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ESTIMATING PROBABLE MAXIMUM LOSS WITH ORDER 
STATISTICS 

MARGARET E. WILKINSON 

Abstract 

In the past there has been much discussion about the definition of probable 
maximum loss (PML), but little attention has been given to its quantification. 
This paper introduces the concept of order statistics as a tool to use in estimating 
the PML. Two different approaches, that of Xc,,, the largest sample value, and 
that of quantiles, lead to six specific methods to estimate the PML. Three of 
the methods require sample data, two of the methods require assumptions about 
the underlying distribution of the population and the frequency, and one of the 
methods requires only estimates of the mean and variance of the population and 
of the frequency. All six methods are illustrated using a particular size of loss 
distribution. The methods work equally as well if the distribution of size of loss 
as a percentage of value is available. 
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INTRODUCTION 

The term PML is usually used in connection with property insurance, but it 
can also be applied to liability insurance. In fact, there is some controversy 
over whether the appropriate term, from a risk management viewpoint, is 
probable maximum loss, maximum possible loss, estimated maximum loss or 
one of many other similar phrases. 

McGuinness [l] offers two definitions: 

“The probable maximum loss for a property is that proportion of total value of 
the property which will equal or exceed, in a stated proportion of all cases, the 
amount of loss from a specified peril or group of perils. 

“The probable maximum loss under a given insurance contract is that proportion 
of the limit of liability which will equal or exceed, in a stated proportion of all 
cases, the amount of any loss covered by a contract.” 

The first definition is pertinent to insureds and risk managers, while the second 
is pertinent to underwriters. These definitions were later combined by Mc- 
Guinness [2] into one generalized definition: 

“The PML for a specified financial interest is that proportion of the total value 
of the interest which will equal or exceed, in a stated proportion of all cases, 
the amount of any financial loss to the interest from a specified event or group 
of events.” 

A guest reviewer [3] of McGuinness’s paper, who is an underwriter, offered 
the following observations: 

“It is true that the definitions may vary between underwriters when put down in 
words, but I feel strongly that there is a universal meaning as to the end result 
which all underwriters expect PML to accomplish. . . PML, no matter how 
you define it, is simply Probable Maximum Loss. It is neither foreseeable nor 
possible loss--rather, it is the maximum loss which probably will happen when, 
and if, the peril insured against actually occurs.” 

The concept of probable maximum loss used in this paper will not be defined 
separately from the definitions implied by the various measures to be discussed. 

The PML depends upon (i) estimates of the likelihood that losses of various 
sizes will occur, (ii) the amount of losses and associated probabilities that the 
insured is willing to accept, and (iii) the amount of losses and associated 
probabilities that the underwriter is not willing to accept. Thus, the insured and 
the underwriter can have different estimates of the PML for the same loss 
exposure. 
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ORDER STATISTICS 

Let Xi, X2, . . . , X, denote a random sample from a population with 
continuous cumulative distribution function F X. Since FX is continuous, the 
probability of any two sample values being equal is zero. Consequently, there 
exists a unique ordered arrangement of the sample. Let X(i) denote the smallest 
member of the set, X(2) the second smallest, etc. Then 

X(1) < X(2) < -** < X(n) 

and these are called the order statistics from the random sample Xi, X2, . . . , 
X,. For 1 5 r I n, XC~~ is called the rth order statistic. 

Order statistics are particularly useful for studying certain phenomena be- 
cause quite a few of the results concerning the properties of Xc,., and the 
properties of functions of some subset of the order statistics are distribution- 
free. If an inference is distribution-free, assumptions regarding the underlying 
population are not necessary. The distribution-free inference is based on a 
random variable which has a distribution independent of the underlying popu- 
lation’s distribution. 

GENERAL RESULTS CONCERNING &,, 

Xcnj is the largest value of the sample. This is a good place to start since 
probable maximum loss is the worst loss likely to happen. 

Distribution of Xc”) 

The cumulative distribution function of Xcn, is given by 

Fx(,, (x> = Pr { 4,) 5 x ) 
= Pr { all Xi 5 x } 
= FTC”(X) (1) 

since the Xi’s are independent. The corresponding density function is found by 
differentiating (1). It is easily verified that 

fq,, (4 = nfx(x>Fxn- 1 (x) (2) 

where fx is the density function corresponding to Fx. 

Moments of X(n) 

The exact moments of Xc,,, can be derived from the following equation: 
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I 

m 

= n.x~&)F~“- ‘(x)&. (3) 
-cc 

This requires a specified distribution Fx and is of limited practical value due to 
the complexity of the integral involved. 

There are large-sample approximations for the mean and variance of Xcn) 
that are easily calculable. The approximations require two facts. 

1. If UC,.) denotes the rfh order statistic from a uniform distribution over the 
interval (O,l), then 

X(r) = FG’tU(r,). 

2. The Taylor’s series expansion of a function g(z) about a point lo is 

t?(z) = g(lJJ + 2 1, (z - l-4’ g’“‘(p) 
i=l i! 

where g”‘(p) = 9 lzzP . 

This series converges if 

lim 12Llb!X g(“‘(z,) = 0 
I??- 1 n. 

for p. < z1 < z. 

The first requirement is due to the probability integral transformation and is 
proved in various statistical texts [4]. The second requirement is the standard 
Taylor’s series expansion. 

If the Taylor’s series expansion is rewritten for a random variable Z with 
mean p,, and the expected value of both sides is taken, the result is 

var 0 (2) mm1 = dP.> + - 2, g (PI 

+ 2 H(Z - t-41 (i) 
i! g (F). 

i=3 
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So, a first approximation to E[g(Z)] is g(k), and a second approximation is 

To find similar approximations for var[g(Z)], form the difference 
g(Z) - E[g(Z)], square it and take the expected value. The result is 

v~WN = WQ k”‘(pd12 - i k’2’W2v=20 + -W4Z)l 

where E[hQ] involves third or higher central moments of Z [5]. A first ap- 
proximation to var[g(Z)] is var(Z)[g”‘(p,)]2, and a second approximation is 
wn[g”‘(~)12 - (l/4) [d2’(p)12 vf12m. 

In order to apply these results to Xc,,, g is defined so that 

g&z,) = x(n) = Fx-~&o) 

where z+) = Fx(x&. The appropriate moments [61 are 

p. = E[q,,] = nl(n + 1) 

and 

The derivatives needed [7] are 

g”‘(p) = &dFx-’ (n/b + l)>l)-’ 

and 

gc2’(p) = -fx’[Fx-’ (nl(n + l))]cfx[Fx-’ (nl(n + 1))]}-3. 

Substituting yields as first approximations: 

E(X& = Fx-’ (nl(n + 1)) (4) 

=Gh) = (n + ,)Y(, + 2) i-M5-’ 010 + 1))1)-2. (5) 

Second approximations are similarly found by the appropriate substitutions. 
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Distribution-Free Bounds for E(X& [8] 

If a variate X has a finite variance, the expected value of XQ,, can not be 
arbitrarily large even if the range of X is unbounded. 

From Equation (3), the expected value of Xc,, is 

E&t,) = 
i 

m 
mFx”- ‘(x,j.Xx> ok. -cc 

Let u = Fx(x) and standardize X to have mean 0 and variance 1. This means 
1 

-Wd = nx(u)u”-‘du, 

I 
1 

x(u)du = 0, 
0 

1 
[x(u)12du = 1, 

where x(u) indicates that x is expressed as a function of u. 

Schwartz’s inequality states that 

J fg du 5 (J f’du J g2du)1’2. 

Letf= x and g = nu”-’ - 1. Then 
1 

X(nUn-l - 1)du 5 ([ x2du I,’ (nu’ n- 1 - 1)2du 1’2. 

Expanding yields 
1 1 

xnu”- ‘du - x du 

5 (6’ x2d+’ (6’ (n2u2-* - 2nu”-l + l)du)ln. 

Substituting for the various pieces gives 

Wh) 5 

(s 0 1 

(fi2u2”-2 - 2nu”-’ + 1)du 1’2. 

Hence 

E(X(,,) ZG (n - 1)/(2n - 1)1’2. 
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If the mean and variance of the population are p, and u2, respectively, the result 
becomes 

E(X(,)) 5 p + (n - 1) ol(2n - l)“* (6) 

This result is distribution-free and requires only the knowledge of the mean and 
variance of the population, not its specific distribution. 

GENERAL RESULTS FOR QUANTILES 

Probable maximum loss has been defined as the worst loss likely to happen. 
If the sample under consideration has an unreasonably large loss, then using 
Xc,,) to estimate the PML would be unreasonable. In this case, quantiles could 
be used. The quantile approach would also be preferred if the insured was 
willing to accept more risk or the underwriter wanted to accept less risk. “More 
risk” and “less risk” used in this context are comparable to the expected retained 
losses implied by using XC,,, to estimate the PML. 

A quantile of a continuous distributionfJ&) of a random variable X is a real 
number which divides the area under the probability density function into two 
parts of specified amounts. Denote the pfh quantile by K~ for 0 5 p 5 1. Then 
K~ is defined as any real number solution to the equation 

Fx(Kp) = p. 

It is assumed that there is a unique solution to this equation, as there would be 
if FX is strictly increasing. 

Point Estimate for K~ [9] 

It can be shown that the rrh order statistic is a consistent estimator of the pzh 

quantile where r/n = p remains fixed. A definition which provides a unique Xc,) 
to estimate the pfh quantile is to choose r so that 

’ = { 
if np is an integer 

1:: + l] if np is not an integer (7) 

where [x] denotes the greatest integer not exceeding x. 

Distribution-Free Conjidence Interval for K* [lo] 

Since consistency is only a large-sample property, it is desirable to have an 
interval estimate for K~ with a known confidence coefficient for a given sample 
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size. The objective is to find two numbers r and s, r < s, such that 

P(&, < Kp < &) = 1 - Cf 

for some chosen number 0 < (Y < 1. 

For all r < s, 

P(&,, < Kp < x(s)) = p(&, < Kp) - p(&, < KP). 

Since Fx is a strictly increasing function, 

X,,, < K~ if and only if Fx(XC,~> < Fx(KJ = p. 

Thus, 

P(X,,, < Kp < &s,> = P[Fx(X(r,) < PI - P[Fx(Xd < ~1 

If this formula is integrated by parts the necessary number of times, the 
result is 

s-l 
P(&, < Kp < &,) = x 

0 
: pi(l - p)“-‘. 

i=r 1 
(8) 

This does not produce a unique solution for r and s. The narrowest interval is 
produced when XCs, - XC?, is minimized. Alternatively, s - r could be mini- 
mized. Also, a confidence interval produced by 

s-l 

m 
n pyl - p)“-’ = 1 - a 

i=r I 

is distribution-free. 

The formula derived above can also be argued directly. For any p, 

Xcr, < K~ if and only if at least r of the sample values X1, X2, . . . , X, are less 
than K~. The sample values are independent and can be classified according to 
whether they are less than K~. Thus, the n random variables can be considered 
the result of n independent trials of a Bernoulli variable with parameter p. The 
number of observations less than K~ then has a binomial distribution with 
parameter p. 
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APPLICATION OF ORDER STATISTICS TO THE PML PROBLEM 

The application of order statistics has various requirements depending on 
the approach taken. The PML can simply be estimated by Xcn, if a reliable data 
set applicable to the particular problem is available. If the concern is to estimate 
the PML by using the expected value of X cn) or by constructing an interval 
around Xcn, using the variance of Xc,, and choosing the PML as the upper limit 
of this interval, the distribution of X, Fx, must be known (actually FG’, fx and 
fx’ are needed). If estimates of the mean and variance of Fx are available, 
derived either theoretically or from a data set, then the upper bound for E(Xc,,) 
could be used as the PML. If a data set is available but, for various reasons, 
the quantile approach is preferred, only the order statistics themselves are 
necessary to produce either a point estimate for the quantile or a confidence 
interval for the quantile. In the former case, the PML would be the quantile; in 
the latter case, the PML would be the upper bound of the confidence interval. 

The data set or theoretical distribution used in estimating PML must be 
adjusted for trend. As there are several excellent papers [ 1 l] available on various 
methods of adjusting for trend, this paper will assume such adjustment has been 
made. 

Xc,,) as an Estimate for PML 

Exhibit I contains a list of 100 claims that are representative of a particular 
problem in which a PML estimate is needed. Xcn, in this case is Xcr00) or 
$576,525. Consequently the PML is $576,525. 

E(X(,,) as an Estimate fur the PML 

The use of E(X(,,) as an estimate for the PML requires FG’ . Suppose it is 
assumed that the data has a lognormal distribution. The mean is $212,521 and 
the standard deviation is $110,506. The corresponding normal distribution has 
a mean of 12.14714 and a standard deviation of .48920. From Equation (4), 
the approximation for the expected value of Xc,) is 

E(X(,,) ‘1 &‘(n/(n + 1)) = e[oz-‘(n’(n+l)) + IL1 

where AX is the lognormal distribution, 
Z is the standard normal distribution, 
p is the mean of the normal distribution, and 
u is the standard deviation of the normal distribution. 

If n = 100, the value of Z-‘(.9901) is found from standard normal tables to be 
2.33. The PML estimate is $589,468. 
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The Upper Bound of an Interval Around E(Xc,,) Using var(Xc,,) as an 
Estimate for the PML 

It is possible to choose k so that 

E&o) + k(v@Gt,)) 
112 

produces a reasonable estimate of the risk that is acceptable. If the prior example 
is continued, the var(Xc,J can be approximated using Equation (5): 

var(X& = [100/(101)2(102)] (A~(589,468))-~ 

where Ax is the density function corresponding to AX. The formula for hx is 

Xx(x> = 
1 

XO(2~) 1’2 
,{-(1/2d)(lrLv-)1.)2} 

The (~ar(X~,,))“~ is $106,976 for this example. If k is chosen to be 2.0, the 
PML estimate is $803,420. 

The Distribution-Free Upper Bound of E(X& as an Estimate for the PML 

The data shown in Exhibit I have a sample mean of $212,521 and a sample 
standard deviation of $110,506. Consequently, 

E(Xc,oo,) 5 212,521 + 99 (110,506)/(199)“*. 

The PML is thus $988,044. 

If sample data are not available, a mean, variance and number of claims 
could be chosen on some theoretical grounds and the upper bound calculated 
as shown above. 

K,, as an Estimate for the PML 

Suppose it is decided that the .95 quantile will be used as the PML. If the 
sample data from Exhibit I are used, r is 95 (because .95 X 100 = 95) and the 
PML (X& is $434,449. 

The Distribution-Free Upper Bound of K~ as an Estimate for the PML 

The estimate of K~ for p = .95 based on the sample data is $434,449. Now 
a confidence interval is desired around this estimate so that (Y = .lO. In other 
words, r < s must be found so that 

s-1 

P(&,., < Kp < &,) = 2 
0 

” #(I - p)“-’ = .90. 
j=r I 
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We should also minimize s - r. Exhibit II shows Xcn and 

0 
y p’( 1 - p)“-’ for i = 90, 91, . . . , 100. 

There are two possibilities for r and s: 

P(X<g1, < K.95 < X,9,) = .934732 

and 

P&92) < K.95 < x(99,) = .899831. 

The second is closer to .90 and s - r is 7. The first has an s - r of 8. Even 
though the probabilities are so close, and the second probability is slightly less 
than $90, the second answer would be chosen because s - r is minimized. The 
PML in this case is X,99, or $563,899. 

In the above six examples a particular size of loss distribution was assumed. 
The PML estimates for the sample data are summarized in Exhibit III. While 
these estimates vary considerably, this is due to differing data and loss aversion 
considerations. The methods presented work equally well if the distribution of 
size of loss as a percentage of value is available. The former is more correct 
for liability insurance or for property insurance if the population has the same 
property value as the insured. The latter is more correct for property insurance 
where the property values differ among properties. 

SUMMARY 

This paper has presented two different approaches to the PML problem using 
order statistics: XCnj and quantiles. These approaches lead to six different meth- 
ods for estimating the PML: 

3. H&d + k(v~CGz,>) , 
4. distribution-free upper bound of E(Xc,,), 
5. X0) as an estimate of K~, and 
6. distribution-free upper bound of K~. 

Methods 1, 5 and 6 require sample data. Methods 2 and 3 require assump- 
tions about n and the underlying distribution of the population. Method 4 
requires only estimates of n and the mean and variance of the population. The 
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choice of method would depend on availability of data, willingness to make 
assumptions about the underlying population, and the amount of losses and 
associated probabilities the insured is willing to accept or the underwriter is not 
willing to accept. 
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i - i - 

1 $ 19,874 51 $207,196 
2 30,610 52 208,959 
3 32,159 53 209,568 
4 34,115 54 213,084 
5 40,660 55 214,307 
6 53,453 56 214,546 
7 56,598 57 215,978 
8 61,651 58 216,369 
9 63,411 59 220,808 

10 66,007 60 222,804 

11 73,062 61 224,417 
12 76,962 62 224,475 
13 87,348 63 235,209 
14 96,498 64 238,249 
15 98,408 65 238,679 
16 109,837 66 238,842 
17 122,838 67 240,455 
18 128,372 68 244,699 
19 128,426 69 247,465 
20 130,048 70 251,374 

21 130,610 71 257,426 
22 131,326 72 258,513 
23 131,474 73 265,051 
24 137,655 74 269,816 
25 139,681 75 27 1,647 
26 140,949 76 274,154 
27 147,987 77 275,727 
28 150,776 78 277,211 
29 151,044 79 277,734 
30 151,967 80 279,494 
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EXHIBIT I 

ORDERED SAMPLE DATA 
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31 152,219 81 
32 153,388 82 
33 154,619 83 
34 157,065 84 
35 162,956 85 
36 169,142 86 
37 170,262 87 
38 171,988 88 
39 173,391 89 
40 174,049 90 

41 175,689 91 345,130 
42 180,406 92 368,095 
43 182,223 93 371,194 
44 183,399 94 396,911 
45 190,532 95 434,449 
46 195,658 96 440,639 
47 197,482 97 447,171 
48 199,788 98 482,259 
49 203,310 99 563,899 
50 205,796 100 576,525 

EXHIBIT I 

ORDERED SAMPLE DATA 

X(i) i - x(il 

280,721 
293,728 
302,641 
308,771 
311,612 
314,410 
319,722 
323,711 
327,927 
331,179 

mean = $212,521 
standard deviation = $110,506 



i 
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EXHIBIT II 

BINOMIAL PROBABILITIES 

FORTI = lm,p = .95 

X(i) ( > lpo (.95)‘(.05y’ 

90 331,179 .016716 
91 345,130 .034901 
92 368,095 I.064871 
93 371,194 .106026 
94 396,911 .150015 
95 434,449 .180018 
96 440,639 .178143 
97 447,171 .139576 
98 482,259 .081182 
99 563,899 .031161 

100 576,525 .005921 

EXHIBIT III 

SUMMARY OFEXAMPLE PML CALCULATIONS 

Method PML Estimate 

1. X(n) $576,525 
2. UXd 589,468 
3. E(X(,)) + k(var(x(,)>)1’2 803,420 
4.” upper bound of E(X& 988,044 
5. Xtn as an estimate of K~ 434,449 
6.* upper bound of K~ 563,899 

*These are distribution-free. 


