
124 

A SIMULATION TEST OF PREDICTION ERRORS OF 
LOSS RESERVE ESTIMATION TECHNIQUES 

JAMES N. STANARD 

Abstract 

This paper uses a computer simulation model to measure the expected 
value and variance of prediction errors of four simple methods of esti- 
mating loss reserves. Two of these methods are new to the Proceedings. 
The simulated data triangles that are tested are meant to represent sample 
sizes typically found in individual risk rating situations. 

The results indicate that the commonly used age-to-age factor ap- 
proach gives biased estimates and is inferior to the three other methods 
tested. Theoretical arguments for the source of this bias and a comparison 
of two of the methods are presented in the Appendices. 

I. INTRODUCTION 

The purpose of this paper is to measure the expected value and variance of 
prediction errors of four simple methods of estimating loss reserves. This is 
done by using a computer simulation model to generate several thousand dif- 
ferent sets of known loss data. applying each estimation method to predict 
ultimate losses, and then calculating the difference between the predicted and 
the actual (simulated) ultimate values.‘,’ 

Various reserve estimation techniques based on accident year data triangles 
are described in [2j, 151, 161. 171, [20], and (2 11. [2 I ] contains a very extensive 
bibliography. However. the only paper to test the efficiency of the technique it 
proposes is [6] (and a sample size of only 50 iterations was used). 

r The expected value of the prediction error is referred to as the “bias”: the bias and variance of 
the prediction error are together referred to a\ the “efticiency” of the estimation technique. 

? Results from a previous version of this simulation model were described in 1191. The new computer 
model is written in Forth and assembly language on an IBM-PC. and is over twenty times faster 
than the old version written in APL on an IBM 51 IO (each iteration now takes I I to 15 seconds). 
This allows many more iterations and. therefore, much higher me&ion m measurements of bias. 
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The simulated data triangles that are tested here are meant to represent an 
amount of data that is typically found in individual risk rating, either self 
insurance programs, or working excess reinsurance treaties (expected values of 
40 claims per year and $10,400 per claim). For projecting loss reserves on 
much larger amounts of data, the statistical variations that are measured with 
this model will obviously be much less important. 

11. AN OVERVIEW OF THE MODEL 

View the loss process as follows: a given insured’s losses during an accident 
year, a, are random variables drawn from some probability distribution deter- 
mined by a vector of parameters, 8,. Let 9 represent a vector (of vectors) 
containing all the parameters fromthe first accident year of the experience 
period through the latest year under consideration (denoted y). So 

8 = (3 ,,..., e,,. 
Let K be a vector representing the insured’s known loss experience during the 
experience period? K is a random sample drawn from the distributions deter- 

- mined by 0. - 

Let the ultimate losses that a particular insured will have for accident year 
a be a random variable L,. The loss reserving and rate making processes both 
seek to find the “best” estimate of E&J. 4.5 E&J is some function of the &,, 
whereas the experience E was drawn from distributions determined by fJ, ,. . . ,O,,. 
In order for K to be useful in estimating E(L,), there must be some relationship 
between the8’s for different accident years. - 

The simplest assumption would be that S, = . . . = &, that is that an insured’s 
loss potential is constant over the experience period. A more refined model 
would be that the severity and frequency components of the !‘s would be 

1 Later in the paper K will be used to denote the familiar loss development triangle matrix, which 
is a particular way of summarizing the information in K. &, denotes the aj element of K, where 
a is the accident year. 

J This paper will only consider estimates of E(L). One might also want to estimate other attributes 
of the distribution of L, such as Var(L) or 957~ percentile of L. 

’ Actually the loss reserving process seeks to find E(L, - A&,~.&~) where K,. is the total known 
dollars of loss fur accident year a (* denoting the latest known column) and B.. is total paid dollars 
of loss. Footnote 7 shows that this distinction does not affect the methodology of this paper. 



influenced by inflationary trends and by changes in a measurable exposure base, 
and that, after proper adjustments for these, the parameters would be stable 
over time. Examples of these type of adjustments are given in [2]. 

Any experience rating or reserving procedure is an estimatop of E(L); it is 
some function R of the insured’s past known loss and exposure information K. 
A perfect reserve estimation procedure for accident year u would be a function 
R,, such that R,,(K) = E(L,,). However, K is also a random variable, so fulfilling 
this condition is not possible, except by chance. We can, however, hope that 
R,,(K) is an unbiased estimator of E(L,,), that is, that E(R,,(K)) = EU.,,). 

We would also like R(K) to be close to E(L). on the average. One common 
way of expressing this is to minimize E((R(K) - E(L))‘), the mean square error, 
which for an unbiased estimator is equivalent to minimizing Var(R(K)). For 
many simple statistical models, the form of estimator R that satisfies these 
criteria can be explicitly calculated. This is referred to as a Uniform Minimum 
Variance Unbiased (UMVU) estimator.7 

For large samples, the Maximum Likelihood Estimator (MLE) usually sat- 
isfies these properties (asymptotically). However, there are reasons why we 
cannot always use the MLE, the main one being that in order to calculate it we 
must explicitly know the forms of the probability distributions that generate L. 
Of course, we can specify a model of the process that we believe is “reasonable” 
(as is done later in this paper). but there still are several problems. First, the 

h An estimator is a function of a random sample and is therefore a random variable; an estimate is 
the result of the estimator function applied to a particular realization of the random variable, and 
is therefore itself a particular number. Thi, paper will use the term prediction as a synonym for 
estimate. Also. note that L denotes the vector (I.,. . I,,); 5 is defined similarly. 

’ In the computer model that follows, the quantities actually being measured are the expected value 
and variance of the prediction error (R(K) - L). Note that: 

1. The error of any prediction R,(K) of ultimate losses L, is identical to the error of using 
R,(K) - & to predict necessary loss reserves L,, - L?,, so the expected values and variances - 
measured in this paper apply equally well to loss reserves. 

2. &R(K) - L) = E(R(K)) - E(L) = Bias of R(K) 
3. Var(R(K) - L) = Var(R(K)) + Var(L) - 2 Cov(R(K),U 

If L pertains to an accidentyear for which there is noknown experience, then Cov (R(K)&) = 
0 and we are measuring Var(R(K)) plus a constant that does not depend on R. Iffhere is 
some known experience for the accident year-as is typical for loss reserving-then we are 
not actually measuring Var(R(K)); however the variance of the prediction error is actually - 
what we are interested in. 

Note that we have dropped the subscript 0 when not referring to a specific accident year. 



MLE can be very difficult to calculate; second, although it is known to have 
good properties for large samples, it may be a bad estimator for smaller samples 
(it is usually biased); third, while it may be a good estimator if the model we 
assume is in fact the true one, it may be a bad estimator for a different model- 
that is, it may not be robust. 

111. COMPUTER MODEL 

The computer generates six accident years of known loss experience (K”’ 
for the ith iteration) from distributions with fixed parameters. It then applies four 
estimation techniques to this set of known losses, arriving at four different 
predictions of 15”‘. The differences between each of the predictions and the 
actual ultimatelosses are stored. This whole process (generating experience, 
then calculating predictions) is repeated several thousand times-using the same 
underlying distributions and parameters. It can then be determined how well 
the estimates R(K”‘) fared as “guesses” of L”’ and which estimator function R - 
does the best. 

Each iteration produced a set of loss experience for six accident years- 
(u = 0,. . . ,5) where five years of development are known for accident year 0, 
four years of development for accident year 1, etc. Not only was the ultimate 
experience generated for each of these years, but also the portion of it that 
would be known at any point in time. 

For a single accident year a, a single iteration was generated as follows:8 

A random number of losses, N, was drawn from a normal9 distribution with 
mean = 40, variance = 60. 
For each of the N claims, the following random variables were drawn 
(i’ 1 ,...,N): 

M, = Month of loss within accident year (uniform with minimum = 0, 
maximum = 11) 

x The forms of the distributions chosen are somewhat arbitrary, but are consistent with actuarial 
literature. For negative binomial frequency see ] I], [8] and (171; for lognormal severity see (41, 
[IOJ, 1131, 1141, 1161 and 1181; for exponential report lags see [IS] and [22]. However, it is important 
to note that, as demonstrated later in the paper, the conclusions are not particularly sensitive to the 
choice of the underlying loss generation model. 

9 The normal distribution was chosen as a good approximation for the negative binomial, which is 
more difficult to simulate. Also, N was restricted to be greater than zero. 



Q, = Report lag in months (waiting time between accident date and 
report date) (exponential with mean = 18 months) 

All experience was viewed as being analyzed as of year-end, so a claim 

would first become known in r (M’ + z’ - ‘) years after the accident 

year. lo 

Pi = Payment lag in months (waiting time between report date and 
payment date) (exponential with mean = 12 months)” 

Then the following dates are calculated: 
m, = accident month = 12~ + M, 
r, = report month = 12a + M, + Q, 
p, = payment month = 12~ + M, + Q, + P, 

Note that mi, r,, and p, are fixed dates (where the first month of the first accident 
year is taken to be 0). M;, Q,, and P, are lags relative to the accident year (a = 
0,...,5) in which the simulated claim occurs, and relative to each other. 

The random untrended payment amount, C,, was drawn from a lognormal 
distribution with mean = $10,400 and variance = ($34,800)‘. 

The final settlement value of the claim is calculated as C,T(m,,p,), where 

T(m.p) is an inflation factor equal to (L++y) OL and Ia is an inflation index 

at month k. This inflation model was suggested ‘by Robert Butsic in [9]. 

So far, the number of claims, and (for each of these claims) the report date, 
the payment date, and the final payment amount have been determined. The 
last thing to do is set the reserve on each open claim. Each reserve was set as 
an unbiased guess of what the claim would settle for, if it closed in the month 
for which the reserve was being set. 

I0 The APL symbol r , referred to as “ceiling,” means “the smallest Integer greater than or equal 
to.” Note that if M, + Q, < 12 the claim is reported during the accident year, “zero” years after 
the accident year. 

11 These parameters for M, P and Q result in the following average age-to-ultimate factors: 

I2-ult 24-1~11 36-1111 48.uit 6Cult 
----- 

Incurred 3.12 I .60 1.24 I.11 I.05 
Paid 14.29 2.94 1.69 1.30 1.15 
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For each claim a random Reserve Error, V,, was drawn from a lognormal 
distribution with mean = 1, and variance = 2. To calculate the reserve amount, 
this was multiplied by C,T(mi,ri) where r, is the month that the claim was first 
reported (and therefore reserved). Two things should be noted about this model 
of case reserving: (1) the reserve error is only chosen once for each claim, 
regardless of how many years it remains open; and, (2) this system, on the 
average, leads to under-reserving-by (/,,/I,), the amount of inflation between 
the report month and the payment month. rz 

The known loss amount at the end of year f on the ilh loss from accident 
year a is 

i 

0 ifr,> 12t-t 11 
ki(a,t) = C,ViT(miJ,) if ri 5 121 + 11 < p; 

CiThpJ ifp, 5 12t + 11 

So the actual ultimate losses are 

f. = iii CThp,) 
,=I 

The full experience matrix known at the end of year four for an insured would 
be 

k,(O,O) . . . 

kd4,4) 

. 

0 . . . 0 

This represents the familiar “loss development triangle.” We will denote such 
an experience matrix by K (for known data). 

I2 The author admits that this is a crude model of the case reserving process; however, it is unlikely 
that a more sophisticated model would significantly affect the results-unless it was one that allowed 
for changes in relative reserve adequacy along the diagonal. A method of setting reserves at V times 
the ultimate payment, which does not lead to under-reserving, was tested in [ 191. and it did not 
make a significant difference in the results. Also, see Section VI on sensitivity tests. 



The matrix K is the statistic that we will use to estimate the vector of 
expected final loss amounts I!?(&). Note that there are many other possible 
statistics we could have chosen (such as a triangle of claim counts, or a triangle 
of losses truncated at some “basic limits” point). Other such statistics would 
probably allow us to construct more efficient estimators-in fact, they definitely 
would unless K happened to be a “sufficient statistic” for E(L). and there is no - 
reason to believe that it is sufficient. 

IV. RATING; METHODS 

Once the experience matrix K is calculated for one iteration, it is used as 
input for four different rating techniques (estimators of E(L)). 

Let K,,, = Losses for accident year (I known through period j (in other 
words, the uj element of matrix K) 

K,,e = Latest known losses for accident year a 
J;, = The age-to-ultimate factor for accident year (1” 
R,, = The estimate of expected ultimate losses, E(L,,) 

I: Age-to-Age Factors 

This is the very common procedure of projecting each accident year to its 
ultimate value by age-to-age factors (also known as the “chain ladder” method). 
SO 

IL = K& (I = 0....,4 
Rs undefined (because KT* = 0) 

2: Modified Bornhuetter-FerRusorl 

This is a modified version of a commonly used method first presented in 
[S].‘” 

41 = 0,...,3 

I’ Age-to-age factors throughout this paper arc calculated hy \ummmp corresponding elements in 
two adjacent columns of the triangle, then dividing the\e two WI,,\ Thi\ i\ usually superior, as 
shown in [I?], to taking a straight average of the Individual ape-to-age factors. which is likely to 
produce substantial additional bias. 

‘-I In 151 Rr was obtained from external sources. rather than a\ sh0v.n here 
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Rs = (l/5) 5 K/,4, 
h=O 

3: Adjustment to Total Known Losses 

This method (also referred to as the “Cape Cod method”)is described in [7] 
and [ 191. Appendix B presents a theoretical comparison of Rs under this method 
with Rs under method 2. It consists of averaging the known losses first, then 
applying an adjustment factor to the sum. 

a = 0,...,4 

4: Additive Model 

Let K’ denote rhe matrix of known loss experience where each cell is the 
losses incurred during a particular period (rather than cumulative losses through 
the period, as the matrix K denotes). The elements of K’ are the differences of 
adjacent columns of K. 

Project the unreported losses for an accident year as the sum of the expected 
unreported losses during each future period. Estimate the expected unreported 
losses by period as the average of the known losses by row. Specifically, 

a = 1,...,5 

Ro = Kc,* 

This additive method is suggested by Hans Biihlmann [7]; he refers to it as the 
complementary loss ratio method. 

V. RESULTS 

Each of the four rating methods was tested under each of the following 
progressively more complex loss generation models. Exhibits I through V dis- 
play the results for each model. These exhibits show the mean and standard 
deviation of the prediction error for each rating method for each accident year. 
The prediction error is R, - L, (the estimated ultimate result minus the actual 



ultimate result). The ‘5% of actual” is the prediction error divided by the true 
expected losses. 

We would expect any rating technique based on known data to (on the 
average) under-predict by the expected amount of development between the 
most mature known data amount and ultimate E(K,,a - L,). Therefore, each of 
the expected prediction errors has been adjusted by this amount, so the exhibits 
actually show E(R,, - L,,) - E(Ku4 - L,,) = E(R,, - Kc,.+). That is, we do not 
expect the estimation techniques to be able to predict beyond the triangle.” 

EXHIBIT I-Claim Counts Only, No Inffation 

In this version of the model, C, was not randomly chosen, but was set at 
$1. The inflation index I, was also held constant. The results show that simple 
age-to-age factors produced biased results and higher standard deviations. Meth- 
ods 2 and 3 have very slight biases while method 4 is unbiased. Methods 3 and 
4 have slightly smaller standard deviations than method 2. 

What is interesting here is not the amount of the bias (which for practical 
purposes is negligible), but the fact that there is a bias. This fact was greeted 
with surprise and skepticism by many actuaries when it was first presented in 
[ 191. Appendix A gives a technical argument to support this result. 

EXHIBIT II-Random Claim Size, No InJation 

In this version, Ci is randomly chosen from a lognormal distribution with 
mean = $10,400 and variance = ($34,800)‘. The inflation index I,,, was held 
constant. Here we see that method 1 is clearly inferior-it is significantly biased 
upward and has very high standard deviations in years 3 and 4. An interesting 
result from the older version of the model is that the median prediction error 
for method 1 was usually negative-that means that in over half of the cases 
method 1 under-predicted the actual (simulated) results, but a few cases of large 
over-predictions made the mean prediction error (the bias) positive. This is 
because the distribution of prediction errors for method I was very positively 
skewed. Method 3 has the lowest standard deviation. Methods 3 and 4 do not 
appear to have significant biases. 

I5 A technique of estimating the parameters of the dktribution of Q, directly, such as described in 
[22], would allow prediction beyond the triangle. 
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EXHIBIT III-Constant 8% lnjlation, cx = 0.5 

In this version, an 8% per year inflation was assumed, with 50% applying 
to date of accident and 50% applying to date of settlement. Here we expect that 
methods 2, 3 and 4 will under-predict, because they all implicitly assume that 
expected losses by accident year are the same, which, with inflation, is not true. 
Method 1 does not rely on such an assumption. 

The addition of inflation accentuates the bias in method 1, making its 
predictions 35% above the actual values (after the “tail adjustment”). Method 
2 does very well on this example because the upward bias inherent in each age- 
to-ultimate prediction is balanced by the fact that the method assumes no 
inflation. Once again methods 3 and 4 do the best in terms of standard deviation, 
but, as expected, they are somewhat biased downward. 

EXHIBIT IV-Constant 8% InJation, cx = 0.5, 
Adjust Rating Methods for 8% /@ation 

This version was run with the same loss parameters and inflation assumptions 
as model III. However, each of the rating methods was modified as follows: 

Each element of each row, where an arbitrary row is row a, was divided by an 
assumed inflation index 1:. The rating method was applied to the resulting 
triangle, then each projected ultimate result was multiplied by its respective 1:. 
In this case I: was set as i .08”, a = 0,. ..,5. This obviously represents perfect 
clairvoyance about the underlying past and future inflation rate.16 

This slightly improves the standard deviation of method 1, but does not improve 
the bias, which is still quite high. However, this adjustment completely removes 
the bias on method 4, and leaves only a slight upward bias in method 3. 

EXHIBlT V-IO% Inflation Dropping to 6%, OL = 0.5, 
Adjust Rating Methods for 10% InJIation 

In this version, the actual inflation rate was 10% for 60 months (which 
covers the entire known claim period), then it drops to 6%. The index assumed 
by the rating methods is (1.10)“. 

I6 Note that a similar adjustment can be made when dealing with a triangle where the exposure 
varies by accident year, i.e.. (I) divide each row by the corresponding exposure, (2) apply the 
rating method, then (3) multiply each estimate by its exposure. This could be further improved by 
using credibility weighted averages in the rating method, where a row’s credibility was a function 
of its exposure; however, developing such a system is beyond the scope of this paper. 



This results in only a slight bias in method 4, and a fairly small one in 
method 3. 

VI. SENSITIVITY I‘ESTING 

As a test of the sensitivity of the results to the specific distributions used to 
generate loss experience, the following additional three scenarios were run. 
Note that these were all run with an assumption of no inflation, so they are 
meant to be compared with the results on Exhibit II (which will be referred to 
as the “standard model”). 

EXHIBIT VI-No Reserve Development 

The standard model was used except that the reserve error, V. was always 
set equal to one. 

The standard model was used except that the frequency, N. was distributed 
discrete uniform (I.791 and severity, C, was distributed continuous uniform 
[0,20800]. This results in an ultimate aggregate loss distribution with about the 
same mean and variance. but much less skewness, than the standard model. 

EXHIBIT VIII-Uniform Report and Puyment Lugs 

The standard model was used except that the report lag, Q. was distributed 
discrete uniform 10.36) and payment lag. P, was distributed discrete uniform 
[0,24]. This results in the same average lags. but with a higher percentage of 
claims being reported and paid within the five columns of the experience triangle 
than the standard model. 

Although the magnitudes of the biases and standard deviations differ in 
Exhibits VI through VIII from Exhibit II. conclusions about the existence of 
bias and about the relative efficiency of the four rating methods remain sub- 
stantially unchanged. 

VII. (‘ON(‘I.I!SIONS 

These results indicate that for data triangles of the size tested: 

1. The common age-to-age factor approach (method 1) is clearly inferior 
to the other three methods. 
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2. The additive method 4 and the average-then-adjust method 3 have sig- 
nificantly lower variances than methods 1 and 2, and small biases (if 
adjusted for inflation). In fact, method 4 may be completely unbiased. 

It is important to emphasize that the bias of the various methods is heavily 
influenced by a few large prediction errors. This means that in practical rate- 
making situations it would usually be wrong to use method 1 and then do a 
judgment “bias adjustment”-doing so in most cases would result in under 
predicting. Instead, the practitioner simply should not put much credibility in 
predictions based on highly leveraged age-to-ultimate factors. 

One may object that allowing accurate knowledge of the underlying inflation 
rate gives an unfair advantage to methods 2 through 4, because it allows all of 
the rows of the triangle to be used in estimating any particular row’s ultimate 
value. However, one will normally have exogenous knowledge of past inflation 
rates and forecasts of future rates, and using this information should improve 
one’s ability to predict. Also, in [ 191 it was shown that attempts to estimate the 
trend rate solely from data samples of this size by fitting lines to projected 
ultimate values produced terrible results-extreme bias, variance, and skewness. 

The above major conclusions concern the relative ranking of techniques and 
the existence in some cases of bias. These conclusions were found to be robust 
to an extreme change in the form of the underlying distributions; this robustness 
was also found in [ 191. Of course, the specific numerical results on Exhibits I 
through VIII should not be considered to be any more than examplesdhanging 
the parameters or the form of the loss generating model will change these in 
unpredictable ways. 

One way in which numerical results from a model such as this would be of 
interest is if the parameters of the loss generation model were estimated from 
an actual data set which had been projected to ultimate by a specific loss 
reserving technique. Simulating the distribution of prediction error would give 
an estimate of the potential variability of the reserve estimate-which could be 
used to calculate confidence intervals (containing both “parameter” and “pro- 
cess” risk) for the loss reserve. 
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Rating Accident 
Method Year 

1 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

5000 ITE~VTIONS 

Prediction Error: (K,, - L,) minus E(K,,q - L,,) 

Mean Standard Deviation 

Counts ‘% of Actual Counts 5% of Actual 

0 
0.1 
0.2 
0.3 
0.9 
- 

0 
0.1 
0.2 
0.2 
0.3 
0.4 

0 
0.1 
0.2 
0.1 
0. I 
0.2 

0 
0 
0.1 
0 
0 
0.1 

0% 
0 
I 
I 
3 

I.5 4% 
2.6 6 
3.7 9 
5.x 14 

11.6 29 

0% 
0 
I 
I 
1 
1 

0% 
0 
0 
0 
0 
0 

0% 
0 
0 
0 
0 
0 

1.5 4% 
2.5 6 
3.6 9 
5.1 13 
7.2 18 
8.X 22 

1.5 47c 
2.5 6 
3.5 9 
5.0 13 
7. I 18 
X.6 22 

1.5 4% 
2.5 6 
3.5 9 
5.0 13 
7.2 18 
8.6 22 
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EXHIBIT II 

MODEL II-RANDOM CLAIM SIZE.NO INFLATION 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

5000 ITE~RATI~NS 

Prediction Error: (R, - L,) minus E(K,4 - L,,) 
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Mean Standard Deviation 

Dollars % of Actual 

$ 0 0% 
9,892 2 

24,680 6 
49,766 12 

113.397 27 
- - 

$ 0 0% 
9,354 2 

16,234 4 
29,183 7 
32,183 8 
36,3 14 9 

$ 0 
5,712 

13,138 
14,501 
4,662 
4,370 

$ 0 
-894 

-4,787 
-3,986 

-11.622 
-7,490 

0% 
1 
3 
3 
1 
1 

0% 
0 

-1 
-1 
-3 
-2 

Dollars % of Actual 

$ 88,600 21% 
182,206 44 
252,95 1 61 
392,435 94 
823,429 198 

- 

$ 88,600 21% 
177,605 43 
412,028 99 
303,322 73 
377,037 90 
372,499 89 

$ 88,600 21% 
163,078 39 
212,171 51 
263,962 63 
320,142 77 
322,794 77 

$ 88,600 21% 
170,483 41 
438,705 105 
290,293 70 
338,545 81 
341,970 82 
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EXHIBIT III 

MODELIE--8% INFLATION, (Y = 0.5 
15,000 ITERATIONS 

Prediction Error: (R, - f.,) minus E(K,d - L,) 

Rating Accident 
Method Year ___ ___ 

I 0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $132,643 28% 
13,325 3 233,786 45 
40,012 7 528,989 95 
75,972 13 674,655 113 

225,406 35 1.636.846 254 
- - 

$ 0 0% $132,643 28% 
18,162 4 281.171 54 
35,581 6 376,524 68 
37.095 6 498,673 83 
15,500 2 639,790 99 

-62,654 -9 609,556 87 

$ 0 0%’ $132,643 28%’ 
9,766 2 194,158 38 

15,783 3 280,995 51 
-607 0 385,999 65 

-49,904 -8 45 1,253 70 
- 138,589 -20 450.96 I 64 

$ 0 0% $132,643 28% 
-2,462 -1 185,358 36 
-8,613 -2 273,372 49 

-32,982 -6 363,169 61 
-80,318 -13 423,457 66 

- 158,472 -23 44 1.974 63 
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EXHIBIT IV 

MODEL IV-S% INFLATION, OL = 0.5, 8% INDEX USED IN RATING 

12,750 ITERATIONS 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Prediction Error: (R, - L,) minus E(K,d - L,) 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $108,748 23% 
17,024 3 226,684 44 
41,313 7 368,332 66 
81,257 14 627,023 104 

214,678 33 I ,545,OSS 240 
- - - - 

$ 0 0% $108,748 23% 
17,021 3 242,467 47 
34,663 6 328,942 59 
56,512 9 486,315 81 
75,782 12 597,070 93 
83,162 I2 640,675 92 

$ 0 
12,228 
22,240 
30,927 
27,95 1 
24,978 

$108,748 23% 
209,716 41 
284,919 51 
398,680 66 
45 1,586 70 
49677 1 71 

$ 0 
1,546 
3,571 
6,014 
4,862 
6,569 

0% 
2 
4 
5 
4 
4 

0% 
0 
0 
1 
I 
I 

$108,748 23% 
228,070 44 
289,117 52 
405,582 68 
433,385 67 
492,804 71 
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EXHIBIT V 

MODEL V-IO% INFLATION DROPPING To 6%‘. (Y = 0.5, 10% INDEX USED 

IN RATING 

8000 ITERATIONS 

Prediction Error: (R,, - L,,) minus IY(K,,~ - L,) 

Rating Accident 
Method Year 

1 0 
1 
2 
3 
4 
5 

2 0 
I 
2 
3 
4 
5 

3 0 
I 
2 
3 
4 
5 

4 0 
I 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars c/r of Actual Dollars % of Actual 

$ 0 0%’ $120.91 I 25% 
13,748 3 260,039 48 
34,538 6 397.028 69 
79,547 I3 569,75 I 90 

227.292 33 I .33 1,666 193 
- - 

$ 0 
12,627 
27,992 
54,273 
89,787 

108,456 

$ 0 
- 1,386 

-672 
6. I52 

19,540 
31,185 

0%’ 
3 

5 
9 

13 
IS 

or/r 
2 
3 
5 
6 
7 

0% 
0 
0 
I 
3 
4 

$120,91 I 25% 
243,321 45 
344,x15 60 
446.620 70 
577.77 I 84 
617,252 83 

$ 0 
8,522 

17,345 
30,093 
42,842 
49,802 

5120.91 I 25% 
225.986 42 
3 10,728 54 
393,830 62 
48 1,436 70 
519.365 70 

$120.911 25% 
230,404 43 
320.637 56 
393,860 62 
469,07 1 68 
516.946 69 
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EXHIBIT VI 

SENSITIVITY TEST-PERFECT CASE RESERVING 

6522 ITERATIONS 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Prediction Error: (R, - t,) minus E(Fh - 15,) 
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Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $ 50,557 12% 
5,092 I 117,095 28 

12,428 3 147,644 35 
19,602 5 231,091 56 
67,650 16 504,934 122 

- - - - 

$ 0 0% $ 50,557 12% 
4,726 1 109,725 26 

10,880 3 130,699 31 
14,206 3 186,497 45 
22,904 6 25 1,845 61 
17,081 4 305,529 73 

$ 0 
2,898 
6,574 
6,057 
8,546 

942 

0% 
1 
2 
1 
2 
0 

0% 
0 
0 
0 
1 

-1 

$ 50,557 12% 
104,576 25 
120,845 29 
172,281 41 
229,368 56 
281,352 67 

$ 0 
-542 

899 
-658 
2,361 

-3,461 

$ 50,557 12% 
101,240 24 
116,160 28 
168,233 41 
225,834 55 
278,649 65 
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EXHIBIT VII 

SENSITIVITY TEST-UNIFORM FREQUENCY AND SEVERITY 

3049 hER~770Ns 

Prediction Error: (R,, - IL.,) minus E(Kd4 - L,) 

Rating Accident 
Method Year 

1 0 
I 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars c%, of Actual Dollars % of Actual 

$ 0 
9,824 
8,593 

14,083 
44,232 

0% 
2 
2 
3 

11 
- 

0% 
2 
2 
2 
4 
5 

0% 
I 
I 
0 
1 
2 

0% 
0 

-I 
-I 
-1 

I 

$ 34,704 8% 
175,539 43 
155.670 37 
195,329 46 
331,371 79 

- 

$ 0 
7,410 
7,579 
8,791 

15,059 
20,915 

$ 34,704 8% 
128,228 31 
143,738 35 
168,244 40 
222,905 53 
287.287 70 

$ 0 
3,690 
2,208 
1,123 
3,353 
7,643 

$ 34.704 8% 
74,962 18 
97,500 23 

130,512 31 
204,09 I 49 
263,368 64 

$ 0 
342 

-2,937 
-4,874 
-2,227 

3,629 

$ 34,704 8% 
65,336 I6 
94,379 23 

133,405 32 
209,730 50 
264,368 65 



2 0 
I 
2 
3 
4 
5 

3 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 
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EXHIBIT VIII 

SENSITIVITYTEST-UNIFORMREPORTANDPAYMENTLAGS 

6000 ITERATIONS 

Prediction Error: (R, - L,) minus ,??(I& - La) 

Rating Accident 
Method Year 

I 0 
I 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $ 33,898 0% 
8,958 2 154,927 38 

40,9l I 10 37 1,052 89 
94,37 I 23 667,695 162 

26 I ,076 63 1,627,441 393 
- - - - 

$ 0 0% $ 33,898 8% 
7,452 2 183,330 45 

39,655 IO 348,887 84 
66,107 I6 447,484 109 
79,065 19 499,807 121 
81,733 20 48 1,770 117 

$ 0 0% $ 33,898 8% 
5,097 1 153,015 37 

21,913 5 279,507 67 
23,616 6 321,873 78 
14,848 4 301,852 73 
13,765 3 297,400 72 

$ 0 0% $ 33,898 8% 
-3,670 -I 195,1 IO 47 

4,794 I 276,092 66 
3,478 1 306,744 75 

- 1,347 0 292,257 71 
1,321 0 293,734 71 
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APPENDIX A 

AN ANALYTICAL ARGUMENT FOR BIAS OF AGE-TO-AGE FACTORS 

Consider Model I, (i.e., claim counts only and no inflation). Each row 
(accident year) of the data triangle K is independently and identically distributed 
with each other row. 

This implies that E[g(X,,+,, X,,)] = E[g(Xkj+ I ,X,Q)] Vi,k for any function g. 
However E[g(X,,+ ,, X,)] # g(E(X,,+ ,],fZ[X,,]) unless R is linear. 

xij+ I 
Let ~(X,,+I ,XiJ = y 

II 

Let J;, be an age-to-age factor estimated from row i. Age to age factors attempt 
to estimate E[Xk,+ IIXk,] with XJ;,. If this estimate were unbiased it would mean 
that 

E[E[Xk,+ 1 (Xk~ll = HXk,fill 

But this becomes 

E[Xk,+ II = E[XkjlUJjl 

E[Xk,+ II = E[Xk,]E 
xk,+ f F-1 & 

or 

E[Xkj+ll E X~,+I -= - 

E&,1 [ 1 xk, 
which is not true in general.” 

I7 A similar derivation was arrived at independently by John Robertson 
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APPENDIX B 

COMPARISON OF “ADJUSTING, THEN AVERAGING” VERSUS “AVERAGING, THEN 

ADJUSTING” 

Let X, be a random variable representing observed losses for accident year i. 

Assume that these losses arise from distributions with expected values that 
are constant over time, except for an adjustment factor. This adjustment factor 
can represent either a loss development factor or a trend factor or both. 

SO Xi = E + e, i = l,... ,n 

where p = underlying expected losses 
ai = non-random adjustment factor 
ci = random error E(eJ = 0, Var(e;) = af 

We wish to estimate p. 

This represents trending (and/or developing) known losses for each year and 
averaging the results. 

Let k2 = f: X 
L, 1) + (2 3 . 

This represents the “adjustment to total known losses method.” 

It is easy to see that both b1 and i2 are unbiased, i.e. .!$I) = Q&Z) = 
p. (It is important to note that this only holds if ai is non-random, which is not 
the case in real estimation problems.) 

Calculate the Best Linear Unbiased Estimate (B.L.U.E.)r8 of p,. That is, 

find weights c,, such that $ i = tc,X, 1 is unbiased and has minimum vari- 
\ i=L I 

ante. So, minimize Var subject to E fzaXi = p [ 1 i=l 

I8 The approach of calculating the B.L.U.E. was suggested by Aaron Tenenbein. 



sac, = I--L- 
a,u’ n I 

c 22 ,=I a,a, 

Now consider various possibilities for UT: 

1. Let Xia, = p + l r where Var@;) = U’ V, 

This means that e, = f, so uf 
I 2 =TU, so c, = u,ln 

u, 

Therefore bl is the BLUE. 

2. Let vN(xf) k V ___ = 
E[X,I ’ 

so $ = $ j ufa, = kk 
I 

This means that c; = 1 
/ 

Therefore &z is the BLUE. 

As was discussed in the results section, & performed better than &, in the 
simulation. 


