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Abstract 

Stein estimators are an alternative (non-Bayesian) explanation for 
credibility. Until this year, the syllabus for Part 4 of the Society’s 
examinations contained an article discussing Stein estimators, or James- 
Stein estimators, as part of the credibility readings for the exam (21. The 
article focuses on some examples where Stein estimators are applied to 
baseball players’ batting averages, among other things. In the examples, 
Stein estimators seem much like Bayesian credibility estimators and, in 
fact, credibility estimators derived from Stein’s theory have been used 
by the Insurance Services Office for products liability classification rate- 
making. 

Alike as Stein estimators and Bayesian credibility estimators are in 
practice, the theory behind Stein estimators is very much different and 
does not make much sense from the author’s point of view. This paper 
consists of a discussion of the theory that underlies Stein estimators, 
including an example which illustrates the flaw in logic behind this 
alternative explanation of credibility. 
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INTRODUCTION 

The literature of the Casualty Actuarial Society has been replete for years 
with papers on the theory of credibility (for instance. [ 3 1, [ 71, [ 81). Practice, at 
least for most direct lines of business, has lagged far behind. In 1980, the 
Insurance Services Office (ISO) Credibility Subcommittee [ 51 produced a com- 
prehensive report on credibility which recommended adoption of an empirical 
Bayes credibility procedure for products liability classification ratemaking. Nor- 
mally, one would rejoice at this attempt of life to imitate art. However, the 
method chosen for use was adapted from the method of Morris and Van Slyke 
191, which in turn is based on Stein estimation. Stein estimation is derived from 
the work of Charles Stein [IO] (also, James and Stein [6]), and herein lies the 
reason for the author’s less-than-jubilant reaction to the method of estimation 
chosen: the theory underlying Stein estimators doe5 not make sense. 

From a practical point of view, the adapted Morris-Van Slyke procedure 
worked better than the Buhlmann-Straub empirical Bayesian procedure in the 
testing done by the ISO. This is not all that surprising, given that the Morris- 
Van Slyke procedure is biased upwards and the testing included groups where 
the expected class loss ratios trended up or down over time. One of the as- 
sumptions underlying the Buhlmann-Straub credibility procedure is that the 
expected loss ratio of a class remains fixed over time. If the expected loss ratio 
changes, then the credibility to be applied to the most recent experience should 
be higher, since this recent experience is more related to the expected future 
experience of the class than the rate based on past class data. 

While the Morris-Van Slyke procedure seems to work well in the simulations 
performed by the ISO. its theoretical flaws make the application of the technique 
to other problems dangerous. For example, the degree of upward bias in the 
class credibilities is directly related to the number of classes in the group: in its 
report, the IS0 Subcommittee notes (p. l-19), “An interesting observation is 
that this process [the adapted Morris-Van Slyke method] effectively produces a 
minimum credibility of 3/k [where k is the number of classes] for each class in 
the group.” Interesting, indeed. The IS0 testing procedure involved groups with 
between 9 and 24 classes, and so the minimum credibility for each class was 
between 113 and 118. However, if the Morris-Van Slyke credibility procedure 
were applied without adjustment to private passenger auto territorial ratemaking 
for Rhode Island, the experience of each of the three territories would be given 
full credibility, regardless of the amount of experience! In this instance, it is 
clear that the Morris-Van Slyke procedure would not work well. What we have, 
then, is a procedure which works well in some instances. and yet produces poor 



results in other instances. Why? In the author’s view, it is because the Morris- 
Van Slyke procedure used by the IS0 is based, among other things, on Stein 
estimators, and Stein estimators are theoretically unsound. To understand the 
flaw in the theory, it is necessary to review the underlying statistical assumptions 
that form the basis of the development of Stein estimators. 

THE THEORETICAL BASIS FOR STEIN ESTIMATORS 

The focus of Bayesian estimation and Bayesian credibility is on modifying 
an estimate based on additional data. That is, the Bayes approach assumes that 
we already know something about the parameter to be estimated (the prior 
distribution). Bayes theorem and Bayesian credibility give us a way to combine 
that prior knowledge with additional information to produce a revised estimator 
of the parameter. 

Stein estimators are based on a different (sometimes called frequentist or 
classical) view of estimation. According to this view, it is meaningless to discuss 
prior distributions of parameters; the parameters of a distribution are fixed 
values, even though the values may be unknown. Frequentists study the distri- 
bution of estimators about parameters in order to make inferences about the 
quality of different estimators. One of the properties of estimators used for 
comparison is expected squared error. To use a more specific example, let’s 
take the normal distribution of mean p and variance I, or N( p,, I). If we select 
a sample point x from the distribution and use it as an estimator of p., we know 
from the definition of variance that the estimator has an expected squared error 
of 1. Are there better estimators of CL? That is a very tough question to answer 
directly, if you believe that talking about the distribution of p. is meaningless. 
Since f~ is fixed but unknown, there may well be better estimators, depending 
on the particular value of p. For instance, if p happens to be between 1 and 
3, the fixed estimator j(x)=2 has smaller expected squared error than I, the 
expected squared error of the estimator x. 

Thus, we need an additional requirement besides low expected squared error 
if we are to choose among estimators in the frequentist framework. One such 
requirement is that an estimator be unbiased. An estimator is said to be unbiased 
if its expected value is always equal to the parameter to be estimated. In terms 
of the example, an estimator is unbiased if the expected value of the estimator 
is equal to JL for all values of p. The sample point, x, is an unbiased estimator 
of p and has been shown to be the unbiased estimator of minimum expected 
squared error (see, for example, [4], pp.362-365). 
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The requirement that an estimator be unbiased is one way to help define 
what is meant by best estimate, but in some cases it is felt to be too stringent. 
After all, an estimator that is biased but with low expected squared error may 
well be more desirable than an unbiased estimator of high expected squared 
error. This led to the alternate standard of admissibility for estimators. An 
estimator is said to be admissible with respect to a loss function (e.g. expected 
squared error) for a class of distributions if there is no other estimator which 
has expected squared error less than or equal to the expected squared error of 
the estimator for all distributions in the class, with the strict inequality holding 
for at least one distribution. Admissibility certainly sounds like an admirable 
quality for an estimator to have, but using it produces some disturbing results. 
In fact, the theoretical basis for Stein estimates is a proof by Stein [IO] that the 
sample mean is not an admissible estimator of the mean of the n-variate normal 
distribution, n 2 3. (This result is sometimes referred to as Stein’s paradox.) 

In order to discuss Stein’s results, let’s review briefly the multivariate normal 
distribution and its notation. Conceptually an n-variate normal distribution can 
be thought of as a collection of II separate variables, each normally distributed. 
Using vector notation, any particular multivariate normal distribution can be 
specified as N( &,C), where @ is a mean vector @(FI,. .p.,,), with p,; repre- 
senting the mean of the i-th variable, and 2: is a symmetrical n-by-n covariance 
matrix, with each element of the matrix. crt. representing the covariance between 
the i-th and j-th variables. If the n-variate distribution is independent. then the 
covariances between variables are equal to zero, and 2: is a diagonal matrix. 

Stein considers the task of estimating @( ~1,. .,k,,) given a single sample 
point ?(.xi,. . ,x,,) selected from the multivariate independent normal distribution 
of variance I, i.e., .7 - fV(p, I), where I is the identity matrix. The usual 
estimator, X, has expected squared error of II, the number of parameters to be 
estimated. James and Stein (61 developed an estimator with smaller squared 
error. The development of the estimator is based on the following property of 
the multivariate normal distribution: for any point I,, 

P(lX - pi > I@ - 21) > .50 

In words, there is always a better than even chance that a point chosen at 
random from the multivariate normal distribution is farther away from j than 
&, the mean of the distribution, is from 6, no matter what i; is chosen to be. 
Stein estimators which shrink +? to an arbitrary j by a factor of 
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have smaller expected squared error than X for all @. That is, 

[ 
n-2 

for;= 1-n 1 n-2 _ 
~ 

lx - PI 
X + ,x _ -.I2 p, n 2 3 

When Stein estimators are applied to problems, jj is usually chosen to be 
the average result for the groupin the notation above, the average of the x,- 
and the resulting formula looks a lot like a Bayesian credibility estimate. 

It’s important to note, however, that there is no requirement that F be chosen 
as the average of the group in the theoretical work by Stein. And this flexibility 
with regard to j? produces unusual results, particularly if we change the frame 
of reference. For instance, consider the three-dimensional case, where we select 
.I-(x~,s~,.~~) from a multivariate normal distribution of mean $(pi,k2,~3) and 
covariance matrix /. the identity matrix. To make the presentation simpler, let 
.X = (O,O,O), the origin. According to Stein, .r can be combined with any arbitrary 
j3 (shrunk toward 3) to produce a better estimate of 6. For example, if we select 
F = (I ,O,O), the Stein estimate combining fi and .? is 02 + Ii;, or j itself. In 
fact, for any point chosen from the sphere of radius I centered at origin, the 
estimate is the point itself. Thus, every point on the sphere of radius I centered 
at the origin is a “better” estimate of k than .?, the origin. 

If that were not unusual enough, we can go further and show that any point 
(1 is a Stein estimate of CL, if we select an appropriate F. The fi to choose, 
for any given 6, is determined from the formula &I$. So, to show that 
(I = (lOO,O,O) is a Stein estimate, we need only choose 6 = (.Ol ,O,O). There- 
fore, based on the theory underlying Stein estimators, even a point as far away 
as (lOO,O,O) is a better estimate of @. than 4 = (O,O,O), the sample point! 

THE CIRCLE DISTRIBUTION 

To understand what’s wrong with Stein estimators, it helps to go through 
the development of a Stein-like estimator for a simpler distribution. The chosen 
distribution is the one-dimensional distribution defined on a plane by the function 

I 
f(X,,X>) = - , xf + x: = 1 

2n 
= 0, elsewhere. 

This distribution represents the chance of randomly picking a point on the circle 
of radius I centered at the origin. The mean of the distribution is also the origin. 



The circle distribution was chosen because from any point p on the plane, there 
is a better than 50% chance that the distance between a randomly selected point 
on the circle and I, will be greater than the distance between the origin and jj. 
Geometrically, we can see this by noting that, for any point i;, the arc around 
I-, through the origin contains less than half the circle. Because the circle 
distribution shares this property with the multivariate normal distribution, we 
should be able to shrink the values of the circle distribution to an arbitrary j5 
and get an estimate that is, on average. closer to the mean. Indeed. if we notice 
that. for any i; = (~1, pz), the average squared distance between the circle 
distribution and I, is 

(p, - sin 8)’ + (p: - cos 0)’ de 

we might consider estimators of the form 

IX - 1)12 + (’ ~ I - 
I.\ - i;l’ + (’ -r 

And, in fact, Appendix I shows that if C’ is greater than (I.7 ~ jj + I)‘, the 
expected squared error of this estimator. fi. is always less than I. the expected 
squared error of the usual estimator, .7. 

If one were to take the classical viewpoint. and the viewpoint that underlies 
the standard of admissibility of estimators. we should use this form of estimator 
in determining @, given a particular .i--. The fallacy in this approach can be seen 
by taking a Bayesian point of view. Let’s again use the circle distribution of 
radius I and choose at random a point .\ from a circle of radius I with an 
unknown center. Without loss of generality, we can set 4 = (0.0). Now, we 
want to estimate the center of the circle, given that Z- is a point on the circle. 
If we consider all possible circles of radius I equally likely. then a good 
candidate for the distribution ofJ@ll = (0.0)) would be 

= 0, elsewhere. 



In fact, if we represent equally likely (or no prior knowledge) as the prior 
distribution 

= 0, elsewhere, 

among others, then the candidate distribution shown asA&) above can be derived 
through the use of Bayes Theorem for continuous functions (see Appendix II). 

Now, from a Bayesian point of view, we have determined the distribution 
off(&$. The next step is to determine the best point etimate of the @. distribution 
(uniform distribution on the unit circle centered at the origin). The squared error 
function between the k distribution and any estimate 2 = (ei,ez) is given by 

1 
I 

2-n 
- 
27F 0 

(sin 0 - pi)* + (cos 9 - er)2 de 

= 1 + ef + es 

which obviously is at a minimum at (O,O), or X. 

Stein estimation takes another approach. Stein’s argument in this case would 
be, let us select an arbitrary point p, say j = (2,0). It was previously shown 
that, if we shrink the g’s to j by a factor of 

1 - ,k _ jr2 + c , c 2 (I@ - PI + I)*, 

the transposed 6’s are closer to X. Based on this, it is therefore appropriate to 
shift X towards i; by a factor of 

(or, equivalently, choose an estimate of (2/13, 0)) to give a better estimate of 
k 

A geometric analogy may be of some help in understanding this point. 
Figure I shows the problem in graphical terms, from a Bayesian standpoint. 
Imagine that c represents the rim of a dartboard attached to the back of a door, 
and p represents the doorknob. The problem is to place a dart on the wall that 
is closest, on average, to the points on the rim of the dartboard (f(@lX)). From 



the calculations above, and from common scnsc, we can see that the dart should 
be placed at the center of the dartboard (I-). 

Figures 2 and 3 represent the Stein estimator approach. Figure 2 shows that 
if one syuishes the rim of the dartboard a bit towards the doorknob (shifts the 
G’s), there is a smaller average distance between the rim of the dartboard and 
the center of the dartboard (.r). This is then used to justify aiming the dart at a 
point closer to the doorknob, even though the problem is to get as close 
as possible, on average, to the rim of the original (unshifted) dartboard 
(Figure 3). 

APPLICABILITY TO MULTIVARIATE NORMAL DISTRIHUTION 

While it is easier to see the fallacy of‘ admissibility and Stein estimators 
with respect to the circle distribution. Stein estimators are equally invalid for 
the multivariate normal distribution. Let’s again take the problem of estimating 
ji given 7, I- - N(IJ-,I). 

Using a variety of “Hat” prior distributions, including N(O,z) and the rec- 
tangular distribution used above, we can derive tIi. -- N(.T,l). Here. also. the 
standard of admissibility asks the wrong question from the Bayesian viewpoint. 
The proper question to ask is not what function .fl@) minimijcs E/f(k) - S)‘, 
but rather, what value I, minimizes Elp. ~ /,I’. B ecause the multivariate normal 
distribution is independent and can bc expressed as the product of one-dimen- 
sional normal distributions. the minimum of p at .i follows from the fact that 
the squared distance function is minimized at the mean in the one-dimensional 
ca.se. 

From a theoretical point of vievv, it would seem that the major accomplish- 
ment of Stein estimators is to show that admissibility as applied by Stein isn’t 
a very good criterion for choosing estimators and that the Bayesian theory of 
estimation, when properly applied, gives consistent and reasonable results. In 
fact. Stein’s paradox is not a paradox at all when viewed from a Bayesian 
standpoint. From a practical point of view, biased estimators are still appropriate 
to use in many cases, but not those derived from this particular theory of 
estimation. 

The author would like to thank Messrs. Chris Svendsgaard and Steven Yaset 
of the IS0 for their review and comments on earlier drafts of this paper. The 
Committee on Review of Papers was also very helpful in this regard. 
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APPENDIX I 

DEMONSTRATION THAT THE MEAN IS INADMISSIBLE AS AN ESTIMATOR OF THE 

CIRCLE DISTRIBUTION 

The following shows that there is a function that combines a data point, X, 
with any p to produce an estimate of @ = (0,O) that has expected squared error 
less than 1, the squared error of X. This treatment is consistent with the frame 
of reference discussed in the text. However, this is equivalent to showing that 
for a circle distribution centered at b, there is a function which combines X, a 
randomly selected point on the circle, and the origin to produce an estimate of 
fi, the mean of the circle distribution, with expected squared error of less than 
I. We consider estimators of the form 

For .? = (sin B,cos 6) and fi = (PI,&, the expected squared error is given by 
1 

- I 

2rr 

27T 0 [ 

2 - 
sin 8 + 

pi sin 8 

(PI - sin t3)’ + (~2 - cos 0)’ + c I 

pz - cos 0 1 
2 

+ cos 0 + 
(p, - sin t3)’ + (p2 - cos 012 + c 

d0 

I =- 
I 

271 

sin2 8 + 
2(p, - sin 8) sin 8 

27r 0 (p, - sin 0)2 + (p2 - cos 0)’ + c 

+ [(PI - 
(p, - sin 6)’ 

sin 8)2 + (p2 - COS 0)2 + c]’ 
+ CO? e 

+ 
2(p:! - cos 8) cos 8 

(p, - sin 0)’ + (p2 - c0S 8)2 + c 

+ [(PI - 
(pz - cos 8)' 

sin 8)2 + (~2 - cos 0)' + c]' 
d0 



In - 
1 + 2(p, 

- sin sin 8 
0) 

+ cos 
2(p: 0) 1 cos 8 

+ 
1 

(p, - sin 0)’ + (p, - cos 8Y + C’ 
d0 

2p,sin 8 + 2p:cos 8 ~ I 
pi - 2plsin 0 + p: - 2p2cos 0 + I de + ( 

I In 
=- 

I 27F 0 1+ 
Zp,sin f) + 2p,,cos H - 1 

Zp,sin 8 + 2pzcos 0 ~ 1 ~ (pf + pi + C) 
d0 

_.. u h 
Using the relation ~ = I + ~ 

u-b 0 ~ h 1 

,,f + p; + (’ 
2p,sin 0 + 2p~cos 0 ~ I - (pf + 112’ + C) 1 d0 

= -(pf + pi + C) 
27T I 

z71 d0 
(, 2prsin f3 + 2pzcos 0 - (p;’ + ps + c + I) 

= -(pf + p; + C) dH 
2n 

C 
2plsin (7r + 0) + 2p:cos (7r + 0) 

> 1 
- (ITi + p‘ + (’ + I ) 1 

= pf + pf + C‘ 
I 

IT de 
2lT -T Zplsin 0 + 2p~cos 8 + pf + pi + C’ + I 

Using integral tables, we find that the above is equivalent to 

tans ’ 
2p1 + (pf + pi + c + 1 - 2~:) tan (H/2) T 

ep: + p: + (’ - I)? - (‘p,)? - (?p$ -- 7-r 
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p: + p: + c 2%! = 
2Tr . v/(p: - p: + c + ly - (2pd2 - (2P2)’ 

(pi + pf + c? 
- (p: - p$ + c)’ + 2(pf + p: + c) + 1 - 4p: - 4pf 

= r 
tp: + p: + d2 

(pf + p; + cy + 2c + I - 2p: - 2p: 

So, if c > pf + p: - l/2, the squared error is less than 1. In particular, since 
(!j? - .i) + 1)’ > p: + pi - l/2, if we choose c 2 (b - Xl + I)‘, the estimator 
has expected squared error of less than I. 



APPENDIX II 

DERIVATION OF THE POSTERIOR DISTRIBUTION USING THE CIR(‘L.E DISTRIBUTION 

AND A “FLAT” PRIOR DISTRIBLTION 

The purpose of this appendix is to determine,/(&l.i-) for 

fc.q/l, = & , /.r - @I’ = I 

= 0. elsewhere and 

h(F) = lim g,,(k~.p-2) = $ , -n 5 /.L, 5 n. -n 5 pz 5 II. 
,P+= 

= 0, elsewhere. 

For S = (0,O) and any particular n 2 I, the joint distribution is given by 

f.Tl’i)g,,(/Li) = & , 1s - 61’ = I. -tI 5 pi (- II. -Jr 5 ‘J,? 5 n, 

= 0. elsewhere. 

= 0, elsewhere, and 

1 
4ri 

From Bayes Theorem for continuous functions, we huvc. for all II 2 I, 

= 0, elsewhere. 



and thus the distribution off(@).?) is given by 

15 

= 0, elsewhere. 


