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DISCUSSION BY STEPHEN W. PHILBRICK 

Mr. Dropkin’s paper consists of two parts. The first is a discussion of the 
“importance of the negative binomial distribution as a valuable instrument in 
its own right.” Second, this tool is used to comment on the use of the number 
of traffic violations to “split up the total heterogeneous group into homogeneous 
groups.” 

-The author succeeds admirably in his first endeavor. A concise explanation 
of the rationale for the use of the negative binomial distribution is given. The 
arguments are intuitively appealing, since the choice of a Poisson distribution 
for an individual risk is desirable, and the notion that the parameters for the 
individuals vary from person to person is certainly more reasonable than the 
assumption that all drivers have identical accident propensities. The author is 
also to be commended for the algorithm for the calculation of the probabilities 
of N(x), which is much more convenient than evaluating the traditional formula. 

The second section contains some problems. The author concludes, “the 
fact that the negative binomial fits the data for the total group indicates that 
there is a real spread, that is, a distribution, of the probability of having an 
accident.” Unfortunately, this conclusion cannot be supported by this argument. 
To demonstrate this, I randomly sampled from a Poisson distribution and at- 
tempted to fit both a Poisson and a negative binomial to the sample data. A 
Poisson distribution would have absolutely no “spread” of the parameter since 
the parameter is a fixed constant. The distribution of the parameter should not 
be confused with the distribution of the number of accidents. As Dropkin 
correctly points out, “It is important to emphasize here that there are two 
distributions which enter into our considerations. On the one hand, there is the 
distribution of the probability of having an accident. On the other hand, there 
is the distribution of risks by number of accidents. If the first distribution is a 
constant, then the second is a Poisson.” 

The example in Table 1 shows the result of 10,000 trials from a Poisson 
distribution with the parameter of .274. The parameter value was selected to 
equal the mean of the group with two violations. The sample mean and variance 
are shown, as well as the values of a and r as calculated by Dropkin’s formulas. 
Comparison of the actual results with the expected results of a Poisson indicates 
a reasonably good fit (as expected), which is further corroborated by calculating 
the chi-square statistic and noting that it is significant at the 5% level. Note, 
however, that the negative binomial provides an even better fit. This should not 
be completely surprising, since the negative binomial is a two-parameter distri- 
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bution and, more importantly, the Poisson can be thought of as the “limit” of a 
negative binomial. (Let a and r go to infinity such that r/a remains constant, 
and the result is a Poisson with parameter r/a.) This concept is given added 
intuitive appeal by examining the formula for a; the denominator is (02 - M) 
whose expected value is zero. Hence, calculations of the parameter a for samples 
from a Poisson would be expected to produce large values, which is borne out 
by observation. 

TABLE 1 

FIXED VALUE OF M 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2749 
Sample Variance .2801 
Sample a 52.5622 
Sample r 14.4494 

Number of 
Claims Actual 

0 7613 
1 2061 
2 296 
3 24 

4 or more 6 

Poisson Chi-square 9.75 

Negative Binomial Chi-square 5.58 

Expected Expected 
Poisson Negative Binomial 

7603.32 7616.12 
2083.31 2054.58 

285.41 296.31 
26.07 30.33 

1.89 2.65 

Therefore, we see that a good fit of a negative binomial does not imply a 
real spread of the parameter, since a good fit is expected when there is no 
spread. 

It should not be inferred that I disagree that there is a real spread of the 
parameter. I merely disagree with his proof. Indeed, the sample variance of 
.193 is too much larger than the mean of .163 to be accounted for by process 
variance. * 

1 This could be shown mathematically, but my statement is made upon empirical observations. A 
sample of 95,000 trials from a Poisson distribution with a mean of. 163 produced variances generally 
no more than ,002 higher than the mean. 
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He next suggests that “the function of a segregating system is to split the 
total heterogeneous group into homogeneous groups.” I generally agree with 
this except I would prefer to replace “homogeneous” with “more homogeneous.” 

He states, “If the system we are dealing with here accomplished this purpose 
totally, then the distributions by number of accidents of the individual groups 
should be describable by Poisson curves.” This statement is too strong. He has 
hypothesized that the accident propensities are describable by a Type III curve, 
which is continuous. He proposed to partition this curve into six discrete groups 
and measure the results against a standard (the Poisson) which requires that 
each group have a single-valued accident propensity. This is clearly impossible 
with a discrete partitioning. I would prefer that he would test to see if the result 
were closer to a Poisson curve. 

His test is to compare the sample variance to the binomial variance. I am 
at a loss as to the reasoning behind this. If the results were Poisson, I would 
expect the variance to be close to the mean, not to the binomial variance which 
is always less than the mean. 

He then concludes, “since a Poisson distribution is not indicated for the 
distributions by number of accidents, a negative binomial is indicated.” This 
statement does not follow at all. This statement is equivalent to the following 
reasoning: “I have shown that the total group is negative binomial. This means 
that the distribution of parameters, T(m), is describable by a Type III curve. 
The segregating system can be thought of as assigning individuals, hence their 
particular parameter, to various groups. Define T;(m) as the resulting distribution 
of m for the ith group. If the distribution of accidents for each group is Poisson, 
then the associated Ti(m) is a constant. If the distribution is not Poisson, then 
the associated T,(m) is Type III.” It should be clear that this is not true. Even 
if one accepts that the distribution of parameters of the total group is Type III, 
it is unreasonable to assume that the only possible partitions of T(m) into T,(m) 
are either constants or Type III curves. This error is serious, since he uses it to 
draw conclusions about the overlap of parameter between groups. 

He has made two errors of implication: 

1. If the underlying Ti(m) are not constants, they must be Type III. (This 
is equivalent to the statement that if the accident distributions are not 
Poisson, they must be negative binomial.) 

If we could analyze the actual distribution of accidents within each group 
and find that, indeed, it is closely fit by a negative binomial, then the 
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above problem would be moot. But he still could not draw his conclu- 
sions. To see this, we have to examine the second (and most critical) 
error of implication. 

2. If a distribution is closely fit by a negative binomial, then the distribution 
of parameters, T(m), is closely fit by a Type III curve. Furthermore, the 
parameters of the Type III curve can be estimated from the mean and 
variance of the accident distribution. 

This is basically a sensitivity question. How sensitive is the resulting distri- 
bution to the form of T(m)? How “close” to a Type III must T(m) be to cause 
the accident distribution to be “close” to a negative binomial? The fact is that 
many reasonable forms of T(m) other than a Type III curve will produce a 
distribution which is fit very well by a negative binomial. Table 2 shows the 
result of 10,000 trials from a Poisson distribution whose parameter is uniformly 
distributed between .194 and .354 (hence, has mean .274). Notice that the 
result is fit quite well by a negative binomial. 

TABLE 2 

M IS UNIFORMLY DISTRIBUTED OVER (. 194, .354) 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2667 Poisson Chi-square 10.71 
Sample Variance .2776 
Sample a 24.5329 Negative Binomial Chi-square .23 
Sample Y 6.5429 

Number of 
Claims 

0 
1 
2 
3 

4 or more 

Actual 

7698 
1978 
287 

33 
4 

Expected Expected 
Poisson Negative Binomial 

7603.32 7699.67 
2083.31 1973.08 

285.41 291.44 
26.07 32.50 

1.89 3.31 
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Table 3 is another example where the parameter could take on the value 
.184 or .364 with equal probability. Again, the negative binomial fits well. 

TABLE 3 

M HAS EQUAL PROBABILITY OF BEING .184 OR .364 

Expected Mean .274 
Number of Trials 10,000 

Sample Mean .2690 Poisson Chi-square 4.57 
Sample Variance .2806 
Sample a 23.1120 Negative Binomial Chi-square 2.60 
Sample r 6.2171 

Number of 
Claims 

0 
1 
2 
3 

Actual 

767 
203 

24 
6 

Expected Expected 
Poisson Negative Binomial 

760.33 768.48 
208.33 198.15 

28.54 29.65 
2.80 3.72 

These examples were not chosen arbitrarily. Note that in the example used 
in Table 2, there is no overlap as defined by Dropkin, i.e., no value of the 
parameter falls outside the mean of the neighboring groups. On the other hand, 
also in the example in Table 2, the possible values of the parameter are always 
outside the means of the neighboring groups. Hence, the conclusions he reaches 
concerning overlap are not well-founded. 

Let me reemphasize: Although the form of the distribution of T(m) needs to 
be Type III for the negative binomial to follow, a distribution of T(m) which is 
significantly different from Type III will produce an accident distribution which 
can be fit very closely by a negative binomial. Hence, it is improper to conclude 
that a good fit of a negative binomial necessarily implies that the underlying 
T(m) is Type III. 
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This result is certainly unfortunate, particularly with the recent furor over 
classifications. To my knowledge, the questions of overlap are currently unre- 
solved, since the true accident propensities are unknown and only the resulting 
accident distributions are known. For a particular individual, the expected 
frequency is so low that process variance overpowers the information contained 
in the results. Dropkin’s paper provides a novel approach to the problem. His 
approach, in brief, is to observe the distribution of accidents and, together with 
an assumed knowledge of the accident producing process, make inferences 
about the underlying distribution of accident propensities. The concept is theo- 
retically sound; unfortunately, the low sensitivity of the resulting distribution to 
the form of T(m) makes it impossible to draw meaningful conclusions about 
T(m). The approach, however, should not be quickly discarded. Is there another 
way of looking at our data? Can we find some function of our data that is 
dependent on the form of the distribution of the accident propensities and is 
highly sensitive to the form? If so, then we could draw valid conclusions about 
accident propensities. 

In conclusion, this paper has given an excellent discussion of the propensities 
of the negative binomial, and an interesting approach to the solution of a knotty 
problem, although this specific application of the approach was less than con- 
clusive. 


