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Abstract 

Loss distributions underlying increased limits factors are usually based on 
countrywide data, as state/class information is generally regarded as too sparse 
for this purpose. Yet the state/class average severities may be reliable, and the 
countrywide distributions can be adjusted for differences in this average, for 
example, by assuming that all losses move in the same proportion. 

Such a scale change model can yield state/class increased limits factors; 
however, in many cases a single factor can be derived to adjust the countrywide 
increased limit factor incremental differences for the state or class average 
severity differential. This serves to appreciably simplify the application of the 
scale change model. 

A complication arises in the case of Commercial Automobile Combined 
Single Limits: besides the BI and PD average severity differentials, the relative 
frequencies of BI and PD losses vary by state/class, leading to differences in 
the overall BI-PD mix of losses, and thus in the relationship between basic 
limits and excess losses. With reasonable additional assumptions, the required 
change in CSL increased limit factor incremental differences can again be 
represented by a constant factor which, in this case, reflects mix as well as scale 
differences. 
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Introduction 

Science may perhaps be distinguished from technology by the use of models 
versus the use of techniques. A model in this context is a conceptual framework 
used to help order and comprehend events; a technique is a procedure used to 
produce a result, and may or may not have a conceptual foundation. “Actuarial 
science” in many instances amounts to a collection of techniques with either 
unstated models or no models at all at their foundation and, thus, would probably 
be better labeled “actuarial technology.” This technology has been relatively 
successful in many cases; nonetheless, in order to develop a true actuarial 
science, the conceptual framework behind our techniques needs to be formulated 
more explicitly. 

A fairly satisfactory approach to the scientific method, advocated by Popper 
[5], is to advance the simplest models not contradicted by the existing evidence, 
where one criterion of simplicity is the ease by which the model could be 
falsified by future adverse observation. Thus, seeing a red cardinal leads to the 
hypothesis “all cardinals are red,” rather than “all but three cardinals are red,” 
because the former could be more easily falsified, i.e., only one non-red cardinal 
would be needed. 

In the domain of loss severity, a simple model would be that all risks have 
the same claim size distribution. However, this model has often been falsified 
by the observance of different average loss values for different lines, and for 
different states and classes within lines. 

In many cases, the simplest non-falsified hypothesis is that the observed 
differences in average severity apply uniformly to all losses, that is, that the 
shapes of the loss size distributions under investigation are the same and only 
scale differs. This hypothesis might apply to states or classes for a given line 
of insurance or for different time periods for a given state/line combination. 

This scale change model has been widely used in casualty insurance, for 
example, by Finger [2] and Miccolis [3]. Its use is not restricted to severity 
distributions; for instance, interim updates of Table M by the National Council 
on Compensation Insurance have often implicitly applied this model to aggregate 
claim distributions. There is also evidence (e.g., see 161) that the scale change 
hypothesis does not hold for variation over time for long tailed casualty business, 
i.e., there is more to trend than simple monetary inflation. 
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In this paper the mathematics of the scale change model is developed 
explicitly, and the implications of this model for excess expected losses are 
explored. 

Increased Limits Factors 

When comparing one state or class to another, a scale difference would 
affect the base rates charged. But what is less obvious is that it should also 
affect the increased limits factors applied to those rates. 

For example, consider an automobile claim cost distribution expressed in 
dollars versus the same distribution expressed in Swiss francs. The increased 
limits factor for 100,000 over 10,000 would differ depending on what currency 
were being referred to. In fact, if a dollar were worth two Swiss francs, the 
factor for $100,000 over $10,000 would be the same as the factor for SF 200,000 
over SF 20,000. 

The same concept can apply to simple inflation. If the U.S. experiences a 
20% inflation between 1982 and 1984, the factor for $120,000 over $12,000 in 
1984 dollars would be the factor for $100,000 over $10,000 in 1982 dollars. 
In a similar vein, if every loss in California were to cost exactly 1.5 times as 
much as the same loss in Louisiana, then the ratio of expected losses limited to 
$150,000 to expected losses limited to $15,000 in California would be the same 
as the ratio at limits of $100,000 and $10,000 in Louisiana, assuming everything 
else remains the same. 

The excess loss costs then will be doubly affected by a scale change, first 
due to the increase in primary expected losses and second due to a change in 
the ratio of excess to basic losses. Quantifying this effect will be discussed 
below. 
Mathematical Development 

The simplest form of scale change, as illustrated by the Swiss franc example, 
is when one random variable is a scalar multiple of another; e.g., Y = ,4X. Then 
E(Y) = kE(X), cry = kcrx, etc. Interestingly enough CV(Y) = UY + E(Y) = ax f 
E(X) = CV(x), i.e., the scale change does not affect the coefficient of variation. 
Also the skewness will not be affected. This partially expresses the idea that 
the shape of the distribution is not affected by a scale change. 

Now consider the cumulative distribution functions F and G for X and 
Y respectively. By definition G(a) = Pr[Y I a] = F’r[kX 5 a] = 
Pr[X zz a -+ k] = F[a -+ k]. Note that the transformation Y = kX corresponds 
to the inverse transformation G(a) = F(a f k) on the distribution functions. 
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In some cases of interest, the random variables under study will be defined 
on different spaces, e.g., accidents in Louisiana versus accidents in California, 
so they cannot always be thought of as multiples of each other. In these cases, 
the relationship between distribution functions can be used to specify what is 
meant by a scale change. 

Thus, if for random variables X and Y with distribution functions F and G 
there is a constant k such that G(a) = F(a + k), then Y will be called a scale 
change of X with constant k. 

It is easy to show from the chain rule that the probability density functions 
fand g satisfy g(a) = f(a + k) f k, and the relationships between the moments 
discussed above for Y = kX are readily derived from this definition. 

Excess Losses 

To calculate the effect on excess loss costs, it is very useful to refer to the 
concept of limited mean for a loss severity distribution. Intuitively this is the 
average loss size for losses limited to some specific amount a. For a distribution 
function F with density f the average severity limited to a will be denoted by 
SF(a) and is defined as 

I 

a 
SF(a) = tf(t) dt + a f(t) dt. 

0 

By change of variable in integration, it is easy to show that &(a) = kSF(a t k) 
when the conditions in the above definition of scale change hold. 

Now, when F is the severity distribution function, the expected loss in- 
creased limits factor for limit a over limit b (i.e., b is basic limits) is just 
IF(a;b) = SF(a) f SF(b). This is because multiplying the numerator and denom- 
inator by the expected number of losses yields losses limited to a divided by 
basic limits losses. 

Thus, for a scale change, we have &(a) = kS,=(a + k) and &(b) = 
kSF(b + k), so I&a;b) = S&a) + St(b) = SF(a + k) + SF(b + k) = 
lF(a + k;b f k). This implies that the expected loss increased limits factor after 
an upward scale change is the factor for the scaled down limits before the 
change, and vice versa for a downward change. Dividing both sides of this 
last relation by G(a;b) and simplifying yields Io(a;b) f IF(a;b) = 
IF(a + k;b + k) + Z,=(a;b) = fF(b;b + k) + IF(a;a + k). This gives a factor for 
adjusting the increased limits factor at a over b for X to that for Y which depends 
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just on the distribution function F. With basic limits b this factor will in general 
depend on the increased limit a. 

Simplifying the Application 

The formula above shows, for example, how, under the scale change model, 
the increased limits factors for a state relate to the state to countrywide average 
severity differential and the countrywide increased limits factors. However, 
having separate tables of increased limits factors for each state could prove 
unwieldy. It turns out that, for many severity distributions, a single factor can 
be derived for each state, independent of limits, that will closely approximate 
the state to countrywide ratio of the difference between increased limits factors. 
The closeness of the approximation will usually depend on how wide a range 
of limits is chosen, as will be seen below. Such factors could be used to 
calculate state excess charges directly from countrywide, without having state 
tables of increased limits factors. 

To facilitate discussion, define the excess layer factor LF(c,a;b) to be the 
difference in increased limits factors IF(C;b) - IF(a;b) where again b is the basic 
limit. Then LF represents the ratio of layer expected losses to basic limits losses. 
Now what is the adjustment factor for a scale change with constant k? This is 
the ratio LG(c,a;b) + LF(c,a;b) which can be expressed as 

SF(C f k) - SF(a + k) IF(b, b f k). 

SF(~) - SF(a) 

This can be proved by expressing everything in terms of the SF and SG functions. 

Now the ratio [SF(C + k) - SF(a f k)]/[SF(C) - SF(a)] does not depend too 
strongly on a and c when both limits are in a reasonable range. Thus, approx- 
imating this ratio by a single factor dF will allow the adjustment factor 
LG(c,a;b) + LF(C,a;b) to be expressed as dFIF(b;b + k) independently of limits 
a and c. 

To explore the range of variability for the ratio [SF(C + k) - SF(a + k)]l 

[SF(C) - SF(a)] it will be calculated for some specific loss severity distributions. 

First consider the Pareto distribution F(x) = 1 - (x + r)-q; r,q > 0. If 
losses follow this distribution, even if only for the range of interest (for example, 
$100,000 to $l,OOO,OOO), we can calculate the ratio as follows: 

f(x) = (q t r)(x + p--l) 
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I 

c 
SF(c) - SF(a) = 

a 
rqqteqdt + c (F)mq - a (f)-’ 

and so 

= 5 (a-(9-‘) _ ,-W’)). 

rq 
SF(C + k) - SF(a f k) = q _ 1 ___ ((a + k)-(d) _ (c + Q-(9-“) 

rq 
= (q _ l)kq-l (a--(‘-‘) - c -(q-l) ). 

Thus, 

L&d4 = SF(c + k) - SF(a f k) 

LF(c,a;b) SF(c) - SF(a) 
IF(b;b + k) 

= k’-‘IF(b;b + k). 

Thus, in this case, the adjustment does not depend at all on the limits a and c. 

The above argument requires that losses follow the Pareto at least in between 
a + k and c. This has been reported informally to be a reasonably close but not 
exact form for several lines of casualty losses in working excess layers. Distri- 
butions giving closer fits will generally not have this property (of allowing an 
exact single factor adjustment for scale independently of layer), but if losses 
are close to the Pareto it is reasonable to believe that a single factor can be 
found which is close to proper for each layer. 

Consider next the lognormal distribution. A CV of 4 with an expected loss 
size of $5,000 might represent a typical casualty line. 

The ratios [S,=(C + k) - SF(a +k)]/[SF(c) - SF(a)] for a Scale change (i.e., 
k = 1.25) calculated as above are shown for several excess layers in the top 
half of Appendix 1. (Recall that after the scale change a distribution with a 
mean of $6,250 and a CV of 4 results.) The ratios are computed as follows. 
First, the lognormal parameters k = 7.10059 and o = 1.68322 were derived 
from the equations cr* = ln(1 + CV*) and TV = In&x) - a*/2. To calculate 
SF(a) the formulas F(a) = @((lna - ~)/a) and .I$ tf(t)dt = E(x) @[((lna - k)/ 
a) - u] from [l] were used, where @ is the standard normal cumulative 
distribution function. 
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As the table shows, most factors lie in the 120% to 135% range. This may 
or may not be a small enough range to consider constant, depending on the uses 
to which this analysis is to be put. A factor of 1.275 applied uniformly to all 
excess layer expected losses would seem to be a reasonable figure. 

The shifted Pareto distribution discussed in [4] is also treated in Appendix 
1. That distribution function is of the form 

F(x) = 1 - 

For the shifted Pareto: 

6 
E(x) = * p 1 (6 > l), cv’ = 6 _ 2 ) 6 > 2, 

and 

From this it can be shown that 

SF(a) = & (1 - ()f-p)sel) . 
The same mean and CV were assumed as in the lognormal case, and p = 

85,000/15 and 6 = 32/15 were derived by matching moments. In this case, the 
ratios measured remained in the 126% to 128% area, as shown in Appendix 1. 
Thus, the constant ratio approximation is better for the shifted Pareto than for 
the lognormal. This distribution has generally been a more successful model for 
casualty loss severities than has the lognormal and is commonly used in in- 
creased limits ratemaking. 

To obtain the final factor for adjusting excess layer factors for a scale 
change, the factor IF(b;b t k) is needed for the basic limit b. Taking b = 
25,000 gives 1.06 for the lognormal and 1.04 for the Pareto by applications of 
the above methods. The final adjustments to apply to excess layer factors are 
thus 1.06 x 1.275 = 1.35 for the lognormal and 1.04 X 1.27 = 1.32 for the 
shifted Pareto. 

Calculating k 

The factor k is the ratio of the average severity for Y to the average severity 
for X. One case of interest is where X is countrywide and Y is state loss size. 
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Then state excess factors can be calculated by applying a constant adjustment 
to the nationwide values by the method above. Estimating k is somewhat 
complicated by the fact that the average severities are available only for basic 
limits, i.e., t = &(b) t SF(b) is known rather than k = E(Y) + E(X). Since 
So(b) = kSF(b t k), it is possible to solve for k if the nationwide distribution 
F is known; e.g., t = So(b) + SF(b) = kSF(b + k) + SF(b) or tSF(b) = 
kSF(b t k) gives an equation that can be solved for k if F and t are given. 

For example in the Pareto case above (p = 17,000/3, 6 = 32/15), 

= 5000 (1 - ((3b/l7,000) + 1)-‘7”5). 

Suppose t = 1.2, i.e., the state in question has basic limit severity 20% above 
nationwide. Then with basic limits of $25,000 the equation tSF(b) = kSF(b + k) 
becomes 1.2 X 5,000 (1 - ((75,000/17,000) + 1)-‘7”5) = k X 5,000 (1 - 
((75,000/k17,000) + 1)-17”5), i.e., 1.023 = k(1 - (1 + 4.412/k)-‘.‘33). This 
can be solved iteratively to yield k = 1.248. Thus, with the given nationwide 
distribution and a state offset at basic limits of 1.2, a state scale factor of 1.248 
results. Thus, from the above, an adjustment factor of approximately 1.32 
should apply to excess layer factors. 

A similar procedure could be used for other distributions. The calculation 
is somewhat easier for the Pareto because of the closed form for SF(a). 

Scale Parameters 

Often one of the parameters of a distribution can be used to effect a scale 
change. Such parameters are, therefore, called scale parameters. Beta for the 
Pareto and mu for the lognormal are examples. Thus, if F is the Pareto distri- 
bution function and G(a) = F(a -+- k), it is easy to see by direct substitution 
that G is a Pareto with just a different beta. A similar result can be derived for 
the lognormal and for many other distributions. 

Combined Single Limits 

For Commercial Automobile Combined Single Limits (CSL) an additional 
state offset to nationwide factors could be made to reflect the particular BI-PD 
mix in the state. For example, for the average state, $5,000 limits PD losses 
might run about 80% of $15,000 limits BI losses. Many companies have access 
to data of this type. One unpublished study available to the author indicated 
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that for different states this percentage could fall anywhere in the range of 50% 
to 150%, or even outside this range, consistently by state. Possible explanations 
for this spread include differentials among the states in urban-rural mix and tort 
atmosphere. Property damage losses could reasonably be expected to predomi- 
nate in urban areas where crowded conditions force lower speeds but lead to 
more encounters, while bodily injury may predominate on rural roads. So-called 
tort consciousness or propensity to sue could also lead to more bodily injury 
losses incurred in some areas. 

Since BI and PD have quite different loss severity distributions, at least in 
average value, their mix could markedly affect the CSL severity distribution for 
the state. 

Again the offset for state excess layer factors can be used as a single factor 
independent of layer for a suitable range of layers, but additional approximations 
are involved. Since there are numerous concepts to keep track of, some notation 
is necessary. Let B, P, and C refer to Bodily Injury, Property Damage, and 
Combined Single Limits, respectively, so Sp(a) is Property Damage severity 
limited to a, Ic(a;b) is the expected loss Combined Single Limits increased 
limits factor for a over b, and LB(c,a;b) is the Bodily Injury excess layer factor 
for the layer a to c with basic limits b. An asterisk will denote the concept for 
a state under consideration while non-asterisked variables will denote nation- 
wide. A constant tc = Lp(c,a;b) + Lc(c,a;b) is sought where tB and tp, the 
similar constants for BI and PD, have already been determined. 

The first approximation needed for this is N&(a) = uNBSB(a) + vNpSp(a), 
where N is the expected number of losses for each category. This expression 
says the CSL limited losses can be approximated as a linear combination of the 
BI and PD limited losses. 

At a given limit the CSL expected losses should be less than the sum of BI 
and PD expected losses at the same limit, because the CSL limit applies to the 
BI plus PD total rather than to each separately. The constants u and v are 
discount factors to reflect this. An example is provided by the so-called single 
limit rule, which for many limits and states is equivalent to u = 1, v = .91. A 
more compact form of the above expression arises if we introduce the notation 
D(a) for the total expected loss dollars limited to a, i.e., D(a) = NS(a). Then 
DC(a) = uDB(a) + vDp(a) is the approximation noted. 



10 SCALE ADJUSTMENTS 

Now, 

Lc(c,u;b) = (DC(C) - DC(U)) + DC(b) 

= u (&f(c) - &(a>) + v @P(C) - DPb)) 

11 De(b) + v DP(b) 

= uLB(c,a;b)DB(b) + v Lp(c,a;b) DP(b) 

u De(b) + v DP(b) 

= w LB(c,u;b) + (1 - w) LP(C,U$) 

where w = u De(b) t (U D&b) + v Dp(b)) = 1 + (1 + rv t u) where r is the 
ratio of PD to BI losses at limit 6. 

Now u and v are reasonably believable as constants among states; that is, 
even though BI and PD constitute different percentages of the CSL losses from 
one state to the next, the same percentages of BI and PD losses at a given limit 
are eliminated by the CSL approach. Nonetheless, w will vary by state due to 
the varying BI-PD mix r*. 

Thus Lc* = w*LB* + (1 - w*) Lp*, suppressing the (c,u;b), and tc, the 
factor being sought, may be expressed as 

tc = Lc* + Lc = 
w*Ls* + (1 - w”) Lp* 

WLB + (1 - w) Lp 

w* (LB* + LB) + ((1 - w*) + w*)(Lp* + Lp)(Lp + LB) =- 
W 1 + ((1 - w) + w)(Lp + LB) 

1 + w + z4 1B + tp(r*v + U) Lp f LB 
= 1 + r*v+ u 1 + (rv f U) Lp + LB 

In the last formula, only the nationwide ratio Lp(c,u;b) + LB(c,a;b) depends 
on c and a. The second approximation is to use a constant to represent this 
ratio. In a test intended to be representative (see Appendix 2) this ratio was 
found to vary from .142 for the layer from $750,000 = a to $1 ,OOO,OOO = c 
to .190 for the layer from $100,000 = a to $200,000 = c, where b = $25,000. 
The actual ratio tc varies less than this because the term containing Lp + LB is 
added to a larger term in both numerator and denominator. 

Thus to recapitulate, 

tc = 1 + TV + 24 tB + tp(r*v + u) q 
1 + r*v + u 1 + (7-v f U) q 
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where r and r* are the nationwide and state ratios of PD to BI expected losses 
at basic limit b, v and u are constants used to linearly approximate CSL expected 
losses at any limit by BI and PD losses at the same limit, and 4 is a point 
approximation of nationwide PD excess layer factors over BI excess layer factors 
at the same limits. An example is discussed in Appendix 2. 

Final Notes 

It should be noted that the single factor approximations discussed above do 
not apply to increased limits factors. Rather they apply to the excess layer 
factors which are differences between two increased limits factors. If the ap- 
proximation is good in a range that includes basic limits, then the adjustment 
factor could be applied to the part above 1 .O of a given increased limits factor, 
because that would be the excess layer factor for the layer from basic limits to 
the given limit. Even if this approach is not reasonable, an adjustment to the 
increased limits factor is still in order, but a constant factor adjustment will not 
be appropriate. 

It should also be emphasized that the above formulas relate only to the 
expected loss portion of the premium. Loss expense and risk load are also 
important elements of excess charges that ought to be considered when applying 
the scale change model to excess pricing. Loss expense can probably be handled 
in a way consistent with the above constant adjustment factor approach. 

It is questionable whether the appropriate risk load for a layer is the differ- 
ence between ground up risk loads at the layer limits, and, thus, the loading 
approach should tie in closely with the specific application being considered. 

One area for further study is the determination of the single limit discounts 
u and v. Respective values of 1 .O and .91 reflect current conventions, but as 
single limit occurrence distributions become available, better measurements 
should be possible. 

Finally, the scale model, while a good working hypothesis in many cases, 
is not universally applicable. It is probably better than the identical distribution 
model in instances where consistent average value differences have been ob- 
served; but where there is reason to suspect that shape differences may exist, 
they should be investigated. In many lines, variation between classes (e.g., 
heavy trucks versus vans) is an area where shape differences in severity distri- 
butions may be found. 
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APPENDIX 1 

EFFECT OF 25% SCALE CHANGE ON LAYER SEVERITIES 

&(c f k) - &(a + k) 
SF(C) - SF(U) 

a = Lower 
Layer Limit 
ww 

100 
200 
250 
300 
400 
500 
750 

a = Lower 
Layer Limit 
(000) 

100 
200 
250 
300 
400 
500 
750 

Lognormal Distribution 
E(x) = 5,000 cv = 4 

p = 7.10059 u = 1.68322 

c = Upper Layer Limit (000) 

200 250 300 400 500 750 - - - - - - 
1.198 1.205 1.211 1.219 1.224 1.231 

1.241 1.248 1.259 1.267 1.278 
1.260 1.271 1.280 1.292 

1.281 1.291 1.304 
1.307 1.323 

1.335 

Shifted Pareto Distribution 
E(x) = 5,000 cv = 4 

85,000 
@= 15 

+32 
15 

c = Upper Layer Limit (000) 

200 250 300 400 500 750 - - - - - - 
1.260 1.262 1.263 1.265 1.265 1.266 

1.271 1.272 1.274 1.274 1.276 
1.274 1.275 1.276 1.278 

1.277 1.278 1.279 
1.279 1.280 

1.281 

1000 

1.235 
1.284 
1.299 
1.312 
1.332 
1.346 
1.371 

1000 

1.267 
1.276 
1.278 
1.279 
1.281 
1.282 
1.283 
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APPENDIX 2 

COMBINED SINGLE LIMIT EXAMPLE 

For nationwide PD severity the Pareto distribution Fp(x) = 
1 - (1 + x/p)-” is used with p = 335.023 and 6 = 1.35. For BI a split Pareto 
severity distribution is used, i.e., 

F(x) = 
i 

1.40935 (1 - (1 + x/p)-s) x 5 4,000 
1 - .5913 (1 + x/p>-* x 22 4,000 

where @ = 5 17 1.797 and 6 = 1.20848. These parameters were chosen to be a 
realistic representation of the data once available. From the single limits rule 
v + u was taken at .91, and from a large unpublished sample a nationwide ratio 
of PD to BI $25,000 losses of r = .8 was estimated. Suppose for a given state 
tB = 1.2, tp = 1.0, and r* = .6 have been calculated. Then 

t 
C 

= 1 + (.8)(.91) x 1.2 + (.6)(.91)q 
1 + (.6)(.91) 1 + (.8)(.91)q ’ 

By definition q(c,a;b) = Lp(c,a;b) + LB(c,a;b) and L(c,u;b) = 
(S(c) - S(u)) t S(b). For PD, 

335.023 
&(a) = ~ 

.35 

by the Pareto rule. A somewhat more complicated formula holds for Sg due to 
the split Pareto used. After some calculation, q is found to range from .142 to 
.190 for layers (a and c) in the $100,000 to $l,OOO,OOO range. Selecting q = 
.166 yields tc = 1.287. With q’s of .142 and .190, tc’s of 1.294 and 1.280 
arise respectively. 
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