
G(x 1 0,) = small loss amount c.d.f. 
H(x ( 0,) = large loss amount c.d.f. 

If g(x I 0,) and W I ed are the respective p.d.f.‘s, the graph of the overall 
p.d.f. f(x ( t&, e,, t, p) is shown in Figure 6.1. 

FIGURE 6.1 

GRAPH OFT =f(xl&, OH, t,p) 

Y 

0 

A y = (&f--$(xie,) 

t X 

The picture is intentionally drawn so that the graphs do not match up at t, 
i.e., f(x I e,, eH, t, p) is not necessarily continuous at t. Unless we are pricing 
small deductibles, we are primarily interested in H(x 1 OH) and need only gross 
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estimates of G(x 1 f3,). In this case, there is no need to try to force continuity 
at t. For commercial liability data, good values for t seem to lie between $2,000 
and $8,000. 

In practice, it is convenient to specify a value for t so that it is no longer an 
indeterminant parameter. Maximum likelihood estimation for this model then 
becomes very simple, because the parameters 0,) 0, and p may all be estimated 
separately. That is, the following lemma holds: 

Lemma: Assume that for the model (6.3), t is fixed and 0, and & are disjoint 
sets.3 Suppose that x1, . . . , x, is a sample generated according to the 
modelandxi~tfori=1,2 ,..,, mandq>tfori=m+l, 
m + 2, . . . , n. Then: 

1. @ = (m/n) is the MLE for p 
2. The MLE’s & and 8, are obtained independently from the subsamples 

{Xl, . . . 7 x,} and {x,+i , . . , x,,} respectively. 

The proof of this lemma is obvious once we write out the loglikelihood 
function: 

hmh, e,,p) = i: 10gf(xi I e,, 644 
i=l 

(6.4) 

= I? log [ (*) * dxi I e,,} i=l 

+ i log 
i=m+l I( 

1-p 
1 - wt I 0,) 

) . hh I e,)} 

= m . log p - m . log G(t I 0,) + 2 log g(xi I 0,) 
i=l 

+ (n - m) . log (1 - p) - (n - m) * log (1 - H(t I &>} 

+ ,=i+, 1% Wi I hd 

= m * log p + (n - m) * log (1 - p) 

+ 5 log g(xi I e,) - m . log G(t I 0,) 
i=l 

+ ,$+, log h(xi I 0,) - (n - m) . log (1 - Wt 1 &)> 

R Bc and 0, have no elements in common. 
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Since the loglikelihood splits into three parts dependent upon p, O,, and 0, 
respectively, then the first partial derivatives with respect to p, r3c, and 0, 
depend only upon those three parts respectively. 

This model and the lemma allow us to split the Owners, Landlords and 
Tenants bodily injury liability loss data at $8,000, for example, and to estimate 
the distribution of the large loss amounts by: 

1. estimating p from the relative number of large and small loss amounts; 

2. estimating 0, strictly from the large loss amounts. 

If H(x / &) is our Pareto c.d.f. censored at c = $300,000 (5.6), then (6.4) 
and (5.4) together say that 0, = {fi, S} may be estimated from the loglikelihood: 

n-m’ 

1% L = C log h(x 1 P, S> + m’ * log (1 - H(C I p, s)} 
i=m+l 

- (n - ml * log (1 - H(t ( p, 8)) (6.5) 

= i;g 1% ((xi +“p;)*+l + m’ > . log k+$) 

- (n - m> . log ((g-f-j)‘) 
= (n - m - m’) . log 6 + (n - m - m’) * log p 

n--m 
- (6 + 1) * j=;+l log 6% + p> 

+ m’6 * log p - m’6 * log (c + /3) - (n - m)S . log p 

+ (n - m)6 * log (t + p) 

n-m’ 
= (n - m - m’) * log 6 - (6 + 1) * i=z+l log (xi + /3) 

- m’8 * log (c + p) + (n - m)6 * log (t + /I) 

where n - m = total number of xi > t 
m’ = number of loss amounts equal to c 
t<Xi<cfOri=m+ l,m+2,. . . ,n-mm’ 
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The MLE’s of P, 6 and p for our Pareto c.d.f. fit to the 0. L. & T. data 
excess of $8,000 in Appendix E, Part 1, are displayed in Table 6.1 as 
“Pareto MLE I” where for the fitted Pareto, the tail probabilities are: 

P[X > x j 8, &@I = (1 - 6) . (3) fi from (6.3) 

TABLE 6.1 

PARETO FIT TO 0. L. & T. DATA 

P 6 P P[X > 100,000] P[X 2 300,0001 __ - 

Data NA NA .950 .0016 .0004 
Pareto MLE I 1,463 1.453 .950 .0016 .0003 
Pareto MLE II 347 0.877 NA .0069 .0027 

Appendix E, Part 2, displays the results of the K-S test and the EVC test. 
The Pareto model, of course, fails the K-S test. But the EVC statistic does 
not look bad: there are eight sign changes, the last component is - .0187 
(- 1.87%) and the absolute maximum 0.056 (-5.60%) occurs in the same 
interval ($9,000 - $lO,ooO) as the K-S maximum. The Pareto c.d.f. fits better 
at the upper end and the expected value functions coincide well. If we fit the 
Pareto model to the overall loss amount distribution, the results are worse. 
The results are displayed in Table 6.1 as “Pareto MLE II”; note how poorly 
this “untruncated” Pareto c.d.f. predicts the tail probabilities. Appendix E, 
Part 3, displays the K-S test and EVC test results for this “untruncated” 
Pareto. The results are opposite those which usually occur; in this particular 
case, both the tail probabilities and expected values are too high for the Pareto. 
The point here is that the “untruncated” results are misleading. 

A word about the data. Remember that these are a full policy year of 
incurred loss amounts evaluated at 27 months and grouped by intervals. They 
are immature (individual loss reserve development), incomplete (IBNR), from 
loss events occurring over a two year period, and are not listed by individual 
loss amount for the MLE procedure. Thus any remarks regarding the approxi- 
mation of the true underlying distribution are tentative. I decided to use unde- 
veloped and incomplete data for this example so as not to get involved in the 
question of how to develop and complete it. Unsatisfactory though the data are, 
I hope that the example is illustrative. 
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A word about using data summarized by interval, as the 0. L. & T. data. 
For c.d.f. F(x 1 @, the likelihood function for interval data is based upon the 
discrete distribution of probability per interval. If the intervals are (a,,, al], 
. . . ) (a,-,, a,] and a sample produces ni losses in the ith interval, the true 
likelihood function is: 

F(ai ) f3) - F(ai-1 1 0) 
L(B) = ifi ( F(a, 1 0) - F(a,, j 6) 

ni 
(6.6) 

Our MLE’s based upon the 0. L. & T. data, however, treated the data as 
if all the losses in each interval were concentrated at the average value for the 
interval. In Appendix E, Part 1, for example, the 58 losses in the interval 
10,000 - 11,000 were assumed each to have value 10,430 and the “individual 
data point” loglikelihood function (6.5) was used. Our testing has shown that 
treating interval data this way gives good results as long as the intervals are 
fairly narrow. 

This estimation technique for large loss data truncated below is also useful 
when dealing with excess-of-loss reinsurance coverage where the data are usu- 
ally excess of some underlying retention. To illustrate its accuracy in estimating 
the “total distribution,” we again turn to our Pareto data in Appendix C. 
Truncating below at 5,000 and censoring above again at 200,000, we calculate 
the MLE’s and tail probabilities displayed in Table 6.2. The analogous estimates 
from the lognormal data in Appendix D truncated below at 5,000 and censored 
above at 200,000 are displayed in Table 6.3. 

The lognormal estimates here are not as good as we have seen in previous 
cases. In both these examples, the corresponding method-of-moments estimates 
would be ridiculous if the lower truncation were not taken into account, and the 
formulas would be difficult if it were. 

TABLE 6.2 

PARETO (DATA TRUNCATED AT 5,000) 

P 6 P P[X > 100,000] P[X > 1,000,0001 ~ - - 

Model 25,000 1.500 .239 .089 .004 
MLE 23,354 1.492 .235 .085 ,004 
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TABLE 6.3 

LOGNORMAL(DATATRUNCATEDAT 5,000) 

P o- P P[X > 100,000] P[X > 1,000,000] ___ - 

Model 9.00 2.000 .405 .104 .008 
MLE 8.98 1.858 .370 .091 .005 

VII. MODELING AND ESTIMATION PROBLEM 3: 
THE UNDERLYING LOSS AMOUNT DISTRIBUTIONS ARE NOT SMOOTH 

Whenever we see detailed loss amount data, such as the Owners, Landlords 
and Tenants bodily injury liability loss interval data in Appendix E, Part 1, or 
individual loss amount data, we are immediately struck by the fact that the 
losses tend to cluster at certain round values such as $1,000, $10,000, $25,000, 
. . . , $100,000, etc. This clustering occurs even in mature loss amount data. 
Thus, it is apparent that any probability model which is to describe the data as 
exactly as possible cannot be a smooth c .d.f. such as the Pareto or lognormal. 

An alternative to a smooth model might be a mixed c.d.f. similar to the 
Hewitt/Lefkowitz model (6.1) with G(x 1 f3,) smooth and H(x 1 r3,) discrete. If 
a mixed model is to fit loss amount data significantly better than a completely 
smooth model can, then it may need many parameters, perhaps one for each 
discrete cluster point. The likelihood equations (6.2) would be very difficult to 
solve. And even then would such a model provide any better prediction, through 
simple parameter changes, of future loss amount distributions? I believe that 
our data are inadequate to support such a model. 

Even though our data seem to have cluster points, the last column of 
Appendix E, Part 2, shows that the Pareto c.d.f. describes the expected loss 
function fairly well. Remember that expected value is the most important 
component of most insurance premiums. The same exhibit shows how well the 
Pareto c.d.f. estimates the tail probabilities (see also Table 6.1); this is also an 
important aspect of insurance pricing. Since we apparently cannot specify a 
better model without great difficulty (remember the data problems), it looks as 
if we must be satisfied with smooth models for large loss amount distributions 
as long as the parameters are properly estimated. 
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VIII. MODELING AND ESTIMATION PROBLEM 4: 
THE DATA ARE FROM MANY OCCURRENCE DATES 

To have enough data to be able to study loss amount distributions, we must 
of necessity use data from many accident occurrence dates. Suppose that we 
want to study the loss amount distribution at one point-of-time and suppose that 
we have specified a broader model which tells us how to trend the data from 
different occurrence dates to the level of this single date. Let us also suppose 
that besides being subject to various policy limits, our data are also larger than 
some common lower truncation value r. This situation is common in reinsurance, 
where our data are often excess of some specified retention level. Also this 
situation arises if we use a probability model such as (6.3) to separate large and 
small losses and we use a common split point t for all our data. In this case, for 
each occurrence date we must trend the value t along with the loss amounts and 
the policy limits to our single occurrence date. Thus our trended data have a 
mixture of trended lower truncation points and trended policy limits (censorship 
points). The method of maximum likelihood allows us to painlessly calculate 
parameter estimates for the single point-of-time model simultaneously from all 
these data. 

Let us illustrate this situation with our Pareto c.d.f. Let the ,Q’S represent 
the trended loss amounts. Assume that they are ordered so that for each k, the 
xki’s are larger than the trended lower truncation point tk and are censored at the 
trended policy limit ck. Also assume that for each k, the first nk-mk &i’s lie 
strictly between tk and ck and the remaining mR are equal to ck. We assume that 
except for lower truncation and upper censorship, the &i’s are subject to the 
same underlying Pareto c.d.f. F(x ( p, S). Then using equations (5.8) and (6.5), 
with a suitable change in notation, the general likelihood function is: 

L(p, 8) = fl L(p, 6; tk, ck) (8.1) 
k=l 

where the component loglikelihood function for each k is: 

log L(p, 6; tk, cd = (nk - mk) ’ log 6 

- (6 + 1) . 1 log (Xki + p) 
i=l 

(8.2) 

- mks * log (ck + p) + nk6 . log (tk + fi) 



82 LOSS AMOUNT DISTRIBUTIONS 

As in (5.9)) the partial derivatives of the general loglikelihood will be the 
sum of the partials of the components in (8.2) for each truncation/censorship 
combination. The computer programming is straightforward. 

For example, let us use the Owners, Landlords and Tenants bodily injury 
liability loss amount data in Appendices E and F for policy years 1975 and 1976 
for policy limits of $300,000 and $500,000, and adjust by a trend factor of 
18.9% per annum to an occurrence date of July 1, 1980. Since the individual 
loss occurrence dates are unknown, we will simply assume the average occur- 
rence dates: for policy year 1975 this is January 1, 1976 and for policy year 
1976 it is January 1, 1977. It would, of course, be better to know the occurrence 
month of each loss amount. We will use original lower truncation points for 
each year of $8,000. 

The simultaneous estimates for /3, 6 for July 1, 1980 are p = 4,955 and 
6 = 1.473. The K-S test and EVC test results are displayed in Appendix G for 
the Pareto with parameters p, 6 and each set of trended data. Note that in this 
case, the assumption that the loss amounts from different policy limits have the 
same underlying distribution looks like it may be false. The reason for this 
tentative conclusion is that the fitted Pareto greatly understates the expected 
values for higher limits of the $500,000 policy limit trended data. This can be 
seen by studying the EVC test statistic in the last columns of Appendix G; the 
final value for trended policy year 1975 $500,000 policy limit data is -.298 
(Part 2) and the final value for trended policy year 1976 $500,000 policy limit 
data is -. 178 (Part 4). 

The IS0 Increased Limits Subcommittee has had mixed results when testing 
this assumption of a common loss amount distribution underlying different 
policy limits (except, of course, for the censorship at each limit). It is apparent 
that much more testing (and more careful model-building) needs to be done. 

IX. CONCLUSION 

This paper has presented a general procedure for selecting an adequate 
model for any particular loss amount distribution. The point of view is that we 
must use models whenever we want to extend or compare our various infor- 
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mation, and moreover, we should use mathematical models. The procedure for 
finding an adequate model is to: 

1. specify a particular probability model; 
2. estimate parameters via the method of maximum likelihood; 
3. test the model and select final parameters. 

We have also discussed how to account for policy limits ; censors, for too 
many small losses, for probability cluster points, and final :J for loss amount 
inflation trends. The estimation technique discussed has b s:n the method of 
maximum likelihood. 

The Bibliography lists, beyond the direct references, man English-language 
papers and books which study casualty loss amount distr ,utions or related 
problems. I trust that other American actuaries will find I tese references of 
interest. 
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APPENDIX A 

Pareto (Lomax, Pearson Type VI) Distribution 

F(x) = Prob [X 5 x] = 1 - 

where /3 > 0, 6 > 0 are parameters. 

s * p” 
f(x) = (x + p)M1 density 

ax1 = P 8 _ 1 exists if 6 > 1 

for x 2 0 

s * /3” 
var [Xl = (fj - 2) . (6 - I)2 exists if 6 > 2 

(Al) 

W) 

643) 

(A41 

E[X”] does not exist for k 2 6 (A3 

Rob [X - t 5 x 1 x > tl = 1 - p+t s 
x + (P + 0 > 

for x 2 0 W) 

Thus, a Pareto distribution excess of a lower truncation t is a Pareto distribution 
with new “beta parameter” /3 + t. 

IfY=tXforsomet>O,then C47) 

for y 2 0 

Thus, if t is a trend factor and Y is the inflated value of X, then Y also has a 
Pareto distribution with new “beta parameter” Pt. For any limit c, notate the 
integral of XL from 0 to c by: 

E[X”; c] = I c X”dF(X) 
0 

(A8) 
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Lemma: For any censor c, if k is a non-negative integer and k - 6 is not a non- 
negative integer, then the integral of Xk from 0 to c is given by: 

. (6 - k) 

- 6 (-3J[ y--* - (:> ye+kTk;’ + . . . 649) 

+ (-1)i 
0 

k p”(c + /3)“+ + . 
i 6--k+i 

Proof: (This lemma and proof are due to Mark Kleiman) 

I 

c 
E[X”; c] = Xk * 6 * p” - (x + p)-“‘dx 

0 

= I c w% + p>-“Y(x + p) - P}“dx 
0 

ZZ 
1’ s@-‘(x + p)-+-’ [(X + @k - (;) p(x + @)“-I + . . . 

+ (-1)i 
k 

0 
i p”(x + py-1 + . . . + (- l)“p”} dx 

= 8 pyx + py-S-1 - 0 ; ps’(x + p)“-f=’ + . . . 

+ (-1)i 
k 

0 
i ps’icx + p)“-“i-1 + . . . + (-l)“P”‘“(x + p,-*1> & 

= 6 -k%) * (’ + pjk-’ - (;)(A) (x + @k-s + . . . 
(x + @k-&i + . . . 

+ (-1)k (F) (x + B--6} /5 
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= 6 [(c + py-” - pk-“1 
- [(c + p)“-“1 _ @--l] + . . . 

+ (-1)i 

+ (-1)” (Y) NC + P>-” - PI} 

+(-l)< ; 6.:+i+... 
0 

+ (-l)“$ 

+ (-1)’ 
k p’(c + /3)“-’ 

0 i 6-k+i ‘** 
. + (-1)“s 

We now want to prove that the first expression in braces in the last equality is 
equal to: 

k! 
6(6 - 1) . . . (6 - k) 

if 6 - k is not a negative integer 

This is proved by judicious use of the binomial theorem and from the definitions 
of Gamma and Beta functions. 

k! 
6(S - 1) . . . (6 - k) 

= T(k + 1) . r(6 - k) 
r-(6 + 1) 

if 6 - k is not a negative integer 

= I o1 (1 - x)kx*s-‘dx 

= J-: {l - (;) x + . * * + (-1)i (;) xi + . . . + (-l)kxk) xsk-ldx 



LOSS AMOUNT DISTRIBUTIONS 87 

= [ {&k-l - (t) &k + . . . + (-l)i (f) $-k+i-1 + . . . 

+ (-l)i 
k 0 

&kti 

i 6--k+i+” 
6 1 

* + (-l)“? 
II 

0 

1 k 
0 

1 
=-- 1 6-k+l+“’ 

6-k 

+ (-l)$ ; 6 _ ; + i + * * * 
0 

+ (-1)” * f 

Note: If c < x, then any integral E[X”; c] exists (is finite). 
If k - 6 is a non-negative integer, then E[X”; c] may be approximated for 
small E > 0 via: 

E[Xk; c] L- {E[X”-; c] + E[XktE; cl}/2 

So, the lemma evaluation formula may be used. 

(AlO) 

Corollary: For any censor c: 

EiX; cl = 6 _ 1 ---@-{l - (&)%’ ($--$I ifS# 1 (All) 

APPENDIX B 

Maximum Likelihood Estimation and Newton-Raphson Iteration 

Given a sample x,, x2, . . . , x,, and general c.d.f. F(x 1 0) with parameter 
8 = (01, . . . ) 0,) in some set 0. The likelihood function is given by: 

(B 1) 

where & 1 0) is either the probability of xi given 8 or the p.d.f. evaluated 
at xi given 0, depending upon whether or not the distribution function has 
a jump or is absolutely continuous at xi. 
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The important properties of MLE’s are (Kendall and Stuart (1967), p. 38ff 
and Dudewicz (1976), p. 193ff): 

1. Under very general conditions, MLE’s are consistent. That is, the MLE 
8 converges in probability to f3,,, the true value of 8, as the sample size increases. 

2. Under very general conditions, MLE’s are consistent asymptotically nor- 
mally distributed and efficient. That is, 8 is asymptotically (as sample size 
n -+ x) normally distributed with mean 13~ and covariance matrix equal to the 
inverse of the Fisher information matrix: 

cov 8 = z(e,)-’ 

where 

(approximately) 032) 

I(&) = -E 
a2 log L(0) I 
aej . aei I e=e, >)I 033) 

The determinant of Cov 8 becomes minimal as n + ~0. 

For our Pareto example (2.1), for sample size n we have: 

034) 

so, 

cov <p, 8) =; 035) 

Finding a 8 which maximizes L(B) is equivalent to finding a 8 which 
maximizes 

log L = log L(8) = $ log flxi 1 f3) 036) 
i=l 

If log L has second partial derivatives with respect to the @‘s existing 
throughout its domain 8, then a necessary condition for a point 8 to maximize 
log L is that the first partials evaluated at 4 be equal to zero: 

a 1ogL lWj I 89=8 
= 0 forj = 1, 2, . . . , r 037) 
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If the matrix of second partials evaluated at 8 is negative definite, then 8 indeed 
maximizes log L. 

Assuming that the matrix of second partials will be negative definite, we 
must find 8 which satisfies the system of equations (B7). Newton-Raphson 
iteration allows us to find a sequence of vectors &“, ti2), . . . which may 
converge to a solution for any system of equations such as (B7). The only 
condition necessary is that the partials of the equations in (B7) with respect to 
each Oj must exist for each /P). See Conte and de Boor (1972). 

Expressions for the second partial derivatives of log L are somewhat un- 
wieldly . So we will simplify the notation of (B7) to a more general case: we 
assume that our problem is to find a point 8 = {I!&, . . . , I$.} which is a solution 
for the following system of r equations: 

*l(8) = 0 038) 
yr,(@ = 0 

And we assume that the partials of the “Pi’s with respect to the Oj’S exist 
throughout the domain 9. 

Start by selecting an initial value @I). Then, in general, ticm+” is obtained 
from P’ by solving the following system of r equations in r unknowns 
@n+1, @n+n. 

,*.., r * 

In the case that r = 1, we have the familiar solution: 

I The l-dimensional case may be illustrated by Figure Bl. 
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FIGURE Bl 

GRAPH OF y = 91(01) 

slope aYr (9 1’“‘) 

\ 

ael 

/ / 

The tangent through the point (O’T’, q( elm’)) intersects the B,-axis at the new 
& value, tilmtl). It should be clear that as long as ql(f3,) is well-behaved, if 
e(rm) is close to a zero 8, for ‘I”,(&), then til mtl) should be even closer, as in the 
figure. 

In the general case, the solution to (B4) is obtained via Cramer’s Rule as 
long as the matrix of second partials evaluated at tP) is nonsingular (Herstein 
(1964), p. 288). For example, the case r = 2 is easily illustrated: 

f)flmtu = &ml _ 
J( @“‘) 

(B1l) 

where J(@“‘) is the Jacobian evaluated at em): 

This technique gives an iteration @l’, g2’, . . . which may be stopped when 
successive values jtimtl) - fYcm)l are small enough according to some metric (81. 
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APPENDIX C 

Pareto 

200 Psuedo-Random Values 

p = 25,000 6 = 1.5 P 6 P[X 5 xl = 1 - - 
( > x+P 

Sample CDF 
XXI Pare,0 

8 9 03 
150 IS0 .02 
223 223 03 
279 219 -.03 
292 292 -.Ol 
656 638 20 
754 757 - .34 
755 757 - .34 
824 827 - 37 
885 889 - 38 

2.705 2.691 
2.709 2.700 
2.717 2.708 
2.783 2.773 
2.793 2.783 
2.99, 2.979 
3.049 3.037 
3.109 3.095 
3.244 3.229 
3.409 3.393 

3521 
3.534 
3.908 
4.163 
4.236 
4.322 
4.335 
4.437 
1.449 
4.453 

3.505 
3.517 
3.8’M 
4.148 
4.223 
4.310 
4.324 
4.427 
4.439 
4.443 

- 15 
- $2 

“7 
- 01 

“1 
“3 
OS 
“7 
29 
33 

33 
33 
33 
34 
35 
40 
41 

.43 
46 
4x 

4x 
.4x 
45 
34 

.I, 
27 
26 

.23 

.23 
23 

91 
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k 
- 

5.195 249 
5.331 .x4 
5.662 .x6 
5.666 266 
5.966 277 
6.044 280 
6.274 288 
6.418 243 
6.675 301 
7.048 114 

7.“M 314 
7.117 316 
7.287 322 
7.343 ,323 
7.152 324 
7.366 324 
7.613 112 
8.184 349 
8.247 351 
X.26, 352 

X.265 
8.274 
8.920 

8.96” 
9.015 
9.045 
9.205 
9.32, 

10.128 

iO.494 
10.535 
10.580 
10.652 
I I.295 
I I.584 
I I.967 
12.036 
12.826 
12.961 

14.699 
14.766 
15.(*7 
IS.305 
15.415 

LOSS AMOUNT DISTRIBUTIONS 

APPENDIX C 

Pareto 

200 Psuedo-Random Values 

405 013 8.015 8.019 - .05 
,410 w9 8.040 8.044 - .05 
415 “05 8.066 8.070 - .05 
,420 003 8.108 8.112 - .05 
425 0 I 3 8.478 8.485 - .09 
430 “14 8.641 8.651 -.I2 
435 0,x R.854 8.870 - 18 
44” “15 s.aw 8.909 - I9 
MS 027 9.319 9.351 - 34 
4.50 “25 9.391 9.426 37 

455 ,022 9.433 9.410 - 39 
460 ,020 9.509 9.549 - 41 
465 .,,I5 9.510 9.550 - 41 
,470 013 9.580 9.621 - 43 
A75 ,016 9.772 9.8 17 - 46 
,480 014 9.852 9,899 - 48 
A85 012 4.929 9.978 - 49 
,490 014 10.118 10.171 - .52 
495 01 I 10.155 10.209 - 53 
500 01” 10.255 IO.310 -3 

Pare,0 Sample 

4.498 4.488 .23 
4.600 4,589 .24 
4.845 4,834 .22 
4.848 4.837 22 
5.067 5.056 .20 
5.123 5.113 .2O 
5.288 5.278 17 
5.390 5.381 16 
5.571 5.564 .1* 
5.829 5.827 03 

5.84” 5.838 03 
5,876 5.875 .a2 
5.992 5,992 - 01 
6.030 6.031 - 01 
6.036 6.017 01 
6.045 6.046 - .o I 
6.21 I 6.212 .oo 
6.588 6.59 I .05 
6.629 6.633 -.06 
6.638 6.642 -06 

6.640 6.645 -06 
6.646 6.651 -06 
7.059 7.064 - 07 
7.061 7.066 “7 
7.084 7.089 - 07 
7.131 7.136 .- 07 
7.137 7.142 07 
7.237 7.241 05 
7.310 7.313 - 03 
7.799 7.800 - 01 

10.280 1036 m.54 
IO.314 10.369 - .54 
10.432 10.487 - .53 
10.577 10.631 - -52 
10.630 I”.684 m.51 



\ 
- 

15.909 .528 53” .m IO.865 
15.983 ,529 535 -.W6 IO.900 
16.X? 534 .540 -.OM I I.040 
16.479 ,538 .545 -.007 11.131 
16.685 541 2550 -0oY I I.226 

16.710 542 ,555 - 013 I1.238 
I6.8IX 541 ,560 - 01, Il.287 
17.036 547 565 018 I I.386 
17.241 551 570 - OIY 11.479 
17.428 554 575 - 021 I I.563 
18.259 567 580 - 013 I I .928 
18.452 570 585 - 0,s 12.011 
19.123 5.80 SW -.01” I?.?97 
19.755 589 595 006 12.55') 
19.862 5w 600 010 12.m 

19.905 591 605 - 014 12.621 
19.985 ,592 610 -.018 I 2.654 
20.146 .594 615 -.021 12.719 
20.275 ,596 ,620 - ,024 12.771 
20.190 .598 625 -.027 I?.XIS 
21.889 .617 ,630 -.013 13.406 
22.017 619 .635 -.016 13.455 
22.112 621 .640 - 019 13.514 
22,309 623 .645 022 13.566 
22.362 623 ,650 -.027 13.586 

22,369 623 655 - 032 13.588 13.559 22 
23.919 642 660 -.018 14.158 14.093 46 
23.919 642 665 - 023 14.158 14.093 46 
24.469 648 670 - 022 14.353 14.278 53 
25.24 I 656 675 - 019 14.622 14.532 61 
25,384 658 680 - 022 14.671 14.579 63 
27.539 679 685 - 006 15.386 15.268 76 
28.520 ,688 6W ,003 15.696 15.578 .,5 
28.515 688 695 - 007 15.704 15.585 75 
28.712 ,690 700 -.OlO 15.756 15.636 76 

30.016 ,701 705 -.oa 16.153 
32.430 720 710 .015 16.851 
33.821 .,,I 715 .O? / 17.232 
34.131 .733 ,720 ,018 17.316 
34.177 .,33 ,725 “13 17.328 
14.448 ,735 .730 010 17.4w 
34.94, .,,8 735 ,008 17.531 
35.422 742 ,740 007 17.655 
35.98, 745 745 005 17.8M) 
37.488 755 75” “IO 18.175 

16.027 78 
16.740 .66 
17.142 52 

37.641 756 .,55 006 18.213 
37.975 758 760 003 IK.294 
38.361 760 765 - 005 18.387 
38.498 761 770 OOY 18.420 
39.750 768 775 - w7 18.71s 
40.137 770 780 010 18.804 
40.987 775 785 010 18.998 
43.817 789 7% 004 IV.615 
44.606 793 7% 003 19.780 
45.150 795 800 - 005 IV.892 

17.726 41 
IX.109 36 

IX.147 .36 
18.229 35 
18.322 36 
18.354 36 
18.642 39 
18.729 40 
I8.9,6 43 
19.524 46 
I9.690 46 
IY.XO2 46 
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Pareto 

200 Psuedo-Random Values 
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APPENDIX C 

Pareto 

200 Psuedo-Random Values 

K-S Test EVC Test 

Pareto CDF Sample CDF Maximum 
F(X) SW Difference 

47.3 19 ,805 ,805 .005 20,326 20,235 .45 
48,160 ,808 ,810 .003 20,489 20,399 .44 
53,161 ,827 ,815 .017 21,401 21,350 .24 
53,909 829 ,820 014 21,529 2 I.488 19 
57,601 ,841 .a25 .02 I 22,137 22,152 -:07 
59,057 ,845 ,830 ,020 22,365 22,407 -.I9 
59,908 ,848 .a35 ,018 22,495 22,552 -.25 
62,120 .a54 ,840 ,019 22,825 22,917 - .40 
63,423 .857 ,845 ,017 23.013 23.125 - .49 
64,290 ,859 ,850 ,014 23,136 23,260 - .53 

64,539 ,860 
66,841 .865 
66.928 ,866 
69,947 ,872 
7 I.658 ,876 
7 I.830 ,876 
72.206 ,877 
74.097 .881 
74,454 .881 
74.806 ,882 

.855 
,860 
,865 
,870 
,875 
.880 
,885 
,890 
.a95 

,010 23.171 23,297 - .54 
,010 23,487 23,631 -.61 
,006 23,499 23,643 - 61 
,007 23,894 24,051 -.65 
Oil6 24.1 IO 24,273 - .68 

- ,004 24,131 24.295 - .68 
- .OO8 24,178 24.340 -.67 
- ,009 24.407 24,557 - .62 
-.014 24,450 24,596 -.60 
- 018 24.49 I 24,633 - .56 

97.519 ,914 
97,704 ,915 
98,579 .915 
98,812 ,916 

117.157 ,932 
I la.540 ,933 
120,717 ,935 
126,789 ,939 
137,105 ,945 
151,162 952 

,900 

,905 
,910 
,915 

,925 
.930 
,935 
,940 
945 

,950 

014 26,774 26.905 - .49 
,010 26.790 26,922 - .50 
.005 26,864 27.001 -.51 

-.oQ4 26,884 27.02 I -.51 
,012 28.270 28.488 -.77 
,008 28,363 28,592 -.a1 
.005 28.507 28.745 - 83 
,004 28.890 29,139 - .86 
,005 29.490 29,758 -.91 
.M)7 30.216 30.531 -1.04 

158,996 ,955 
165,704 ,957 
166,837 ,958 
210,571 .%9 
217,732 ,971 
243,729 ,975 
253,630 ,977 
370,910 ,987 
616,233 .994 

1.176.968 ,998 

,955 
,960 
965 

,970 
,975 
,980 
,985 
990 

,995 
I.000 

,005 30,582 30,923 -1.11 
- ,003 30,877 3 I.225 -1.13 
- ,007 30,925 3 1,270 -1.12 

,004 32,498 32,801 -.93 
-.cQ4 32,712 33.016 -.93 
- ,005 33.413 33,666 -.76 
-.OQ8 33,652 33,864 - .63 
- ,003 35.733 35,623 .31 

.OM 37,978 38,076 - .26 
,003 40.100 40.880 -1.94 

Sample 

EVC 
Statistic 

(c/r) 

Beta 1s 26,297 
Delta is I S86 
The Truncation Point is 0 
The Censorship Point is lO,OOO.OOO 
The Sample Size is 200 
Kolmogomv-Smirnov Test Statistic is 0.03 17 
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APPENDIX D 

Lognormal 

200 Pseudo-Random Values 

/A=9 a=2 Prob[Xsx]=r#fog;-‘) 

where &y) = (h)-‘/-~ exp { - $1 dt 

2 1,904 5,449 12,301 39,866 
20 1,938 5,552 12,371 42,942 
21 1,996 5,696 12,606 45,129 
89 2,007 5,785 12,626 45,665 

134 2,067 5,859 13,690 45,859 
13.5 2,123 5,897 14,090 46,175 
164 2,134 5,900 15,759 47,292 
165 2,233 5,918 16,359 47,477 
186 2,321 6,208 17,134 47,580 
236 2,369 6,553 17,298 50,698 

402 2,376 6,804 17,649 50,707 
438 2,380 6,875 17,949 58,131 
4.51 2,497 6,901 18,682 58.441 
526 2,631 6,929 19,696 61,890 
582 2,612 6,934 19,789 64,181 
601 2,873 7,010 19,874 66,391 
639 2,879 7,047 21,275 67,898 
676 2,970 7,737 2 1,305 70,527 
850 2,974 7,750 24,569 80,932 
911 3,275 7,980 24,600 82,360 

914 3,394 8,047 26,571 83,122 
1,029 3,397 8,220 27,021 83,849 
1,052 3,407 8,448 27,290 83,917 
1,053 3,505 8,623 27,969 88,095 
1,071 3,584 8,784 28,212 104,508 
1,073 3,746 9,029 29,088 112,291 
1,102 3,772 9,118 29,205 113,729 
1,182 3,903 9,326 29,507 122,065 
1,185 3,924 9,356 30,927 129,896 
1.258 3,997 9,475 32,490 132,125 

1,337 4,660 9,896 
1,340 4,780 9,989 
1,357 4,794 10,145 
1,501 4,8 16 10,272 
1,627 5,020 10,429 
1,669 5,041 10,551 
1,798 5.074 10,675 
1,825 5,154 10,679 
1,836 5,206 12,079 
1,903 5,354 12,274 

32,657 168,200 
33,929 209,599 
34,797 225,688 
35,149 260,210 
35,194 307,687 
35,261 375,796 
35,669 463,569 
37,859 510,905 
38,049 86 1,999 
39.150 1,684,380 

95 
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APPENDIX E 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 3 1, 1978 
Policy Limit $300,000 

Part 1 
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APPENDIX E 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 31, 1978 
Policy Limit $300,000 

Pareto CDF Sample CDF 
F,.Y, SIX) 

ooo 
072 
217 

.283 
351 

A36 
.488 
.551 
,572 
,605 

640 
,667 
695 
705 
729 

,743 

,775 807 
812 843 
,853 

877 
,895 
Y14 
917 
934 
940 

,947 
,952 
.955 
Y58 

968 
,970 
,975 
,977 
.Y82 
983 

,334 
,986 
,988 
,991 

1236 

.nm 
,093 
,322 

,416 
.454 

,594 
617 

,650 
657 

,718 
.731 
,737 
747 

889 
901 
.Y34 
,936 

.Y46 
947 
951 
955 
959 

969 
,971 
,972 
.Y76 
,980 
Y83 

.Y84 

,987 
989 

989 
WI 
991 

,992 
1.c4m 

.ooo 0 0 .w 
,072 481 500 -3.82 
I 24 1.534 I.620 -5.60 

- ,087 2.054 2.091 -1.77 
- ,065 2.633 2,626 .29 

02, 3.415 3.381 .w 
034 3.936 3.910 .65 

.08 I 4.618 4.664 - I.W 
- 045 4,853 4.882 -.@I 
- ,025 5,252 5,253 -.03 

-.OlO 5.694 5.686 .I3 
017 6.064 6.06 I 05 
,037 6.458 6,485 - 41 

- ,026 6.607 6,624 -.26 
- 008 6.977 6.976 .02 

006 7.216 7.214 .03 
,013 7.489 7,492 -334 

- 032 7.769 7.793 -.31 
- ,032 a.472 8.451 .24 
- 0,s Y.389 Y.314 .80 

-.Oll 
006 

-.019 
-.OlY 
- ,009 
-cc6 

ml 
,005 
,002 
.I03 

.009 

.ool 
004 

,005 
oc.5 
,004 
001 
002 

,003 
.xl‘i 

,003 
.@I2 
sm2 
.002 
,000 

10.024 9,937 .86 
10.s35 10.438 91 
11.173 I I.106 to 
I I.284 Il.193 81 
Il.924 I I.747 I .4Y 
12.204 12,WI 1.66 
12.527 12.313 1.71 
12.779 12.579 I s7 
12.Y47 12.748 I .54 
13.113 12.920 I .47 

13.735 13.616 .87 
13.895 13,776 .a5 
14.312 14.21’) .65 
14.419 14.343 52 
14,937 14.950 - .OY 
15.026 15.056 -.20 
IS.123 15.157 -.22 
15.312 15.3Ml -.,I 
15.628 15.715 -.56 
16.009 16.187 -I II 

16.157 16.377 -1.36 
16.181 16.407 -1.40 
16.346 16.613 -1.63 
16.446 16.737 -1.77 
16.530 16.839 -1.87 
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LOSS AMOUNT DISTRIBUTIONS 

APPENDIX E 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 31, 1978 
Policy Limit $300,000 

Part3 

K-S Test 

88 180 ,413 - 233 79 88 - IO.63 
374 ,473 ,538 - 065 265 2.55 3.59 
783 645 ,671 107 MO 444 -.91 

I .490 768 ,781 .ow 642 677 -5.50 
2.543 ,844 ,843 .a63 840 907 -7 94 
3.521 ,879 882 ,036 974 I.061 -8.89 
4,777 ,906 ,915 ,023 1,108 I.209 -9.09 
5,629 ,918 .926 -.008 1.183 1.281 -8.29 
6.603 928 ,933 -0oe 1.258 I.353 -7.59 

7,429 .935 950 -.016 1.315 I.409 -7.12 
8.m 942 .955 - 013 1.381 I.462 -5.86 
9.736 ,948 966 -.018 I.449 I.518 -4.74 

10.430 951 968 - 018 I.485 I.542 -3.85 
11.279 .x4 971 - 017 I.525 I.568 -2.85 
12.572 958 ,973 -.015 I.582 1.606 - I .55 
13.541 .%I .974 -.013 1,621 1.633 - 71 
14.965 ,964 .9ao -.016 I,675 I.670 .27 
15.50, ,955 ,981 - .016 I .694 1,681 .75 
16.47, .%7 .9a2 -.015 1,727 I.700 I 58 

17.643 ,969 ,983 
18.713 970 983 
19.950 972 .986 
20.44 ,972 ,987 
21,753 ,974 .9a7 
22,658 ,975 .987 
23,756 976 .98a 
24.96u 977 ,990 
28,377 979 992 
33.888 982 993 

38.610 984 994 
43.106 ,986 .995 
49.834 ,987 ,997 
51.146 ,988 ,997 
59.813 ,989 -997 
64,247 ,990 ,997 
70.m ,991 997 
75.wo ,991 ,998 
78.618 ,991 998 
82.425 ,992 ,998 

124,463 
150,cw 
155.128 
161,003 
173,398 
197,495 
233.449 

2M.000 
252,800 
273,747 
287,540 
300,oiY.l 

,997 
.99-l 
397 
,997 

I.ml 

- 014 
-.013 
-.014 
-.014 
- 013 
- 013 
-.012 
-.014 
-.013 
- 01, 

- .OIO 
- ,010 
-.w9 
-.cw 
- .m* 
-mm 
-.w7 
-.007 
-.006 
-036 

- .m 
- ,005 
-co5 
- .xJs 
-.cQ‘l 
-.lxM 
-.a34 
-.a34 
-Lx!3 
- m3 

- .w3 
-.ca3 
- .w* 
- .w2 

.x0 

2 
r7.s 

WC TCS, 

Pareto CDF 
WI 

Sample CDF 
S(X) 

1,765 1,721 2.47 
1,798 I.740 3.20 
I.834 1.761 3.94 
1.847 I.768 4.28 
1.883 I.786 5.14 
I.906 I.798 5.68 
1.933 1.812 6.29 
I.962 1,**7 6.89 
2.037 1,860 8.71 
2.143 1,903 II.22 

2.223 
2.291 

I.934 12.99 
I.959 14.49 
I.992 16.38 
1,997 16.77 
2,024 19.03 
2.037 20.01 
2,053 21.16 
2.066 22.03 
2,074 22.63 
2,083 23.23 

2,399 
2.m 
2,547 
2.604 
2.650 
2.681 
2.713 

2,842 2,118 25.48 
2.877 2.126 26.11 
2.974 2,148 27.78 
3.Mo 2,154 28.20 
3.135 2,184 30.33 
3,160 2,190 30.70 
3,187 2,195 31.14 
3,242 2.205 32.00 
3,340 2.223 33.45 
3.468 2,246 35.23 

3.521 2,256 35.94 
3.530 2,257 36.05 
3,593 2,267 36.88 
3.631 2.274 37.39 
3.665 2,279 37.82 

Sample 
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APPENDIX F Part 1 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 3 1, 1978 
Policy Limit $500,000 

Loss Amount 

0. 250 
250 500 
500. l,ooo 

I,OQO- 2,ooo 
2,000- 3,Ga 
3.000. 4.ooo 
4,000- 5,ooo 
S,ooO- 6.OCG 
6.C00. 7,000 
7,000. 8,COO 

8,000- 9,ooO 
9,ooo- 10,003 

10,000- 11,ooo 
11,000- 12,ooo 
12,000- 13,000 
13,ooo- 14,OOa 
14,OOG 15,Ow 
lS.OOO- 16,ooO 
16.00@ l7,ooO 
l7,OCG l8,ooO 

18,ooO. 19,ooO 
19,ooo- 20,Ow 
2o,m- 2l,co!l 
2l,ooo- 22,000 
22,000- 23,ooO 
23.000- 24,000 
24.000- 25.ooo 
25,000- 30,000 
3o,oco- 35,Owl 
35,000- 40,@30 

40,m 45,000 
45,cw 50,Oal 
5o.o00- 55.OaO 
55.000- 60.000 
70.000. 75.000 
75,OW 8O;ooO 
95,ooo-100,m 

120,000-130,COO 
140,000-150,000 
190,Ow200,000 

200,ooo-210,ooo 
220.000-230.000 
24O,ooO-250,000 
260,000-270,ooO 
280,000-290,000 
290,000-300,ooO 
340,ooo.350,cal 
410,00@420,000 

500,000 and over 

Number 
of Losses 

3,977 83 
I.095 374 
1,152 774 

991 1,488 
594 2,520 
339 3,538 
307 4,770 
103 5,542 
79 6,477 

I41 7,568 

52 8,674 
89 9,853 
23 10.420 
22 Il.744 
23 12,551 

6 13,733 
51 14,960 

6 15,374 
5 16,700 
9 17,634 

3 18,801 
31 19,973 

2 20,502 
2 21,926 
5 22,530 
4 23,745 

31 24,968 
II 29,391 
18 34,249 
9 38,564 

4 
II 
3 
2 
9 
I 
4 
2 
3 
1 

2 
1 
2 
I 
I 
2 
I 
2 
0 

9.232 

43,718 
49,814 
52,333 
60,ooO 
74,750 
75,003 
99,913 

125.000 
150,000 
200,Oim 

202,453 
225,ooO 
250,ca 
270,ooO 
290,ooo 
3cO.000 
350,OaO 
414,619 
5OwOO 

2,410 
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IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1975 as of March 31, 1978 
Policy Limit $300,000 
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APPENDIX F 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1975 as of March 3 1, 1978 
Policy Limit $500,000 

Loss *mount 

O- 250 3,286 78 
250. ml 837 389 
SC+ l,cnm 928 774 

l.coO- 2.oOa 687 I .498 
2,wo- 3,cal 412 2.577 
3,Ow 4,Ooa 267 3.593 
4.m. 5.m 263 4,757 
5,CilO- 6,OCdl 89 5,569 
6,ooO. 7,000 64 6.63 I 
7,OOG 8.CW 108 7.543 

8.0X- 9.000 35 8,563 
9.OaI. 10.000 83 9,904 

10.ooo ll.Oco I5 10,432 
11.00s l2,wo 22 I I.667 
12,ooo 13.m 22 12,624 
13.Oco l4mo I5 13.517 
14,om 15.m 52 14.945 
15,C00- 16,CKO II 15.364 
16,003. 17.000 5 16.749 
l7.w0- l8,WO I5 17,650 

lS,ooO- l9,ooO 
19,ow 20.m 
2o,OM- 21,coo 
2 I .oa- 22.cm 
22,ooO- 23,wO 
23,Mx)- 24.WO 
24,1X0 25,000 
25,000. 30,000 
3o.Ow 35,000 
35,00@ 40,lxm 

27 

4 

33 
II 
9 

I8 

I9.m 
19,918 
20.351 
22,cal 
22,487 
24,wO 
24,980 
27.915 
33,655 
38,794 

4o.oco 45,olm 
45.m- 50,wo 
55.003- 60,000 
60,IXW 65,oM) 
65,wO- 70,ooO 
7o,m- 75.m 
75.000- 80,OLW 
800X- 85,000 
85,ooO- 90,ooO 
95,cm-1Oo.m 5 

43.61 I 
49,917 
6o.ocn 
63 375 
67.090 
74,294 
75.900 
82.016 
87.505 
98,586 

110,OcG120,ml 
,20.00& 130.m 
140,ooo.150.m 
l5O,OIX-l6O.wO 
240,00+250,000 
29O,ooO-300,ooO 
300,cxJo-310,cnlo 
33o.o00-34oml 
340,Oca350,cm 
48O,ooO-49O.m 
500.m and over 

I 
3 

116,177 
123,528 
15O.COO 
150.1cHl 
250,m 
3cQ.m 
309,ooo 
335,675 
349,910 
483,840 
5w.ooo 

TOtal 7.388 2.849 

101 

Part3 



102 LOSS AMOUNT DISTRIBUTIONS 

APPENDIX G 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1975 as of March 31, 1978 
Policy Limit $300,000 
Trended to July 1, 1980 by 18.9% per annum 

K-S Test WC Tees, 

Part 1 



x 
- 

Pareto CDF Sample CDF Maximum 
F(X) S(X) Difference 

EVC 
Statistic 

(%) 

17.434 .wo 
1.8.661 ,076 
2 I ,584 ,222 
22,734 ,269 
25,425 ,362 
27,510 .421 
29,457 ,469 
32,569 .533 
33.482 ,549 
36,501 ,596 

.m cm 
,078 076 
,263 ,143 
,297 - ,028 
346 ,065 

,395 ,075 
,429 ,074 
,545 .I04 
.569 - ,020 
.580 ,027 

0 0 .oo 
1,179 1,227 -4.02 
3,657 3.921 -7.20 
4,525 4,768 -5.37 
6,363 6,660 -4.67 
7,629 8,024 -5.17 
8.708 9.201 -5.67 

10.258 10,979 -7.03 
10.677 I 1,396 -6.73 
1 I.965 12,696 -6.11 

38,465 .623 .614 ,043 12.731 13,520 -6.20 
4 I ,407 ,658 616 444 13.788 14.656 -6.30 
43.408 ,678 ,676 ,062 14,452 15,424 -6.73 
44,352 ,687 ,692 ,011 14,751 15.730 -6.63 
47.945 ,718 ,694 ,026 15.818 16.837 -6.44 
49.006 .726 ,703 ,032 16,112 17.161 -6.51 
52.303 ,749 .705 ,046 16,976 18.140 -6.86 
544,438 ,762 ,779 ,057 17,498 18.769 -7.27 
60.836 ,796 .804 .017 18,907 20,183 -6.75 
73,344 ,842 ,824 ,038 21,154 22,640 -7.02 

84,544 ,870 ,864 ,046 22.759 24,615 -8.15 
95,042 ,890 .879 026 24.016 26,044 -8.45 

108.784 ,909 ,893 029 25,394 27,701 -9.0s 
130.758 ,930 ,897 037 27,153 30,055 -10.69 
137.460 ,934 ,908 ,037 27,609 30,743 - Il.35 
146.210 ,940 ,913 ,031 28,157 31,544 - 12.03 
161.910 ,948 ,933 ,035 29,034 32.91 I -13.35 
165.409 ,950 ,940 ,017 29,213 33.145 -13.46 
178,737 ,955 946 ,015 29,847 33.948 -13.74 
190.700 ,959 .951 .013 30.362 34,589 - 13.92 

214,849 .%5 
253,186 973 
269,205 ,975 
326.8% .%I 
327.114 981 
544,827 991 
653,792 ,993 
673,406 ,993 
731,539 ,994 
762.561 ,995 

,962 ,015 
,969 ,011 
.971 .x6 
,973 ,010 
.978 .3x 
980 ,013 

,982 ,013 
.984 .0,1 
,987 ,010 
989 ,008 

31,271 35,775 - 14.40 
32,448 37,230 - 14.74 
32,867 37,730 - 14.80 
34,117 39,404 - 15.50 
34.121 39,410 - 15.50 
36,928 44,270 - 19.88 
37,782 46,459 -22.97 
37.914 46,809 -23.46 
38,274 47,718 -24.67 
38,449 48,133 -25.19 

I .054.436 ,997 991 ,008 39,707 51,391 -29.42 
1.089,653 lolm I.ml SKMI 39.825 51.705 -29.83 

LOSS AMOUNT DISTRIBUTIONS 

APPENDIX G 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1975 as of March 31, 1978 
Policy Limit $500,000 
Trended to July 1, 1980 by 18.9% per annum 

K-S Test EVC Test 

Beta is 4955.2 
Delta is I.4728 
The Truncation Point is 17.434 
The Censorship Point is 1.089.653 
The Sample Size is 448 
Kolmogomv-Smimov Test Statistic is 0.1433 
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x 
Parem CDF Sample CDF Maximum 

FIX) S(X) Dtference Sample 

14.66, cc0 Ooo om 0 0 cm 
15.580 065 094 065 886 916 -3 43 
17.845 199 324 125 2.846 2,969 -4 31 
19.118 260 371 - III 3.826 3.829 - 09 
20.67, 325 418 092 4.924 4.807 2 yj 
23.044 408 456 - 04Y 6.423 6.188 166 
24.819 459 473 014 7.427 7.153 3 70 
27.430 ,522 597 - 075 8.754 8.5X 2 57 
28.412 543 620 - 078 9.214 a.925 3 I4 
30.189 576 633 - 057 Y.996 9.600 3 97 

32.338 612 6S3 
34.298 640 661 
36.565 669 722 
37,473 ,679 735 
39.87 I 704 741 
41.530 719 750 
43.542 736 754 
45,749 .753 RI, 
52.01 I 792 848 
62.113 836 a72 

10.867 I”.,87 4 42 
I I.600 11.067 4 60 
12.383 I I.836 4 42 
12.679 12.089 4.66 
13.419 12,725 5 17 
I 3.897 13.156 5 34 
14.444 13.658 5 45 
15.00* 14.201 5.37 
16.426 I 5.38, 6.35 
18.288 16.922 7.47 

70.768 .863 
79.038 ,883 
91.340 904 
93,746 ,907 

109.630 926 
117.757 93, 
128.302 940 
137,467 946 
144.098 950 
151.076 953 

182.197 
191.64” 
219.947 
228.127 
274.934 
284.33, 
295.095 
317.820 
361.987 
427.886 

x93 
905 
938 
941 
947 
951 
951 
95x 
960 
964 

974 
976 
977 
%I 
984 
988 
988 
990 
992 
993 

994 
YY5 
9% 
997 

I 000 

- 041 
- 021 

053 
- ,056 
- 037 
- 031 
-.017 

,058 
- 056 
- 036 

-.030 
,023 
“34 
“33 

- ,022 
- 018 
- 011 
- “I2 
- 010 

“11 

01” 
- 010 
- M4 
- 007 
- 004 
- 007 

006 
- 006 
- co5 
- 004 

004 
- 004 
- co4 
-004 

CO” 

19.582 18.027 7.94 
20.627 I K.909 8.32 
2 I.936 20.078 a.47 
22.163 20.226 8.74 
23.479 ?l.l68 9.84 
24.054 2 I.597 1021 
24.720 Z2.I 18 10 53 
25.239 22.56, 10 60 
25.585 22.842 IO 72 
25.926 23.124 IO.81 

27.208 24.252 10 a7 
27.537 24.503 II 0, 
28.397 25.177 II 34 
28.616 25.365 II.36 
29.683 26,252 II 56 
29.866 26,399 II 61 
30.065 26.532 11.75 
30.453 26,794 I2 01 
31.102 27.231 I2 45 
3 / ,883 27.774 12 89 

458.223 
463.355 
50 I .748 
527.029 
549.R67 

964 
%b 
972 
974 
YRO 
981 
982 
984 

.Y87 
9% 

991 
991 
9% 
992 

I ooo 

32.186 27.974 13 09 
32.234 24 m3 13 13 
32.572 28.193 13 45 
32.775 28.297 13 66 
32.947 28.372 13 88 

LOSS AMOUNT DISTRIBUTIONS 

APPENDIX G 

IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 3 1, 1978 
Policy Limit $300,000 
Trended to July 1, 1980 by 18.9% per annum 

seta 1’1 4955.2 
D&a IS I .4728 
The Truncamn Paint I\ 14.66, 
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IS0 Owners, Landlords and Tenants Bodily Injury Liability 

Loss Amount Data: Policy Year 1976 as of March 31, 1978 
Policy Limit $500,000 
Trended to July 1, 1980 by 18.9% per annum 

K-S Teat 

X 
- 

Pareto CDF 
F(X) 

Sample CDF 
S(W 

Maximum 
Difference 

14,663 ,000 .ooo .oal 
15,899 ,086 ,114 ,086 
18,060 ,210 ,309 -.I00 
19,099 ,259 ,360 -.I00 
2 1,526 ,357 ,408 -.05l 
23,005 ,407 ,458 - ,052 
25,172 ,468 ,471 ,010 
27,420 ,522 ,583 -.062 
28,179 ,538 ,596 - ,059 
30,609 ,584 ,607 - ,024 

32,322 .6l I ,627 -.Ol6 
34,460 ,642 ,634 ,015 
36.608 ,669 ,702 ,035 
37,578 ,680 ,706 - ,026 
40,187 ,707 ,711 -.aM 
41,294 .717 .72l ,007 
43,522 .736 ,730 ,015 
45,763 .753 ,798 - ,045 
53,871 ,802 ,822 -.021 
62,775 ,839 .862 - ,023 

70,684 ,863 ,882 -.Ol9 
80,130 ,885 ,890 -.006 
91,304 ,904 ,914 ,014 
95,921 ,910 ,921 -.Ol I 

109.973 ,926 .925 ,005 
137,009 ,946 ,945 ,020 
137.472 ,946 ,947 -.oOl 
183,129 ,964 .9S6 ,017 
229.1 I I ,974 .96l ,018 
274,934 ,980 .967 ,020 

366,578 ,987 ,969 
37 I ,074 ,987 ,974 
412,400 ,989 ,976 
458,223 ,991 ,980 
494,880 ,992 ,982 
53 1.538 .992 ,985 
549,867 ,993 ,989 
641,512 ,994 ,991 
759,951 ,995 ,996 
916,445 l.ooO I.Mx) 

,020 31,163 
,018 31,222 
,015 31,716 
,015 32,186 
,011 32,515 
,010 32,810 
,008 32,947 
,005 33,543 
.OO4 34,150 
.ooQ 34,769 
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EVC Test 

Bera is 4955.2 
Delta is I .4728 
The Truncation Point is 14,663 
The Censorship Point is 916,445 
The Sample Size is 456 
Kolmogomv-Smimov Test Statistic is 0.1003 

Sample 

EVC 
Statistic 

(S) 

0 0 
1,181 I.235 
3,017 3,150 
3,812 3,867 
5,486 5,422 
6.400 6,298 
7,616 7,47 I 
8.750 8,659 
9.107 8,976 

10,172 9,956 

.oa 
-4.61 
-4.41 
-1.46 

1.17 
I .59 
I .9l 
I .03 
1.44 
2.13 

10.861 10.628 
11,658 I I.426 
12,397 12,212 
12,713 12,502 
13,512 13,268 
13.831 13,589 
14,439 14,209 
15.01 I 14,814 
16,804 16,450 
18,396 18,031 

2.14 
2.00 
I .49 
I.66 
1.80 
I .75 
1.59 
I.31 
2.11 
1.98 

19,571 19.124 2.28 
20,757 20,242 2.48 
21,932 2 I ,468 2.12 
22,361 2 I ,863 2.23 
23,505 22,972 2.27 
25,215 24,988 .90 
25.240 25,013 .90 
27,242 27,416 -.64 
28,642 29,433 -2.76 
29,683 31,242 -5.25 

34,256 -9.93 
34,394 -10.16 
35,482 -11.87 
36,587 - 13.68 
37,311 - 14.75 
37,954 - 15.63 
38.235 - 16.05 
39.240 - 16.99 
40.279 - 17.95 
40,965 - 17.82 
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