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Abstract

This paper introduces the readers of the Proceed-
ings to an important class of computer based simula-
tion techniques known as Markov chain Monte Carlo
(MCMC) methods. General properties characterizing
these methods will be discussed, but the main empha-
sis will be placed on one MCMC method known as the
Gibbs sampler. The Gibbs sampler permits one to simu-
late realizations from complicated stochastic models in
high dimensions by making use of the model’s associated
full conditional distributions, which will generally have
a much simpler and more manageable form. In its most
extreme version, the Gibbs sampler reduces the analy-
sis of a complicated multivariate stochastic model to the
consideration of that model’s associated univariate full
conditional distributions.

In this paper, the Gibbs sampler will be illustrated
with four examples. The first three of these examples
serve as rather elementary yet instructive applications
of the Gibbs sampler. The fourth example describes a
reasonably sophisticated application of the Gibbs sam-
pler in the important arena of credibility for classifica-
tion ratemaking via hierarchical models, and involves
the Bayesian prediction of frequency counts in workers
compensation insurance.
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1. INTRODUCTION

The purpose of this paper is to acquaint the readership of
the Proceedings with a class of simulation techniques known as
Markov chain Monte Carlo (MCMC) methods. These methods
permit a practitioner to simulate a dependent sequence of ran-
dom draws from very complicated stochastic models. The main
emphasis will be placed on one MCMC method known as the
Gibbs sampler. It is not an understatement to say that several hun-
dred papers relating to the Gibbs sampling methodology have ap-
peared in the statistical literature since 1990. Yet, the Gibbs sam-
pler has made only a handful of appearances within the actuarial
literature to date. Carlin [3] used the Gibbs sampler in order to
study the Bayesian state-space modeling of non-standard actuar-
ial time series, and Carlin [4] used it to develop various Bayesian
approaches to graduation. Klugman and Carlin [19] also used
the Gibbs sampler in the arena of Bayesian graduation, this time
concentrating on a hierarchical version of Whittaker-Henderson
graduation. Scollnik [24] studied a simultaneous equations model
for insurance ratemaking, and conducted a Bayesian analysis of
this model with the Gibbs sampler.

This paper reviews the essential nature of the Gibbs sampling
algorithm and illustrates its application with four examples of
varying complexity. This paper is primarily expository, although
references are provided to important theoretical results in the
published literature. The reader is presumed to possess at least a
passing familiarity with the material relating to statistical com-
puting and stochastic simulation present in the syllabus for CAS
Associateship Examination Part 4B. The theoretical content of
the paper is mainly concentrated in Section 2, which provides a
brief discussion of Markov chains and the properties of MCMC
methods. Except for noting Equations 2.1 and 2.2 along with
their interpretation, the reader may skip over Section 2 the first
time through reading this paper. Section 3 formally introduces
the Gibbs sampler and illustrates it with an example. Section
4 discusses some of the practical considerations related to the
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implementation of a Gibbs sampler. In Section 5, some aspects
of Bayesian inference using Gibbs sampling are considered, and
two final examples are presented. The first of these concerns the
Bayesian estimation of the parameter for a size of loss distribu-
tion when grouped data are observed. The second addresses cred-
ibility for classification ratemaking via hierarchical models and
involves the Bayesian prediction of frequency counts in workers
compensation insurance. In Section 6 we conclude our presen-
tation and point out some areas of application to be explored in
the future.

Since the subject of MCMC methods is still foreign to most
actuaries at this time, we will conclude this section with a simple
introductory example, which we will return to in Section 3.

Example 1

This example starts by recalling that a generalized Pareto dis-
tribution can be constructed by mixing one gamma distribution
with another gamma distribution in a certain manner. (See for
example, Hogg and Klugman [16, pp. 53–54].) More precisely,
if a loss random variable X has a conditional gamma (k,µ) dis-
tribution with density

f(x j µ) =
µk

¡ (k)
xk¡1exp(¡µx), 0< x <1, (1.1)

and the mixing random variable µ has a marginal gamma (®,¸)
distribution with density

f(µ) =
¸®

¡ (®)
µ®¡1exp(¡¸µ), 0< µ <1,

then X has a marginal generalized Pareto (®,¸,k) distribution
with density

f(x) =
¡ (®+ k)¸®xk¡1

¡ (®)¡ (k)(¸+ x)®+k , 0< x <1:
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It also follows that the conditional distribution of µ given X is
also given by a gamma distribution, namely,

f(µ j x)» gamma (®+ k,¸+ x), 0< µ <1: (1.2)

We will perform the following iterative sampling algorithm,
which is based upon the conditional distributions appearing in
Equations 1.1 and 1.2:

1. Select arbitrary starting values X(0) and µ(0).

2. Set the counter index i= 0.

3. Sample X(i+1) from f(x j µ(i))» gamma (k,µ(i)).

4. Sample µ(i+1) from f(µ j X(i+1))» gamma (®+ k,¸+
X(i+1)).

5. Set iÃ i+ 1 and return to Step 3.

For the sake of illustration, we assigned the model parameters
®= 5, ¸= 1000 and k = 2 so that the marginal distribution of µ
is gamma (5,1000) with mean 0.005 and the marginal distribu-
tion of X is generalized Pareto (5,1000,2) with mean 500. We
then ran the algorithm described above on a fast computer for a
total of 500 iterations and stored the sequence of generated val-
ues X(0), µ(0),X(1), µ(1), : : : ,X(499), µ(499),X(500), µ(500). It must be
emphasized that this sequence of random draws is clearly not
independent, since X(1) depends upon µ(0), µ(1) depends upon
X(1), and so forth. Our two starting values were arbitrarily se-
lected to be X(0) = 20 and µ(0) = 10. The sequence of sampled
values for X(i) is plotted in Figure 1, along with the sequence
of sampled values for µ(i), for iterations 100 through 200. Both
sequences do appear to be random, and some dependencies be-
tween successive values are discernible in places.

In Figure 2, we plot the histograms of the last 500 val-
ues appearing in each of the two sequences of sampled values
(the starting values X(0) and µ(0) were discarded at this point).
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FIGURE 1

SAMPLE PATHS FOR X(i) AND µ(i) IN EXAMPLE 1

In each plot, we also overlay the actual density curve for the
marginal distribution of either X or µ. Surprisingly, the depen-
dent sampling scheme we implemented, which was based upon
the full conditional distributions f(µ j x) and f(x j µ), appears to
have generated random samples from the underlying marginal
distributions.

Now, notice that the marginal distribution of X may be inter-
preted as the average of the conditional distribution of X given
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FIGURE 2

HISTOGRAMS OF SAMPLE VALUES FOR X AND µ IN
EXAMPLE 1

µ taken with respect to the marginal distribution of µ; that is,

f(x) =
Z
f(x j µ)f(µ)dµ:

Since the sampled values of µ(i) appear to constitute a random
sample of sorts from the marginal distribution of µ, this suggests
that a naive estimate of the value of the marginal density function
for X at the point x might be constructed by taking the empirical
average of f(x j µ(i)) over the sampled values for µ(i). If µ(1) =
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0:0055, for example, then

f(x j µ(1)) = 0:00552xexp(¡0:0055x):

One does a similar computation for the other values of µ(i) and
averages to get

f̂(x) =
1

500

500X

i=1

f(x j µ(i)): (1.3)

Similarly, we might construct

f̂(µ) =
1

500

500X

i=1

f(µ j X(i)) (1.4)

as a density estimate of f(µ). These estimated density functions
are plotted in Figure 3 along with their exact counterparts, and
it is evident that the estimated densities happen to be excellent.

2. MARKOV CHAIN MONTE CARLO

In the example of the previous section, we considered an itera-
tive simulation scheme that generated two dependent sequences
of random variates. Apparently, we were able to use these se-
quences in order to capture characteristics of the underlying joint
distribution that defined the simulation scheme in the first place.
In this section, we will discuss a few properties of certain sim-
ulation schemes that generate dependent sequences of random
variates and note in what manner these dependent sequences
may be used for making useful statistical inference. The main
results are given by Equations 2.1 and 2.2.

Before we begin, it may prove useful to quickly, and very in-
formally, review some elementary Markov chain theory. Tierney
[31] provides a much more detailed and rigorous discussion of
this material. A Markov chain is just a collection of random vari-
ables fXn; n¸ 0g, with the distribution of the random variables
on some space ­ µ Rk governed by the transition probabilities

Pr(Xn+1 2 A j X0, : : : ,Xn) =K(Xn,A),
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FIGURE 3

ESTIMATED AND EXACT MARGINAL DENSITIES FOR X AND µ
IN EXAMPLE 1

where A½­. Notice that the probability distribution of the next
random variable in the sequence, given the current and past
states, depends only upon the current state. This is known as
the Markov property. The distribution of X0 is known as the ini-
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tial distribution of the Markov chain. The conditional distribution
of Xn given X0 is described by

Pr(Xn 2 A j X0) = Kn(X0,A),

where Kn denotes the nth application of K. An invariant distri-
bution ¼(x) for the Markov chain is a density satisfying

¼(A) =
Z
K(x,A) ¼(x) dx,

and it is also an equilibrium distribution if

lim
n!1K

n(x,A) = ¼(A):

For simplicity, we are using the notation ¼(x) to identify both
the distribution and density for a random variable, trusting the
precise meaning to be evident from the context. A Markov chain
with invariant distribution ¼(x) is irreducible if it has a positive
probability of entering any state assigned positive probability by
¼(x), regardless of the initial state or value of X0. A chain is
periodic if it can take on certain values only at regularly spaced
intervals, and is aperiodic otherwise. If a Markov chain with a
proper invariant distribution is both irreducible and aperiodic,
then the invariant distribution is unique and it is also the equi-
librium distribution of the chain.

A MCMC method is a sampling based simulation technique
that may be used in order to generate a dependent sample from a
certain distribution of interest. Formally, a MCMC method pro-
ceeds by first specifying an irreducible and aperiodic Markov
chain with a unique invariant distribution ¼(x) equal to the de-
sired distribution of interest (or target distribution). Curiously,
there are usually a number of easy ways in which to construct
such a Markov chain. The next step is to simulate one or more
realizations of this Markov chain on a fast computer. Each path
of simulated values will form a dependent random sample from
the distribution of interest, provided that certain regularity con-
ditions are satisfied. Then these dependent sample paths may be
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utilized for inferential purposes in a variety of ways. In particular,
if the Markov chain is aperiodic and irreducible, with unique
invariant distribution ¼(x), and X(1),X(2), : : : , is a realization of
this chain, then known asymptotic results (e.g., Tierney [31] or
Roberts and Smith [23]) tell us that:

X(t) d!X » ¼(x) as t!1, (2.1)

and

1
t

tX

i=1

h(X(i))! E¼[h(X)] as t!1, almost surely:

(2.2)

Equation 2.1 indicates that as t becomes moderately large,
the value X(t) is very nearly a random draw from the distribu-
tion of interest. In practice, a value of t¼ 10 to 15 is often more
than sufficient. This result also allows us to generate an approx-
imately independent random sample from the distribution with
density f(x) by using only every kth value appearing in the se-
quence. The value of k should be taken to be large enough so
that the sample autocorrelation function coefficients for the val-
ues appearing in the subsequence are reminiscent of those for a
purely random process or a stochastically independent sequence,
that is, until there are no significant autocorrelations at non-zero
lags. This idea is illustrated in Example 2. Autocorrelation func-
tions are covered in some depth in the course of reading for
Associateship Examination Part 3A, Applied Statistical Methods
(also see Miller and Wichern [21, pp. 333–337, 356–365]).

Equation 2.2 tells us that if h is an arbitrary ¼-integrable real-
valued function of X, then the average of this function taken
over the realized values of X(t) (the ergodic average of the func-
tion) converges (almost surely, as t!1) to its expected value
under the target density. In practice, usually the first 10 to 100
values of the simulation are discarded, in order to reduce the
dependence of these estimates upon the selected starting values.
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Notice that if h(X) is taken to be the conditional density for
some random variable Y given X, then Equation 2.2 suggests
that the marginal density of Y may be estimated at the point y
by averaging the conditional density f(y j X) over the realized
values X(t) (as in Gelfand and Smith [9, pp. 402–403]).

At this point, the reader is probably wondering how one would
go about constructing a suitable Markov chain when a certain
target density ¼(x) is of interest. The so-called Gibbs sampler, a
special kind of MCMC method, is one easy and very popular
approach. The Gibbs sampler was introduced by Geman and
Geman [11] in the context of image restoration, and its suitabil-
ity for a wide range of problems in the field of Bayesian infer-
ence was recognized by Gelfand and Smith [9]. An elementary
introduction to the Gibbs sampler is given in Casella and George
[5], and those readers unfamiliar with the methodology are cer-
tainly encouraged to consult this reference. More sophisticated
discussions of the Gibbs sampler and MCMC methods in general
are given in Smith and Roberts [25], Tanner [29], and Tierney
[31].

3. THE GIBBS SAMPLER

In order to formally introduce the Gibbs sampler, let us be-
gin by letting the target distribution ¼(x) now correspond to a
joint distribution ¼(x1,x2, : : : ,xk). We assume that this joint dis-
tribution exists and is proper. Each of the xi terms may represent
either a single random variable or, more generally, a block of
several random variables grouped together. Let ¼(xj) represent
the marginal distribution of the jth block of variables, xj, and
let ¼(xj j x1, : : : ,xj¡1,xj+1, : : : ,xk) represent the full conditional
distribution of the jth block of variables, given the remainder.
Besag [2] observed that the collection of full conditional distri-
butions uniquely determines the joint distribution, provided that
the joint distribution is proper. The Gibbs sampler utilizes a set
of full conditional distributions associated with the target dis-
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tribution of interest in order to define a Markov chain with an
invariant distribution equal to the target distribution. When we
speak of a Gibbs sampler, we are actually referring to an imple-
mentation of the following iterative sampling scheme:

1. Select initial values x(0) = (x(0)
1 ,x(0)

2 , : : : ,x(0)
k ).

2. Set the counter index i= 0.

3. Simulate the sequence of random draws:

x(i+1)
1 » ¼(x1 j x(i)

2 , : : : ,x(i)
k ),

x(i+1)
2 » ¼(x2 j x(i+1)

1 ,x(i)
3 , : : : ,x(i)

k ),

x(i+1)
3 » ¼(x3 j x(i+1)

1 ,x(i+1)
2 ,x(i)

4 , : : : ,x(i)
k ),

...

x(i+1)
k » ¼(xk j x(i+1)

1 ,x(i+1)
2 , : : : ,x(i+1)

k¡1 ),

and form

x(i+1) = (x(i+1)
1 ,x(i+1)

2 , : : : ,x(i+1)
k ):

4. Set iÃ i+ 1 and return to Step 3.

Notice that in Step 3 of the Gibbs sampling algorithm, we are
required to sample random draws once from each of the full
conditional distributions and that the values of the conditioning
variables are sequentially updated, one by one. This sampling
algorithm defines a valid MCMC method, and by its construc-
tion also ensures that the target distribution ¼(x) is an invariant
distribution of the Markov chain so defined (e.g., Tierney [31]).
Mild regularity conditions (typically satisfied in practice) guar-
antee that Equations 2.1 and 2.2 will apply. Refer to Theorem 2
in Roberts and Smith [23] for one set of sufficient conditions.
Notice that since Equation 2.1 implies that x(i) is very nearly a
random draw from the joint distribution ¼(x), it is also the case
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that each component x(i)
j is very nearly a random draw from the

marginal distribution ¼(xj), for j = 1,2, : : : ,k (provided through-
out that i is sufficiently large). This is a useful result to note
when simulation based inference is sought with respect to one
or more of the marginal distributions.

Besag [2] observed the fact that the collection of full con-
ditional distributions uniquely determines the joint distribution,
provided that the joint distribution exists and is proper. However,
it is not the case that a collection of proper full conditional dis-
tributions necessarily guarantees the existence of a proper joint
distribution for the random variables involved. For example, note
that

f(x1,x2)/ exp(¡[x1 + x2]2=2),

with ¡1< x1 <1 and ¡1< x2 <1, defines an improper joint
distribution with two proper univariate normal full conditional
distributions (Gelfand [8]). When a set of proper full conditional
distributions fails to determine a proper joint distribution, any
application of the Gibbs sampling algorithm to these full con-
ditional distributions is to be avoided. If the Gibbs sampler was
invoked under these circumstances, the algorithm may either fail
to converge or else converge to a state that is not readily inter-
pretable.

By now, perhaps the reader has noticed that the example pre-
sented in Section 1 really just amounted to an application of the
Gibbs sampling algorithm to the two full conditional distribu-
tions f(x j µ) and f(µ j x) appearing in Equations 1.1 and 1.2. By
construction, we ensured that the joint distribution f(x,µ) also
existed as a proper distribution. From the discussion above, it
follows that Equation 2.1 explains why the sequence of sampled
values for X(i) and µ(i) effectively constituted random samples
from the marginal distributions of X and µ, respectively. Simi-
larly, the two density estimates defined by Equations 1.3 and 1.4
performed as well as they did because of the result described by
Equation 2.2.
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We conclude this section with a second example, before dis-
cussing some of the practical issues relating to the implementa-
tion of a Gibbs sampler in Section 4.

Example 2

Consider the following distributional model:

f(y) =
¡ (®+¯)
¡ (®)¡ (¯)

y®¡1(1¡ y)¯¡1, 0· y · 1

» beta (®,¯); (3.1)

f(n) = [exp(¸)¡ 1]¡1¸
n

n!
, n= 1,2, : : :

» zero-truncated Poisson (¸); (3.2)

f(x j y,n) =

Ã
n

x

!
yx(1¡ y)n¡x, x= 0,1, : : : ,n

» binomial (n,y): (3.3)

We will assume that the random variables Y and N are indepen-
dent, so that the proper joint distribution of X, Y, and Z obviously
exists as the product of Equations 3.1, 3.2, and 3.3. In order to
give the model above an actuarial interpretation, imagine that,
conditional upon Y and N, the random variable X represents
the number of policies generating a claim in a portfolio of N
identical and independent policies, each with a claim probability
equal to Y. A portfolio is characterized by the value of the pa-
rameters Y and N, which are random variables in their own right
with independent beta and zero-truncated Poisson distributions,
respectively. The marginal distribution of X describes the typical
number of policies generating a claim in an arbitrary portfolio.
Unfortunately, the marginal distribution of X cannot be obtained
in a closed form. (The reader is invited to try.) In order to study
the marginal distribution of X, we will consider an application
of the Gibbs sampler.
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For the model above, the following set of full conditional
distributions may be derived in a straightforward fashion:

f(x j y,n)» binomial (n,y); (3.4)

f(y j x,n)» beta (x+®,n¡ x+¯); (3.5)

f(n j x,y) = exp(¡¸[1¡ y])
(¸[1¡ y])n¡x

(n¡ x)! ,

n= x,x+ 1,x+ 2, : : : (3.6)

or

f(n¡ x j x,y)» Poisson (¸[1¡ y]):

For the purpose of illustration, we set the model parameters equal
to ®= 2, ¯ = 8, and ¸= 12, and initiated 5100 iterations of the
Gibbs sampler using the full conditional distributions found in
Equations 3.4, 3.5, and 3.6, with initial values X(0) = 4, Y(0) =
0:5, and N(0) = 50. By averaging Equation 3.4 over the simu-
lated values of Y(i) and N(i) in the spirit of Equation 2.2, after
first discarding the initial 100 values in each sample path in
order to ‘burn-in’ the Gibbs sampler and remove the effect of
the starting values, a density estimate for the random variable X
at the point x is given by the average of 5000 binomial distribu-
tions:

f̂(x) =
1

5000

5100X

i=101

f(x j Y(i),N(i)): (3.7)

A plot of this density estimate appears in the upper half of Fig-
ure 4. For comparison, we also constructed a histogram estimate
of the density for the random variable X on the basis of 1000
approximately independent realizations of this random variable.
These 1000 approximately independent random draws were ob-
tained by taking or accepting every fifth of the last 5000 values
for X appearing in the simulation. (See the discussion in the next
paragraph.) The resulting histogram density estimate appears as
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FIGURE 4

TWO ESTIMATED DENSITIES FOR X IN EXAMPLE 2

the second plot in Figure 4, and we observe that it is consistent
with the first estimate.

As previously mentioned in Section 2, thinning the sequence
of simulated values output by a Gibbs sampler by accepting only
every kth generated value reduces the serial correlation between
the accepted values, and sample autocorrelation functions may
be examined in order to assess the dependence in the thinned
sequence (Miller and Wichern [21]). We applied this idea in the
paragraph above to the last 5000 of the simulated values for X
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output by the Gibbs sampler using k = 5, so that only every fifth
of these generated values was accepted and so that 1000 values
were accepted in total. The sample autocorrelation function for
the original sequence of 5000 simulated values appears as the
first plot in Figure 5. The heights of the twenty different spikes
in this plot represent the values of the sample autocorrelation
coefficients at lags 0 through 19 for this sequence of 5000 val-
ues, respectively. If this sequence of 5000 simulated values were
independent, then all of the sample autocorrelations at non-zero
lags should be close to zero. Spikes crossing either of the two
horizontal dashed lines identify autocorrelation coefficients that
are significantly different from zero (at the 95 percent level of
significance). For this sequence of 5000 simulated values, we
may observe that significant autocorrelations are identified at the
non-zero lags 1 through 5, clearly demonstrating the dependent
nature of this sequence. The sample autocorrelation function for
the thinned sequence of 1000 simulated values appears as the
second plot in Figure 5. This sample autocorrelation function is
reminiscent of the function we would expect for a purely random
process, since none of the autocorrelations at non-zero lags is
significantly different from zero. This demonstrates that by thin-
ning the original sequence of simulated values for X, we have
indeed recovered an approximately independent random sample
as claimed.

4. PRACTICAL CONSIDERATIONS RELATED TO GIBBS SAMPLING

There is one very simple and overriding reason for the recent
popularity of the Gibbs sampler as a tool for statistical infer-
ence: it permits the analysis of any statistical model possessing a
complicated multivariate distribution to be reduced to the analy-
sis of its much simpler, and lower dimensional, full conditional
distributions. In fact, all that is required is that we be able to
iteratively sample a large number of random variates from these
conditional distributions. Since

¼(xj j x1, : : : ,xj¡1,xj+1, : : : ,xk)/ ¼(x), (4.1)
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FIGURE 5

TWO SAMPLE AUTOCORRELATION FUNCTIONS FOR X IN
EXAMPLE 2

where ¼(x) on the right-hand side is viewed as a function of
xj with all of the other arguments held fixed, we will always
have the form of the full conditional distributions required to
implement a Gibbs sampler immediately available (at least up
to their normalizing constants) whenever the form of the tar-
get distribution is known. When a full conditional distribution
is univariate, we will usually be able to generate random draws
from it by making use of one of the algorithms for non-uniform
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random variate generation found in Devroye [7]. A number of
these algorithms are also included in the syllabus for Associ-
ateship Examination Part 4B (e.g., Hogg and Klugman [16, pp.
69–75]). Gilks [12], Gilks and Wild [13], and Wild and Gilks
[32] describe clever adaptive rejection sampling (ARS) methods
that are very efficient when random draws are required from
a univariate continuous distribution with a density that is con-
cave with respect to its argument on the logarithmic scale, and
these methods are becoming very popular as well. Many of these
algorithms, including those for ARS in particular, do not even
necessitate the calculation of the normalizing constants.

If one decides to implement a Gibbs sampler by coding it di-
rectly using a high-level programming language like APL, C, or
FORTRAN, it will probably be necessary to code one or more of
the algorithms for non-uniform random variate generation men-
tioned above. One way to avoid this bother is to make use of
an existing software package for statistical computing, like
S-Plus (Statistical Sciences Inc.) (Becker, Chambers, Wilks [1])
or Minitab (Minitab Inc.). Using a statistical computing package
is often a convenient way in which to implement a Gibbs sam-
pler, since random number generators for many standard distri-
butions are often included in these packages. We implemented
the Gibbs samplers for Examples 1 and 2 within the S-Plus
programming environment using the random number generators
rgamma, rbinom, and rpois, and each of the simulations took
only seconds to run. On the other hand, intensive MCMC simu-
lations for more complicated models often take minutes or hours
to run when implemented using Minitab or S-Plus, but require
only a few seconds or minutes to run when programmed in a
high-level language like C or FORTRAN.

Specialized software for Gibbs sampling also exists. Foremost
is the software package known as BUGS (Thomas, Spiegelhal-
ter, and Gilks [30] and Gilks, Thomas, and Spiegelhalter [14]).
Its name is an acronym for Bayesian Inference Using Gibbs Sam-
pling, and BUGS is intended to be used for that purpose. BUGS
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will implement Bayesian inference using Gibbs sampling for a
large class of full probability models in which all quantities are
treated as random variables. This package is capable of analyz-
ing very complicated models, and it appears to be competitive
with C or FORTRAN in terms of raw speed. The BUGS soft-
ware package is very convenient to use, insomuch as it pro-
vides a declarative language permitting the practitioner to make
a straightforward specification of the statistical model at hand,
following which the software automatically derives the associ-
ated full conditional distributions and selects appropriate sam-
pling algorithms. Version 0.50 of this software is available free
of charge for SUN Sparcstations and PC 386+387/486/586 plat-
forms. Readers with access to the computer Internet may obtain
BUGS, along with an instruction manual (Spiegelhalter, Thomas,
Best, and Gilks [27]) and two volumes of worked examples
(Spiegelhalter, Thomas, Best, and Gilks [26]) by anonymous ftp
from ftp.mrc-bsu.cam.ac.uk in the directory pub/methodology/bugs
or by accessing the uniform resource locator http://www.
mrc-bsu.cam.ac.uk on the World Wide Web. These resources may
also be obtained on disk from the developers for a small ad-
ministrative fee. (For details, e-mail bugs@mrc-bsu.cam.ac.uk.)
In Appendices A, B, and C, we provide illustrative BUGS pro-
gramming code corresponding to Examples 3 and 4, which are
themselves presented in Section 5. After reviewing Example 4,
the reader will recognize that BUGS requires relatively few lines
of code in order to implement a Gibbs sampler, even for a large
and complicated model.

Recall that it will be necessary to run a Gibbs sampler for
a little while in order to escape from the influence of the ini-
tial values and converge to the target distribution. Regardless of
how one chooses to implement a Gibbs sampler, it will always
be necessary to monitor this convergence. This is usually best
diagnosed on the basis of the output from several independent
replications of the Gibbs sampler, using widely dispersed start-
ing values. If these Gibbs samplers have been left to run for
a sufficiently long time so that convergence has been obtained,
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then the inferences drawn from each of the replications should be
consistent, and virtually identical, with one another. In a similar
vein, the behavior of the sampled values across replications at
various iterations should be consistent when a large number of
replications is considered. An ad hoc implementation of this idea
is used in Example 3. More formal diagnostics are also available,
and Cowles and Carlin [6] recently made a comparative review
of a number of these. Two of the most popular are the methods
proposed by Gelman and Rubin [10] and Raftery and Lewis [22].
An application of Gelman and Rubin’s method may be found in
Scollnik [24].

5. BAYESIAN ANALYSIS USING GIBBS SAMPLING

The Gibbs sampler has proven itself to be particularly suited
for problems arising in the field of Bayesian statistical inference.
Recall that a Bayesian analysis proceeds by assuming a model
f(Y j µ) for the data Y conditional upon the unknown parameters
µ. When f(Y j µ) is considered as a function of µ for fixed Y, it
is referred to as the likelihood and is denoted by L(µ j Y) or L(µ).
A prior probability distribution f(µ) describes our knowledge of
the model parameters before the data is actually observed. Bayes’
theorem allows us to combine the likelihood function with the
prior in order to form the conditional distribution of µ given the
observed data Y, that is,

f(µ j Y)/ f(µ)L(µ): (5.1)

This conditional distribution is called the posterior distribution
for the model parameters, and describes our updated knowledge
of them after the data has been observed. Frequently, numer-
ical methods are required in order to study posterior distribu-
tions with complicated forms. Following Equation 4.1 and its
associated discussion, one may deduce that the Gibbs sampler is
one method available for consideration. Other numerical meth-
ods that might be utilized in order to advance a Bayesian analysis
include numerical quadrature and Monte Carlo integration, both
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of which are described in Klugman [18, Chapter 2]. One of the
big advantages of the Gibbs sampler is that it is often far easier
to implement than either of these other two methods. The Gibbs
sampler is also flexible in the sense that its output may be used
in order to make a variety of posterior and predictive inferences.

For example, imagine that we have implemented a Gibbs sam-
pler generating values µ(i) from f(µ j Y), provided that i is suf-
ficiently large. Obviously, posterior inference with respect to µ
may proceed on the basis of the sampled values µ(i). However,
if some transformation ! = !(µ) of the model parameters is of
interest as well, then posterior inference with respect to ! is
immediately available on the basis of the transformed values
!(i) = !(µ(i)). Further, it will often be the case that the actuar-
ial practitioner will be interested in making predictive inferences
with respect to things like future claim frequencies, future size of
losses, and so forth. Typically, the conditional model f(Yf j Y,µ)
for the future data Yf given the past data Y and the model param-
eters µ will be available. The appropriate distribution upon which
to base future inferences is the so-called predictive distribution
with density

f(Yf j Y) =
Z
f(Yf j Y,µ)f(µ j Y)dµ, (5.2)

which describes our probabilistic knowledge of the future data
given the observed data. An estimate of this predictive density is
easily obtained by averaging f(Yf j Y,µ) over the sampled val-
ues of µ(i) in the sense of Equation 2.2. Recall that the density
estimates appearing in Equations 1.3, 1.4, and 3.7 were all con-
structed in a like manner.

This section concludes with Examples 3 and 4. Example 3 in-
volves the estimation of the parameter for a size of loss distribu-
tion when grouped data are observed. Example 4 addresses cred-
ibility for classification ratemaking via hierarchical models, and
involves the prediction of frequency counts in workers compen-
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sation insurance. We will operate within the Bayesian paradigm
for these examples and implement the Bayesian analyses using
the Gibbs sampler.

Example 3

Assume that loss data has been generated according to the
Pareto(µ,¸) distribution with density

f(x j µ) =
µ¸µ

(¸+ x)µ+1 , 0< x <1: (5.3)

In order to simplify the presentation, we will assume that the
parameter ¸ is known to be equal to 5000, so that the only un-
certainty is with respect to the value of the parameter µ. Imagine
that twenty-five independent observations are available in total,
but that the data has been grouped in such a way so that we
know only the class frequencies: 12, 8, 3, and 2 observations fall
into the classes (0,1000], (1000,2000], (2000,3000], (3000,1),
respectively. Hogg and Klugman [16, pp. 81–84] consider max-
imum likelihood, minimum distance, and minimum chi-square
estimation for grouped data problems like this when inference is
sought with respect to the parameter µ. Below, we will consider
how a Bayesian analysis might proceed.

Given the situation described in the paragraph above, the best
likelihood function available is proportional to

L(µ jObs. Data) =
4Y

i=1

ÃZ ci

ci¡1

f(x j µ) dx

!fi

with class limits c0 = 0, c1 = 1000, c2 = 2000, c3 = 3000, c4 =
1, and class frequencies f1 = 12, f2 = 8, f3 = 3, f4 = 2. Multi-
plying this likelihood function together with a prior density for µ
will result in an expression proportional to the posterior density
for µ given the observed data. Since the posterior distribution
of µ is univariate, this posterior density might be evaluated in
a straightforward fashion making use of numerical quadrature
methods.
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However, for the sake of illustration, we choose instead to imple-
ment the Bayesian analysis by utilizing the Gibbs sampler along
with a process called data augmentation. Towards this end, let us
first consider how the likelihood function would change if exact
size of loss values supplementing or augmenting the twenty-five
observed class frequencies were available as well. In this case,
the likelihood function would be proportional to

L(µ jObs. & Aug. Data) =
µ25¸25µ

25Y

i=1

(¸+ xi)
µ+1

:

Combining this likelihood function with the conjugate
gamma(®,¯) prior density for µ results in the posterior density

f(µ jObs. & Aug. Data)

/ µ24+®exp

0
@¡µ

0
@¯¡ 25 ln ¸+

25X

i=1

ln [¸+ xi]

1
A
1
A

» gamma

0
@25 +®,¯¡25 ln ¸+

25X

i=1

ln [¸+ xi]

1
A : (5.4)

Recall that a conjugate prior combines with the likelihood func-
tion in such a way so that the posterior distribution has the
same form as the prior. For this example, we adopted the con-
jugate prior primarily for mathematical and expository conve-
nience, and set ®= ¯ = 0:001 so that our prior density for µ is
very diffuse and noninformative with mean 1 and variance 1000.
Although the the adoption of a diffuse conjugate prior is not un-
common when relatively little prior information is being as-
sumed, in practice the practitioner should adopt whatever form of
prior density that best describes the prior information actually
available.
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Now, the augmented data values are all independently dis-
tributed given the model parameters, and each is distributed ac-
cording to Equation 5.3 but restricted to the appropriate class
interval. In other words, the conditional distribution of the aug-
mented data, given the model parameters and the observed class
frequencies, is described by the following set of truncated Pareto
distributions:

xi » truncated Pareto (µ,¸) on the interval (0,1000],

for i = 1,2, : : : ,12; (5.5)

xi » truncated Pareto (µ,¸) on the interval (1000,2000],

for i = 13,14, : : : ,20; (5.6)

xi » truncated Pareto (µ,¸) on the interval (2000,3000],

for i = 21,22,23; (5.7)

xi » truncated Pareto (µ,¸) on the interval (3000,1),

for i = 24,25: (5.8)

If a loss random variable has a Pareto distribution, with param-
eters µ and ¸ and a density function as in Equation 5.3, then
the truncated density function of that random variable, on the
restricted interval (l,u], with 0· l < u·1, is given by

f(x j µ)
Pr(l < X · u j µ) , l < x· u:

For example, the density function associated with the truncated
Pareto distribution appearing in Equation 5.8 is given by

µ(¸+ 3000)µ

(¸+ x)µ+1 , 3000< x <1:

By applying the Gibbs sampler to the 26 full conditional dis-
tributions defined by Equations 5.4 through 5.8, we are easily
able to simulate a Markov chain with an invariant distribution
equal to p(µ, Aug. Data jObs. Data). In order to make posterior
inference with respect to µ, the parameter of interest, we initiated
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FIGURE 6

TEN SAMPLE PATHS FOR µ IN EXAMPLE 3

1000 replications of this Markov chain, using randomly selected
starting values for µ and the augmented data each time, and let
each replication run for 10 iterations. Only the values generated
in the final iteration of each replication will be used. The reader
will recall that ¸ is equal to 5000 by assumption.

Ten arbitrarily selected sample paths for µ are plotted in Figure
6 for illustrative purposes. These 10 sample paths are typical of
the entire collection of 1000 generated sample paths, and indi-
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cate that the simulated sequences stabilize almost immediately.
In order to monitor convergence, we monitored the 5th and 95th
empirical quantiles for µ over the 1000 replications for each iter-
ation. The resulting 90% empirical confidence bands are plotted
as vertical lines in Figure 6. These stabilize almost immediately
as well, indicating that the Gibbs sampler was very quick to con-
verge. Although we do not include the plots, the sample paths
for the augmented data behaved similarly. By taking only the
final value of µ appearing in each of the 1000 sample paths, we
obtain an approximately independent random sample from the
posterior distribution p(µ jObs. Data). These values were used
to construct the histogram of sampled values for µ appearing
in Figure 7. Their sample mean and variance were 4.5097 and
0.9203, respectively. A smooth density estimate for µ was ob-
tained by averaging Equation 5.4 over the corresponding 1000
sets of simulated values for the augmented data, and this esti-
mate overlays the histogram in Figure 7. At this time we note
that the data yielding the observed class frequencies used in this
example were actually generated using a value of µ equal to 4.5,
so that our posterior inference with respect to µ is certainly on
the mark.

By monitoring the values taken on by the augmented data as
the simulation proceeds, we can also make posterior inference
with respect to the actual but unobserved sizes of loss. For ex-
ample, by monitoring the values of the two losses appearing in
the upper-most class, x24 and x25, we can estimate the posterior
probability that one or more of these two losses exceeded an up-
per limit of, say, 10,000 by simply observing the proportion of
times this event occurred in the simulation. In fact, we observed
that in only 124 of the 1000 final pairs of simulated values for
x24 and x25 did at least one of these two values exceed 10,000.
Thus, a simple estimate of the posterior probability of interest is
given by the binomial proportion

p̂=
124

1000
= 0:124,
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FIGURE 7

HISTOGRAM OF SAMPLED VALUES AND A DENSITY ESTIMATE
FOR µ IN EXAMPLE 3

which has an estimated standard error of
µ
p̂(1¡ p̂)

1000

¶0:5

=
µ

0:124 ¤ 0:876
1000

¶0:5

= 0:0104:

The analysis described above was implemented using the sta-
tistical computing package S-Plus on a SUN Sparcstation LX
(operating at 50 MHz). Five thousand iterations of the Gibbs
sampler constructed for this problem took 380 seconds. By way
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of comparison, when implemented using BUGS on the same
computer, 5000 iterations of the Gibbs sampler took 14 seconds.
These times should be comparable to those one might encounter
using a fast 486/586 PC. The BUGS code corresponding to this
example appears in Appendix A.

Although we assumed that ¸ was known to be equal to 5000
in this example, treating it as a random parameter would have
complicated the analysis only slightly. In this case, it would have
been necessary to include random draws from the posterior full
conditional distribution for ¸, given µ and the augmented data, in
the running of the Gibbs sampler. These univariate random draws
might have been accomplished utilizing one of the strategies for
random number generation described in Section 4. Of course, a
prior distribution for the parameter ¸ would have to have been
specified as well.

Example 4

For our last example, we will use the Gibbs sampler to analyze
three models for claim frequency counts. These are the hierar-
chical normal, hierarchical first level Poisson, and the variance
stabilized hierarchical normal models. The data corresponds to
Data Set 2 in Klugman [18]. The observations are frequency
counts in workers compensation insurance. The data were col-
lected from 133 occupation classes over a seven-year period.
The exposures are scaled payroll totals adjusted for inflation.
The first two classes are given in Table 1, and the full data set
may be found in Appendix F of Klugman [18]. Only the first
six of the seven years will be used to analyze these models, and
omitting those cases with zero exposure yields a total of 767
observations. The results of each model analysis will then be
used to forecast the number of claims associated with the 128
classes with non-zero exposure in the seventh year. We will ob-
serve that the second of the three models (i.e., the hierarchical
first level Poisson model) appears to have associated with it the
best predictive performance in this context.
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TABLE 1

WORKERS COMPENSATION INSURANCE FREQUENCIES

Class Year Exposure Claims
i j Pij Yij

1 1 32.322 1
1 2 33.779 4
1 3 43.548 3
1 4 46.686 5
1 5 34.713 1
1 6 32.857 3
1 7 36.600 4
2 1 45.995 3
2 2 37.888 1
2 3 34.581 0
2 4 28.298 0
2 5 45.265 2
2 6 39.945 0
2 7 39.322 4
. . . .
. . . .
. . . .

Klugman [17] argued that a hierarchical model is the most ap-
propriate framework in which to implement credibility for clas-
sification ratemaking. In this spirit, Klugman [18] considered a
Bayesian analysis of the workers compensation insurance fre-
quency count data presently under consideration using a (one-
way) hierarchical normal model (HNM), and demonstrated that
this analysis might be implemented using any one of a number of
numerical techniques, emphasizing numerical quadrature, Monte
Carlo integration, or Tierney–Kadane’s integral method. We will
begin by considering the HNM as well, but we will implement
its analysis using the Gibbs sampler. Letting xij denote Yij=Pij ,
the relative frequency for class i and year j, the first two levels
of the HNM we consider are described by

f(xij j µi,¿2
1 )» normal (µi,Pij¿

2
1 ) (5.9)
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and f(µi j ¹,¿2
2 )» normal (¹,¿2

2 ): (5.10)

Each of these normal densities is indexed by two parameters,
a mean and a precision (i.e., inverse variance). The model pa-
rameter µi represents the true relative frequency for the ith class.
The relative frequencies xij, for i = 1, : : : ,133 and j = 1, : : : ,7, are
assumed to be independent across class and year, given the un-
derlying model parameters µi, i = 1, : : : ,133, and ¿2

1 . Similarly,
the true frequencies µi, for i = 1, : : : ,133, are assumed to be in-
dependent, given the underlying parameters ¹ and ¿2

2 . (Notice
that under this model, negative claim frequencies are possible.
For this reason, the HNM as presented is not entirely appropriate
for modeling the non-negative workers compensation insurance
frequency count data. We return to this point in the next para-
graph.) In order to complete the model specification, Klugman
[18] employed a constant improper prior density for the model
parameters ¹, ¿2

1 and ¿2
2 . Instead, we adopt the diffuse but proper

prior density described by

f(¹)» normal (0,0:001), (5.11)

f(¿2
1 )» gamma (0:001,0:001), (5.12)

f(¿2
2 )» gamma (0:001,0:001): (5.13)

The assumption of a proper prior guarantees that the posterior
distribution exists and is proper as well, and slightly simplifies
the implementation of a Gibbs sampler. However, the precise
form of the diffuse prior (and the selection of the prior density
parameters) is not terribly important in this instance since the
observed data comprises a rather large sample that will tend to
dominate the prior information in any case. (Also, see the dis-
cussion in the next paragraph.) We assume prior independence
between the model parameters ¹, ¿2

1 and ¿2
2 . If we assume that

only the data corresponding to the first six of the seven years
has been observed, then the posterior density for the model pa-
rameters is proportional to the product of terms appearing on the
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right-hand side of the expression

f(µ1,µ2, : : : ,µ133,¹,¿2
1 ,¿2

2 jData)

/ f(¹)f(¿2
1 )f(¿2

2 )
133Y

i=1

f(µi j ¹,¿2
2 )

6Y

j=1

f(xij j µi,¿2
1 ):

(5.14)

Recall that our objective is to forecast the number of claims
associated with the 128 classes with non-zero exposure in the
seventh year.

As previously remarked, the HNM as presented above is not
entirely appropriate for modeling the non-negative workers com-
pensation insurance frequency count data. Yet, we will continue
with its analysis for the following reasons:

² the large amount of sample data available will tend to over-
whelm the prior density and will also go a long way towards
correcting the inadequacy of the model by assigning less pos-
terior probability to parameter values that are likely to generate
negative frequencies;

² it will be interesting to compare the results of the MCMC sim-
ulation based analysis of the HNM to the numerical analysis
presented by Klugman [18];

² the MCMC simulation based analysis of the HNM provides a
benchmark to which the MCMC simulation based analyses of
the other two models may be compared; and

² the HNM is a very important model in its own right, and for
this reason alone it is valuable and instructive to see how its
Gibbs sampling based Bayesian analysis might proceed.

Having said this, there are at least two ways in which the basic
HNM may be constructively modified if it is to be applied to fre-
quency count data. The first solution is to adopt the recommenda-
tion made by Klugman [18, pp. 76–77] and transform the origi-
nal data in some way so that the transformed data is more appro-
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priately modeled using the HNM. This approach motivates the
variance stabilized hierarchical normal model considered at the
end of this section. The second solution involves adding restric-
tions to the HNM so that negative frequencies are prohibited. A
simple way in which to do this is to replace the normal distri-
butions appearing in Equations 5.9, 5.10, and 5.11 with normal
distributions truncated below at zero. In fact, we analyzed this
truncated HNM and observed that, although it did perform sig-
nificantly better than the non-truncated HNM, it did not perform
as well as the variance stabilized hierarchical normal model. For
this reason, we will omit the details of the truncated HNM anal-
ysis.

In order to conduct a Bayesian analysis of the HNM described
by Equations 5.9 to 5.13 using the Gibbs sampler, we are re-
quired to first derive the necessary full conditional distributions
associated with this model. These may be derived by substituting
Equations 5.9 through 5.13 into Equation 5.14, and then making
use of the discussion following Equation 4.1. In this manner,
for an arbitrary one of the 133 normal mean µi parameters we ob-
tain

f(µi jData; µ1, : : : ,µi¡1,µi+1, : : : ,µ133,¹,¿2
1 ,¿2

2 )

/ f(µi j ¹,¿2
2 )

6Y

j=1

f(xij j µi,¿2
1 )

/ exp

0
@¡0:5

2
4¿2

2 (µi¡¹)2 + ¿2
1

6X

j=1

Pij(xij ¡ µi)2

3
5
1
A

» normal

0
B@

2
4¹¿2

2 + ¿2
1

6X

j=1

Pijxij

3
5
,

2
4¿2

2 + ¿2
1

6X

j=1

Pij

3
5 ,¿2

2 + ¿2
1

6X

j=1

Pij

1
CA :
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The recognition of the normal distribution in the last line of this
derivation follows from completing the square in µi in the ex-
pression immediately above it. Observe that the full conditional
distribution of µi is actually independent of any other parameter
µj. For the parameter ¹, we obtain

f(¹ jData; µ1, : : : ,µ133,¿2
1 ,¿2

2 )

/ f(¹)
133Y

i=1

f(µi j ¹,¿2
2 )

/ exp

0
@¡0:5

2
40:001¹2 + ¿2

2

133X

i=1

(µi¡¹)2

3
5
1
A

» normal

0
@
2
4¿2

2

133X

i=1

µi

3
5
,

[0:001 + 133¿2
2 ], 0:001 + 133¿2

2

1
A ;

and for the precision parameter ¿2
1 , we have

f(¿2
1 jData; µ1, : : : ,µ133,¹,¿2

2 )

/ f(¿2
1 )

133Y

i=1

6Y

j=1

f(xij j µi,¿2
1 )

/ (¿2
1 )0:001¡1+767=2

£ exp

0
@¡¿2

1

2
40:001 + 0:5

133X

i=1

6X

j=1

Pij(xij ¡ µi)2

3
5
1
A

» gamma

0
@383:501,0:001 + 0:5

133X

i=1

6X

j=1

Pij(xij ¡ µi)2

1
A :
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In the derivation of the full conditional distribution for ¿2
1 we

made use of the fact that there were only 767 observations asso-
ciated with non-zero exposures in the first six years. Finally, for
the precision parameter ¿2

2 , we have

f(¿2
2 jData; µ1, : : : ,µ133,¹,¿2

1 )

/ f(¿2
2 )

133Y

i=1

f(µi j ¹,¿2
2 )

/ (¿2
2 )0:001¡1+133=2exp

0
@¡¿2

2

2
40:001 + 0:5

133X

i=1

(µi¡¹)2

3
5
1
A

» gamma

0
@66:501,0:001 + 0:5

133X

i=1

(µi¡¹)2

1
A :

Using these full conditional distributions, we can implement a
Gibbs sampler for the model of interest by coding the appropri-
ate random number generators in a high-level programming lan-
guage like APL, C, or FORTRAN. However, for this moderately
large model incorporating 136 random parameters, we prefer to
use the BUGS software package mentioned in Section 4 and al-
low it to automatically select and program the necessary random
number generators for us. In fact, since BUGS automatically de-
termines and selects the appropriate random number generators
for the full conditional distributions directly from Equations 5.9
through 5.13, we really did not have to derive these full con-
ditional distributions ourselves, except perhaps to demonstrate
how this task is accomplished.

Illustrative BUGS code corresponding to the HNM of interest
is provided in Appendix B, and we used this programming code
in conjunction with the BUGS software package in order to im-
plement a Gibbs sampler for the problem at hand. We allowed
the MCMC simulation to run for 20,000 iterations in order to
“burn-in” the Gibbs sampler and remove the effect of the start-
ing values, and then allowed it to run for an additional 5000 it-
erations in order to generate a dependent random sample of size
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5000 from the joint posterior distribution of the model parame-
ters µ1,µ2, : : : ,µ133, ¹, ¿2

1 , and ¿2
2 , given the observed frequency

counts. (This simulation took about 337 seconds on the same
SUN Sparcstation LX we described previously.)

The values generated by this MCMC simulation may be used
in order to make a wide variety of posterior and predictive in-
ferences. For example, the expected number of claims for year
seven in class i is given by E(Yi7 j Pi7,µi) = Pi7µi. By multiplying
each of the 5000 simulated values of µi with Pi7, we obtain 5000
realizations from the posterior distribution of Pi7µi. Then pos-
terior inference with respect to the expected number of claims
for year seven in class i may proceed on the basis of this sam-
ple. We performed this procedure for five of the 128 classes
with non-zero exposure in the seventh year, and have recorded
in Table 2 the empirical mean, standard deviation, and several
quantiles (i.e., the 2.5th, 50.0th, and 97.5th) for each of the re-
sulting samples of size 5000. The five classes we selected are
the same (non-degenerate) ones considered by Klugman [18, p.
128]. However, whereas Klugman provided only point estimates
for the expected number of claims for year seven in each of
these classes, we have been able to generate realizations from
the posterior distribution of these expected claim numbers us-
ing MCMC. This allows us to observe, for instance, that both
classes 70 and 112 have substantial posterior probability asso-
ciated with negative expected number of claim values under the
HNM, as is evidenced by Table 2. An overall measure of this
model’s prediction success is given by the statistic

OMPS =
X

Pi7>0

(Pi7µi¡Yi7)2

Pi7
: (5.15)

(The name of this statistic is an abbreviation of Overall Mea-
sure of Prediction Success.) There are 128 terms in the sum-
mation, one for each of the 128 classes with non-zero exposure
in the seventh year. Small values of OMPS are indicative of a
model with good overall prediction success. We obtained 5000
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TABLE 2

EXPECTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(HIERARCHICAL NORMAL MODEL)

Actual Values Expected Number of Claims Pi7µi
Class Exposure Claims Estimated Posterior Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 10.19 2.98 4.34 10.21 16.04
20 1,315.37 22 41.38 5.57 30.62 41.38 52.30
70 54.81 0 0.61 1.20 ¡1.74 0.61 2.95
89 79.63 40 29.42 1.47 26.54 29.44 32.27

112 18,809.67 45 36.11 27.55 ¡19.02 36.47 89.43

realizations from the posterior distribution of OMPS by simply
evaluating Equation 5.15 five thousand times, once using each of
the 5000 joint realizations of µ1,µ2, : : : ,µ133 previously simulated
from their posterior joint distribution. In Table 3, we present the
empirical mean, standard deviation, and 2.5th, 50th and 97.5th
quantiles for this sample of 5000 realizations from the posterior
distribution of OMPS. We will return to this table after we intro-
duce and analyze our second model. Incidentally, we remark that
we checked our inferences throughout this example by indepen-
dently replicating our entire MCMC simulation-based analysis
several times, using different starting values for the Gibbs sam-
pler each time.

Above, we concentrated on posterior inferences made with
respect to the expected number of claims in year seven for var-
ious classes. As remarked at the start of Section 5, if we are
interested in the future number of actual claims, then we should
really be using the relevant predictive distribution in order to
fashion our inferences. For the HNM presently under consider-
ation, the distribution of the future number of claims for year
seven in class i is independent of the data associated with the
first six years provided that the underlying model parameters are
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TABLE 3

AN OVERALL MEASURE OF PREDICTION SUCCESS
(HIERARCHICAL NORMAL MODEL)

Estimated Posterior Summary Statistics
Mean S.D. 2.5% 50.0% 97.5%

16.49 1.23 14.16 16.48 18.96

known. This distribution is given by

f(Yi7 j µi,¿2
1 )» normal

Ã
Pi7µi,

¿2
1
Pi7

!
, (5.16)

in accord with Equation 5.9. Following Equation 5.2, it follows
that the predictive distribution of the future number of claims for
year seven in class i given the observed frequency counts over
the first six years is

f(Yi7 jData) =
Z
f(Yi7 j µi,¿2

1 )f(µi,¿
2
1 jData) dµi d¿

2
1 :

(5.17)

An estimate of this predictive distribution is easily obtained by
simply averaging the density found in Equation 5.16 over the
5000 pairs of realized values for µi and ¿2

1 previously simulated
from the posterior distribution of the model parameters.

Another way in which to proceed is by generating 5000 re-
alizations of Yi7 according to the distribution in Equation 5.16,
one realization per pair of values previously simulated for µi and
¿2

1 . Then the 5000 simulated values of Yi7 represent a random
sample from the predictive distribution in Equation 5.17, and
the empirical distribution of this sample may be used to moti-
vate predictive inference. Using this latter approach we simulated
random samples of size 5000 from the predictive distribution in
Equation 5.17 for each of the five classes we examined previ-
ously, and summary statistics for the samples from these pre-
dictive distributions appear in Table 4. From Table 4, we may
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TABLE 4

PREDICTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(HIERARCHICAL NORMAL MODEL)

Actual Values Predicted Number of Claims Yi7
Class Exposure Claims Estimated Predictive Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 10.24 7.41 ¡4.12 10.22 24.92
20 1,315.37 22 41.46 17.04 8.03 41.39 75.22
70 54.81 0 0.63 3.46 ¡6.10 0.62 7.51
89 79.63 40 29.46 4.21 21.22 29.45 37.72

112 18,809.67 45 37.74 66.28 ¡92.32 38.25 167.52

observe that the predictive distributions associated with future
claim frequencies exhibit greater variability than do the cor-
responding posterior distributions associated with the expected
numbers of future claims. Also notice that 3 of the 5 classes (i.e.,
classes 11, 70, and 112) have substantial predictive probability
associated with negative number of claim values in year seven
under the HNM.

The second model we consider is a more realistic one for
modeling frequency count data. This model is also hierarchical,
and its first two levels are described by

f(Yij j µi)» Poisson (Pijµi) (5.18)

and f(ln µi j ¹,¿2)» normal (¹,¿2): (5.19)

The model parameter µi now represents the true Poisson claim
frequency rate for the ith class with one unit of exposure. The
frequency counts Yij , for i= 1, : : : ,133 and j = 1, : : : ,7, are as-
sumed to be independent across class and year, given the under-
lying model parameters µi, i = 1, : : : ,133, and the Poisson claim
frequency rate parameters µi, for i = 1, : : : ,133, are assumed to
be independent, given the underlying parameters ¹ and ¿2. An
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obvious advantage of this model over the HNM considered pre-
viously is that the frequency counts are now being modeled at
the first level with a discrete distribution on the non-negative
integers. Assuming log-normal distributions as we have for the
Poisson rate parameters implies that

E(Yij) = E(E(Yij j µi)) = Pijexp(¹+ 1=[2¿2]) = Pijm

(5.20)
and

Var(Yij) = E(Var(Yij j µi)) + Var(E(Yij j µi))
= Pijm+P2

ijm
2(exp(1=¿2)¡ 1)> Pijm, (5.21)

so that overdispersion is modeled in the count data. In order to
complete the model specification, we will assume that the pa-
rameters ¹ and ¿2 are independent a priori, and adopt the diffuse
but proper prior density described by

f(¹)» normal (0,0:001), (5.22)

f(¿2)» gamma (0:001,0:001): (5.23)

If we assume that only the data corresponding to the first six
of the seven years has been observed, then the posterior density
for the model parameters is proportional to the product of terms
appearing on the right-hand side of the expression

f(µ1,µ2, : : : ,µ133,¹,¿2 jData)

/ f(¹)f(¿2)
133Y

i=1

µ¡1
i f(ln µi j ¹,¿2)

6Y

j=1

f(Yij j µi): (5.24)

The µ¡1
i terms appearing in this expression arise from the change

in variable when passing from ln µi to µi. As before, our objec-
tive is to forecast the number of claims associated with the 128
classes with non-zero exposure in the seventh year.

We will now conduct a Bayesian analysis of the (one-way)
hierarchical model with a first level Poisson distribution, or hi-
erarchical first level Poisson model (HFLPM), described above
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using the Gibbs sampler. Rather than derive the required full con-
ditional distributions manually, and then program the necessary
random number generators, we will let the BUGS software pack-
age do both tasks for us. Illustrative BUGS code corresponding
to this model is provided in Appendix B, and we used this pro-
gramming code in conjunction with the BUGS software package
in order to implement a Gibbs sampler. As before, we allowed
the MCMC simulation to run for 20,000 iterations in order to
“burn-in” the Gibbs sampler and remove the effect of the start-
ing values, and then allowed it to run for an additional 5000
iterations in order to generate a random sample of size 5000
from the joint posterior distribution of the model parameters
µ1,µ2, : : : ,µ133, ¹, and ¿2. This sample was used to implement the
same sort of posterior and predictive inferences for the HFLPM
as we did for the HNM considered previously.

We omit the specific details, but summaries of our estimated
posterior and predictive inferences under the HFLPM are pre-
sented in Tables 5, 6, and 7. By comparing these summaries to
those presented earlier in Tables 2, 3, and 4 for the HNM anal-
ysis, we are able to evaluate the relative performance of the two
models. First of all, it is evident that the posterior and predictive
distributions in which we are interested generally exhibit less
variability under the HFLPM than under the HNM. Secondly,
whereas the HNM permits negative relative frequencies and ex-
pected numbers of future claims, these are not a problem un-
der the HFLPM. Finally, the posterior distribution of the OMPS
statistic describing the overall measure of prediction success for
a given model appears to be concentrated closer to zero under
the HFLPM than under the HNM. In short, these observations
suggest that the HFLPM may be a better model than the HNM
for implementing credibility for classification ratemaking when
the data is in terms of frequency counts.

Klugman [18, pp. 76–77, 152–153] also recognized that the
HNM was inappropriate for modeling the workers compensa-
tion insurance frequency count data in its original form, and sug-
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TABLE 5

EXPECTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(HIERARCHICAL FIRST LEVEL POISSON MODEL)

Actual Values Expected Number of Claims Pi7µi
Class Exposure Claims Estimated Posterior Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 10.10 1.47 7.46 10.02 13.20
20 1,315.37 22 41.31 2.20 37.16 41.28 45.81
70 54.81 0 0.37 0.21 0.09 0.32 0.90
89 79.63 40 33.85 2.08 29.96 33.79 37.96

112 18,809.67 45 36.09 2.69 31.02 35.98 41.55

TABLE 6

AN OVERALL MEASURE OF PREDICTION SUCCESS
(HIERARCHICAL FIRST LEVEL POISSON MODEL)

Estimated Posterior Summary Statistics
Mean S.D. 2.5% 50.0% 97.5%

12.96 0.64 11.76 12.94 14.28

TABLE 7

PREDICTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(HIERARCHICAL FIRST LEVEL POISSON MODEL)

Actual Values Predicted Number of Claims Yi7
Class Exposure Claims Estimated Predictive Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 10.12 3.48 4 10 18
20 1,315.37 22 41.36 6.82 28 41 55
70 54.81 0 0.38 0.65 0 0 2
89 79.63 40 33.76 6.19 22 34 47

112 18,809.67 45 36.18 6.57 24 36 49
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gested that the variance stabilizing transformation zij = 2pxij
should first be applied to the relative frequencies xij = Yij=Pij ,
for i = 1, : : : ,133 and j = 1, : : : ,7, in order to produce values that
are approximately normal. The interested reader is referred to
Klugman [18, p. 77] for a discussion of the rationale justify-
ing this transformation. Klugman shows that if we apply this
transformation and let °i = 2

p
µi, then the appropriate variance

stabilized hierarchical normal model (VSHNM) for the workers
compensation data has its first two levels described by

f(zij j °i)» normal (°i,Pij) (5.25)

and f(°i j ¹,¿2)» normal (¹,¿2): (5.26)

As usual, these normal densities are indexed by two parameters,
a mean and a precision (i.e., inverse variance). To complete the
model specification, we adopt the diffuse proper priors

f(¹)» normal (0,0:001), (5.27)

f(¿2)» gamma (0:001,0:001), (5.28)

and make our standard assumptions with respect to indepen-
dence. We performed a Bayesian analysis of this model via the
Gibbs sampler (using BUGS) and present summaries of the pos-
terior and predictive analyses in Tables 8, 9, and 10. From Tables
3, 6, and 9, it appears that the VSHNM performed better than the
original HNM, at least in terms of the posterior distribution of
the statistic OMPS measuring overall prediction success, but not
quite as well as the HFLPM. This observation is illustrated by
Figure 8, in which we have plotted the estimated posterior dis-
tribution of OMPS resulting under each of the three hierarchical
models.

6. CLOSING DISCUSSION

This paper focused on the MCMC method known as the
Gibbs sampler. Other MCMC methods do exist. Perhaps the
foremost of these is the so-called Metropolis-Hastings algorithm
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FIGURE 8

ESTIMATED POSTERIOR DENSITIES FOR OMPS IN EXAMPLE 4

TABLE 8

EXPECTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(VARIANCE STABILIZED HIERARCHICAL NORMAL MODEL)

Actual Values Expected Number of Claims Pi7µi
Class Exposure Claims Estimated Posterior Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 9.99 1.45 7.28 9.83 12.98
20 1,315.37 22 40.83 2.20 36.61 40.81 45.22
70 54.81 0 0.06 0.08 0 0.03 0.30
89 79.63 40 30.94 1.96 27.21 30.95 34.88

112 18,809.67 45 35.36 2.68 30.29 35.33 40.67
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TABLE 9

AN OVERALL MEASURE OF PREDICTION SUCCESS
(VARIANCE STABILIZED HIERARCHICAL NORMAL MODEL)

Estimated Posterior Summary Statistics
Mean S.D. 2.5% 50.0% 97.5%

13.72 0.69 12.40 13.69 15.13

TABLE 10

PREDICTED WORKERS COMPENSATION INSURANCE
FREQUENCIES

(VARIANCE STABILIZED HIERARCHICAL NORMAL MODEL)

Actual Values Predicted Number of Claims Yi7
Class Exposure Claims Estimated Predictive Summary Statistics
i Pi7 Yi7 Mean S.D. 2.5% 50.0% 97.5%

11 229.83 8 10.16 3.50 4.33 9.82 18.11
20 1,315.37 22 41.21 6.61 29.26 40.84 54.62
70 54.81 0 0.31 0.43 0 0.14 1.54
89 79.63 40 31.25 5.82 20.50 31.00 43.13

112 18,809.67 45 35.69 6.49 24.00 35.37 49.29

(Metropolis, Rosenbluth, Rosenbluth, Teller, Teller [20]; Hast-
ings [15]; Roberts and Smith [23]). There are also many other ac-
tuarial problems beyond those discussed in this paper for which
MCMC methods have potential application. These include the
simulation of the aggregate claims distribution, the analysis of
stochastic claims reserving models, and the analysis of credibil-
ity models with state-space formulations. We hope to report upon
some of these topics and applications in the future.



AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS 159

REFERENCES

[1] Becker, R. A., J. M. Chambers, and A. R. Wilks, The New S
Language, Wadsworth & Brooks, Pacific Grove, California,
1988.

[2] Besag, J., “Spatial Interaction and the Statistical Analysis
of Lattice Systems” (with discussion), Journal of the Royal
Statistical Society, Series B, Vol. 36, 1974, pp. 192–326.

[3] Carlin, B. P., “State Space Modeling of Non-Standard Actu-
arial Time Series,” Insurance: Mathematics and Economics,
Vol. 11, 1992, pp. 209–222.

[4] Carlin, B. P., “A Simple Monte Carlo Approach to Bayesian
Graduation,” Transactions of the Society of Actuaries XLIV,
1992, pp. 55–76.

[5] Casella, G., and E. I. George, “Explaining the Gibbs Sam-
pler,” The American Statistician, Vol. 46, 1992, pp. 167–
174.

[6] Cowles, M. K., and B. P. Carlin, “Markov Chain Monte
Carlo Convergence Diagnostics: A Comparative Review,”
Research Report 94-008, Division of Biostatistics, School
of Public Health, University of Minnesota, 1994. To appear
in the Journal of the American Statistical Association.

[7] Devroye, L., Non-Uniform Random Variate Generation,
Springer-Verlag, New York, 1986.

[8] Gelfand, A. E., “Gibbs Sampling,” A Contribution to the
Encyclopedia of Statistical Sciences, 1994.

[9] Gelfand, A. E., and A. F. M. Smith, “Sampling Based Ap-
proaches to Calculating Marginal Densities,” Journal of the
American Statistical Association, Vol. 85, 1990, pp. 398–
409.

[10] Gelman, A., and D. B. Rubin, “Inference from Iterative
Simulation Using Multiple Sequences” (with discussion),
Statistical Science, Vol. 7, No. 4, 1992, pp. 457–472.



160 AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS

[11] Geman, S., and D. Geman, “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 6, 1984, pp. 721–741.

[12] Gilks, W. R., “Derivative-free Adaptive Rejection Sampling
for Gibbs Sampling,” Bayesian Statistics 4, J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Uni-
versity Press, Oxford, 1992, pp. 641–649.

[13] Gilks, W. R., and P. Wild, “Adaptive Rejection Sampling for
Gibbs Sampling,” Applied Statistics, Vol. 41, No. 2, 1992,
pp. 337–348.

[14] Gilks, W. R., A. Thomas, and D. J. Spiegelhalter, “A Lan-
guage and Program for Complex Bayesian Modelling,” The
Statistician, Vol. 43, 1994, pp. 169–178.

[15] Hastings, W. K., “Monte Carlo Sampling Methods Using
Markov Chains and Their Applications,” Biometrika, Vol.
57, 1970, pp. 97–109.

[16] Hogg, R. V., and S. A. Klugman, Loss Distributions, John
Wiley & Sons, New York, 1984.

[17] Klugman, S. A., “Credibility for Classification Ratemaking
via the Hierarchical Normal Linear Model,” PCAS LXXIV,
1987, pp. 272–321.

[18] Klugman, S. A., Bayesian Statistics in Actuarial Science with
Emphasis on Credibility, Kluwer Academic Publishers, Nor-
well, 1992.

[19] Klugman, S. A., and B. P. Carlin, “Hierarchical Bayesian
Whittaker Graduation,” Scandinavian Actuarial Journal,
Vol. 2, 1993, pp. 183–196.

[20] Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equations of State Calculations by
Fast Computing Machines,” Journal of Chemical Physics,
Vol. 21, 1953, pp. 1087–1092.



AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS 161

[21] Miller, R. B., and D. W. Wichern, Intermediate Business
Statistics: Analysis of Variance, Regression, and Time Series,
Holt, Rinehart and Winston, New York, 1977.

[22] Raftery, A. E., and S. Lewis, “How Many Iterations in the
Gibbs Sampler?” in Bayesian Statistics 4, J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Uni-
versity Press, Oxford, 1992, pp. 763–773.

[23] Roberts, G. O., and A. F. M. Smith, “Simple Conditions
for the Convergence of the Gibbs Sampler and Metropolis-
Hastings Algorithms,” Stochastic Processes and their Appli-
cations, Vol. 49, 1994, pp. 207–216.

[24] Scollnik, D. P. M., “A Bayesian Analysis of a Simultaneous
Equations Model for Insurance Rate-Making,” Insur-
ance: Mathematics and Economics, Vol. 12, 1993, pp. 265–
286.

[25] Smith, A. F. M., and G. O. Roberts, “Bayesian Computation
via the Gibbs Sampler and Related Markov Chain Monte
Carlo Methods,” Journal of the Royal Statistical Society,
Series B, Vol. 55, No. 1, 1993, pp. 3–23.

[26] Spiegelhalter, D., A. Thomas, N. Best, and W. Gilks, BUGS
Examples 0.5, Volumes 1 and 2, MRC Biostatistics Unit,
Cambridge, 1995.

[27] Spiegelhalter, D., A. Thomas, N. Best, and W. Gilks, BUGS
Manual 0.5, MRC Biostatistics Unit, Cambridge, 1995.

[28] Tanner, M. A., and W. H. Wong, “The Calculation of Pos-
terior Distributions by Data Augmentation” (with discus-
sion), Journal of the American Statistical Association, Vol.
82, 1987, pp. 528–550.

[29] Tanner, M. A., Tools for Statistical Inference, Methods for
the Exploration of Posterior Distributions and Likelihood
Functions, second edition, Springer-Verlag, New York,
1993.



162 AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS

[30] Thomas, A., D. J. Spiegelhalter, and W. R. Gilks, “BUGS:
A Program to Perform Bayesian Inference using Gibbs
Sampling,” Bayesian Statistics 4, J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, eds., University
Press, Oxford, 1992, pp. 837–842.

[31] Tierney, L., “Markov Chains for Exploring Posterior Dis-
tributions,” The Annals of Statistics, Vol. 22, No. 4, 1994,
pp. 1701–1728.

[32] Wild, P., and W. R. Gilks, “Adaptive Rejection Sampling
from Log-concave Density Functions,” Applied Statistics,
Vol. 42, No. 4, 1993, pp. 701–709.



AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS 163

APPENDIX A

The file in this appendix may be used in conjunction with the
BUGS software in order to conduct Bayesian inference using
Gibbs sampling for the model in Example 3.

# This is the BUGS file “lpareto.bug”.

model lpareto;
const

cases=25, lambda=5000;
var

x[cases], y[cases], theta;
data in “lpareto.dat”;
inits in “lpareto.in”;

f
for (i in 1:12) f

y[i]»dpar(theta, lambda) I(5000, 6000);
x[i]<-y[i]-lambda;
g

for (i in 13:20) f
y[i]»dpar(theta, lambda) I(6000, 7000);
x[i]<-y[i]-lambda;
g

for (i in 21:23) f
y[i]»dpar(theta, lambda) I(7000, 8000);
x[i]<-y[i]-lambda;
g

for (i in 24:25) f
y[i]»dpar(theta, lambda) I(8000,);
x[i]<-y[i]-lambda;
g

theta»dgamma(0.001, 0.001);
g
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APPENDIX B

The file in this appendix may be used in conjunction with the
BUGS software in order to conduct Bayesian inference using
Gibbs sampling for the first model in Example 4.

# This is the BUGS file “Normal.bug”.

model Normal;
const

cases=767, classes=133, years=6;
var

loss[cases], payroll[cases], class[cases],
x[cases], prec1[cases], theta[classes],
mu, tau1, tau2,
y11, y112, y70, y20, y89;

data in “Normal.dat”;
inits in “Normal.in”;

f
for (i in 1:cases) f

x[i]<-loss[i] / payroll[i];
x[i]»dnorm(theta[class[i]], prec1[i]);
prec1[i]<-tau1*payroll[i];
g

tau1»dgamma(0.001, 0.001);

for (j in 1:classes) f
theta[j]»dnorm(mu, tau2);
g

mu»dnorm(0, 0.001);
tau2»dgamma(0.001, 0.001);
y11<-229.83*theta[11];
y112<-18809.67*theta[112];
y70<-54.81*theta[70];
y20<-1315.37*theta[20];
y89<-79.63*theta[89];
g
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APPENDIX C

The file in this appendix may be used in conjunction with the
BUGS software in order to conduct Bayesian inference using
Gibbs sampling for the second model in Example 4.

# This is the BUGS file “Poisson.bug”.

model Poisson;
const

cases=767, classes=133, years=6;
var

loss[cases], payroll[cases], class[cases],
lambda[cases], theta[cases], alpha[classes],
mu, tau,
y11, y112, y70, y20, y89;

data in “Poisson.dat”;
inits in “Poisson.in”;

f
for (i in 1:cases) f

loss[i]»dpois(lambda[i]);
lambda[i]<-theta[class[i]]*payroll[i];
g

for (j in 1:classes) f
log(theta[j])<-alpha[j];
alpha[j]»dnorm(mu, tau);
g

mu»dnorm(0, 0.001);
tau»dgamma(0.001, 0.001);
y11<-229.83*theta[11];
y112<-18809.67*theta[112];
y70<-54.81*theta[70];
y20<-1315.37*theta[20];
y89<-79.63*theta[89];
g


