

ERM Symposium April 2009

B5-Call for Papers: Advanced Risk Modeling Concepts

John Manistre Spencer Gluck and Gary Venter Klaus Böcker

Moderator Dan Oprescu

Local knowledge. Global power.

A Risk Managment Tool for Long Liabilities: the Static Control Model

May 1, 2009

B John Manistre Group Risk

LIFE INSURANCE PENSIONS INVESTMENTS

Agenda

- Introduction
 - Hedgeable vs Non Hedgeable Risk
 - Examples of Long Liabilities
- Critique of Yield Curve Extension Approach
 - Monopole model use a fixed long forward rate
 - Dipole model extend yield curve using last fwd rate
 - Formal "Vasicek" Extension model
- Static Replication Approach
 - Simple Total Return model & Marginal Cost Yield Curve
 - Static Control Model
 - Formal theoretical properties (3 good, 2 not so good)
 - Technical Caveats
- A Risk Management Example two approaches produce similar results in practice

Introduction & Examples

o Canada

- Term to 100 life insurance has been important since 1980
- No cash value, low lapse rates => long liability

O USA

- Long Term Care health Ins. Low lapse rates => long liability
- Pension Plans

o Taiwan

- Local debt market limited relative to North America
- Even "normal" insurance products long relative to available fixed income assets

Problem Definition: Must be able to do three things

- Put a value on a long risk (extend the yield curve)
- Decompose risk into hedgeable and non-hedgeable parts
- Deal appropriately with non-hedgeable risk (economic capital and margins)

Local knowledge. Global power.

Simple Model #1

- o Simplifying Assumption: All forward rates after 30 years are constant at f=5.27% .
- o Value in terms of known zero coupon bonds $Z_1,...,Z_{30}$

$$V(Z_1,...,Z_{30}) = \sum_{j=1}^{30} a_j Z_j + Z_{30} \sum_{j=31}^{60} a_j (1+f)^{-(j-30)}$$

o Do we have a Static Hedge Portfolio? Yes - the monopole

$$b_k = \frac{\partial V}{\partial Z_k} \Rightarrow b_{30} = a_{30} + \sum_{j=31}^{60} a_j (1+f)^{-(j-30)}$$

o Is Static Hedge self financing as time moves forward? No

Local knowledge. Global power.

Simple Model #1 Roll Forward

o Assume yield curve evolves from $Z_1,...,Z_{30}$ to $Z'_1,...,Z'_{30}$ over one year

Table 1

$K = \sum_{j=30}^{60} a_j (1+f)^{-(j-30)}$	Assets	Liabilities	Difference
t=0	KZ_{30}	KZ_{30}	0
t=1	$KZ'_{29} = (1 + f'_{30})KZ'_{30}$	$(1+f)KZ_{30}'$	$(f_{30}' - f)KZ_{30}'$

- o Conclusion: Take gains when $f_{30} > f$ and losses when $f_{30} < f$
- This is the unhedged risk for this approach
- o Suggests a model where forward rate grades from f_{30} to f over some reasonable time frame (see Model #3)

Local knowledge. Global power.

_

Simple Model #2

- o Simplifying Assumption: All forward rates after 30 years are constant at f_{30} .
- o Value in terms of known zero coupon bonds $Z_1,...,Z_{30}$

$$V(Z_1,...,Z_{30}) = \sum_{j=1}^{30} a_j Z_j + Z_{30} \sum_{j=31}^{60} a_j (\frac{Z_{29}}{Z_{30}})^{-(j-30)}$$

o Do we have a Static Hedge Portfolio? Yes - the dipole

$$b_k = \frac{\partial V}{\partial Z_k} \Rightarrow \begin{cases} b_{30} = a_{30} + \sum_{j=31}^{60} a_j (\frac{Z_{29}}{Z_{30}})^{-(j-30)} + \frac{1}{Z_{30}} \sum_{j=31}^{60} a_j (j-30) (\frac{Z_{29}}{Z_{30}})^{-(j-30)} \\ b_{29} = a_{29} - \frac{1}{Z_{29}} \sum_{j=31}^{60} a_j (j-30) (\frac{Z_{29}}{Z_{30}})^{-(j-30)} \end{cases}$$

o Is Static Hedge self financing as time moves forward? Still no.

Simple Model #2 Roll Forward

Table 2										
$b_{30} = \frac{DK}{Z_{30}},$ $b_{29} = -\frac{DK}{Z_{29}}$	Assets	Liabilities $K = \sum_{j=30}^{60} a_j (\frac{Z_{29}}{Z_{30}})^{-(j-30)}$	Difference							
t=0	$KZ_{30} + \{b_{30}Z_{30} + b_{29}Z_{29}\}$	$V = KZ_{30}$	0							
t=1	$(1 + f'_{30})(K + b_{30})Z'_{30}$ $(1 + f'_{29})b_{29}Z'_{29}$ $+ b_{30}dZ_{30} + b_{29}dZ_{29}$	$(1+f'_{30})KZ'_{30} +b_{30}dZ_{30}+b_{20}dZ_{29} +\frac{1}{2}(C+D)Vdf_{30}^{2} +$	$(f'_{30} - f'_{29})DKZ'_{30} - \frac{1}{2}(C+D)KZ'_{30}df^{2}_{30} + \dots$							

- o Still have a theoretical bias method not acceptable
- o Is the dipole strategy realistic?

Formal Solution – the "Vasicek" extension

- Want a method that eliminates bias in Model #1
 - Result is a mixture of issues in Models #1 and #2
- Assume we can hedge the monopole risk
- Assume we go naked on the "dipole" risk and hold economic capital for that
- Two risk variable model
 - Z = n year 0 coupon bond, f = n year forward
- o Extrapolate yield curve given f and discount remaining cash flows to time n. V(t,Z,f) = Z K(t,f)
- o Invest V(t,Z,f) in n year zero coupon bond
- Engineer K(t,f) so that roll forward bias is equal to cost of capital

Local knowledge. Global power.

1

Formal Solution – the "Vasicek" extension

- Make enough simplifying assumptions to allow closed form solution
- Mean reverting forward rate $df = \alpha (\bar{f} f) dt + \sigma dw$
- Constant volatility long bond

$$dZ = -nZ[\mu dt + sdw'], dwdw' = \rho dt$$

- Asset increment dA = fKZdt + KdZ
- o Liability Increment dV = KdZ + ZdK + dKdZ
- o Incremental Gain ("Z" risk hedged, "f" risk is not)

$$dA - dV = fKZdt + KdZ - \{KdZ + ZdK + dKdZ\}$$
$$= fKZdt - \{ZdK + dKdZ\}$$

Formal Solution - the "Vasicek" extension

- o Formal unhedged loss is $-\frac{\partial K}{\partial f}Z\sigma dw$
- O Suggests economic capital should be $EC = DZ[K(t, f \lambda \sigma) K(t, f)] \approx DZ[-\lambda \sigma \frac{\partial K}{\partial f} + \frac{1}{2}\lambda^2 \sigma^2 \frac{\partial^2 K}{\partial f^2}]$
- o Formal valuation equation to get desired bias

$$\frac{\partial K}{\partial t} + \alpha (\bar{f} - \sigma \frac{ns\rho + \pi \lambda}{\alpha} - f) \frac{\partial K}{\partial f} + \frac{(1 + \pi \lambda^2)\sigma^2}{2} \frac{\partial^2 K}{\partial f^2} = fK$$

Formal solution per Vasicek for extrapolated fwd rates

$$\delta_f(s-n) = fe^{-\alpha(s-n)} + (\bar{f} - \sigma \frac{ns\rho + \pi\lambda}{\alpha})(1 - e^{-\alpha(s-n)})$$
$$-\frac{(1 + \pi\lambda^2)\sigma^2}{\alpha^2}(1 - e^{-\alpha(s-n)})^2$$

Local knowledge. Global power.

13

Formal Solution - the "Vasicek" extension

o Summary: If our model is correct then

$$dA - dV = \pi E C dt + Z \frac{\partial K}{\partial f} \sigma dw, \quad EC = -\lambda \sigma Z \frac{\partial K}{\partial f} + Z \frac{\lambda^2 \sigma^2}{2} \frac{\partial^2 K}{\partial f^2}$$

Extrapolated forward rates

$$\delta_f(s-n) = fe^{-\alpha(s-n)} + (\bar{f} - \sigma \frac{ns\rho + \pi\lambda}{\alpha})(1 - e^{-\alpha(s-n)})$$

o Limiting fwd rate $-\frac{(1+\pi\lambda^2)\sigma^2}{2\alpha^2}(1-e^{-\alpha(s-n)})^2$

$$f_{\infty} = \left[(\bar{f} - \sigma \frac{ns\rho}{\alpha}) - \frac{\sigma^2}{2\alpha^2} \right] - \frac{\pi\sigma\lambda}{\alpha} (1 + \frac{\sigma\lambda}{2\alpha})$$

$$= \left[.0515 - .01 \frac{30(.01)(.75)}{.2} - \frac{(.01)^2}{2(.2)^2} \right] - \frac{.04(.01)2.8}{.2} (1 + \frac{(.01)2.8}{2(.2)})$$

$$= .0515 - .0113 - .0013 - .0060 = .0330$$

ocal knowledge Global power

Simple Model #3 – Pure Total Return

- o Imagine we have only one asset class
 - Total Return Vehicle with known statistics for all years
 - e.g. Log Normal Equity Return factors $A(z) = exp(\mu + \sigma z)$
 - Expected Return $E[A(z)] = exp(\mu + \frac{1}{2}\sigma^2) = 1.08$
 - Volatility $\sigma = 16\%$
 - Expected Discount $E[1/A(z)] = exp(-\mu + \frac{1}{2}\sigma^2) = \frac{1}{(1.0527)}$
 - Generate 5000 random return scenarios and look at distribution of PV of cash flow
- PV means amount of initial asset required to mature obligation assuming Total Return Vehicle is the sole asset class.

Local knowledge. Global power.

Simple Model #3 – Marginal Cost Yield Curve

- Use a coherent risk measure (e.g. CTE(x%)) to assign a value to cash flow
- O Define a function $L(a) = L(a_1, a_2,...) = CTE PV(a_1, a_2,...)$
- What if we shock the cash flows $a \rightarrow a + \Delta a$?
- If the shock is small enough it will not change the ordering of the scenario results
- o Conclusion1: The partial derivatives $\partial L/\partial a_i$ are discount factors!
- o $\partial L/\partial a_i$ is the average PV at duration i over the set of scenarios included in the CTE calculation
- o Conclusion 2: $L = \sum_{i} a_{i} \partial L / \partial a_{i}$ $\Delta L \approx \sum_{i} \Delta a_{i} \partial L / \partial a_{i}$
- Leads to concept of the Marginal Cost Yield Curve (MCYC)
- Impact of adding a new (small) block of business to the portfolio is the same as valuing the new block on the MCYC

Local knowledge. Global power.

Simple Model #3 – Total Return Hurdle

Table 3: Long Liability using Sept. 2008 \$US Swap Curve

Quarterly		Amounts in \$millions							01/19/09				
Time Step					Total	EC							
		Static		Total	Return		Total	Level	VaR	Std Err			
Strategy	CTE	Hedge	Duration	Return	Hurdle		Liability	Val'n %	Level				
No Bonds	0%	-		1,522	5.23%		1,522	5.30%	64%	28			
	20%	-		1,911	5.21%		1,911	4.66%	72%	34			
	40%	-		2,394	5.06%		2,394	4.01%	80%	43			
	60%	-		3,092	4.77%		3,092	3.25%	87%	60			
	80%	-		4,366	4.33%		4,366	2.21%	94%	102			
	90%	-		5,829	3.89%		5,829	1.33%	97%	173			

- O Question: If we use one of these valuation models, what rate would our equities have to earn over a (short) time frame in order to avoid recognizing a loss over that time frame?
- o Answer: Total Return Hurdle
- o How do we choose the CTE level?
- One Answer: Choose the level that gives us a reasonable total return target e.g. 4.00% => between CTE(80%) & CTE(90%)

Local knowledge. Global power.

19

Model #3 – Simple Bond Strategy

- Comparing the MCYC to the swap curve we draw a few conclusions
- Where liability cash flows are positive then, on the margin, we are better off backing them with bonds rather than equity
- Try a strategy of buying bonds to match first 30 years of liability cash flow
- o Calculate the PV of the net cash flow a(t)-b(t) over each scenario using the simulated returns
- Assign a value W to the liability as

$$W(a,b,Z) = \sum_{t} b(t)Z(t) + L(a-b)$$

Quarterly Time Step			Amounts in \$	millions	Total	EC		(1/22/09	
rinic otep		Static		Total	Return		Total	Level	VaR	Std Err
Strategy	CTE	Hedge	Duration	Return	Hurdle		Liability	Val'n %	Level	
No Bonds	0%	-		1,522	5.23%		1,522	5.30%	64%	28
	20%	-		1,911	5.21%		1,911	4.66%	72%	34
	40%	-		2,394	5.06%		2,394	4.01%	80%	43
	60%	-		3,092	4.77%		3,092	3.25%	87%	60
	80%	-		4,366	4.33%		4,366	2.21%	94%	102
	90%	-		5,829	3.89%		5,829	1.33%	97%	173
mple Bonds	0%	981	37.6	696	5.21%		1,677	5.03%	67%	12
(match first	20%	981	37.6	836	5.08%		1,817	4.81%	74%	15
30 years)	40%	981	37.6	1,020	4.90%		2,001	4.53%	81%	19
	60%	981	37.6	1,298	4.60%		2,279	4.15%	87%	27
	80%	981	37.6	1,833	4.12%		2,814	3.53%	94%	47
	90%	981	37.6	2,469	4.41%		3,450	2.92%	97%	83
Monopole Vasicek	N/A	1,873	34.0	-	N/A	74	1,873	4.80%		
Dipole Vasicek	N/A	1,847	37.5	-	N/A	0	1,847	4.78%		
o A bio	improv	vemer	nt over	no bor	nds					
_	•									
	a long v	•		answe	rs give	en by	y yield	curve		
exter	nsion m	nodels								

Quarterly			Amounts in \$	millions				C	1/22/09	
Time Step					Total	EC				
		Static		Total	Return		Total	Level	VaR	Std Err
Strategy	CTE	Hedge	Duration	Return	Hurdle		Liability	Val'n %	Level	
No Bonds	0%	-		1,522	5.23%		1,522	5.30%	64%	28
	20%	-		1,911	5.21%		1,911	4.66%	72%	34
	40%	-		2,394	5.06%		2,394	4.01%	80%	43
	60%	-		3,092	4.77%		3,092	3.25%	87%	60
	80%	-		4,366	4.33%		4,366	2.21%	94%	102
	90%	-		5,829	3.89%		5,829	1.33%	97%	173
Simple Bonds	0%	981	37.6	696	5.21%		1,677	5.03%	67%	12
(match first	20%	981	37.6	836	5.08%		1,817	4.81%	74%	15
30 years)	40%	981	37.6	1,020	4.90%		2,001	4.53%	81%	19
	60%	981	37.6	1,298	4.60%		2,279	4.15%	87%	27
	80%	981	37.6	1,833	4.12%		2,814	3.53%	94%	47
	90%	981	37.6	2,469	4.41%		3,450	2.92%	97%	83
Monopole Vasicek	N/A	1,873	34.0	-	N/A	74	1,873	4.80%		
Dipole Vasicek	N/A	1,847	37.5	-	N/A	0	1,847	4.78%		
Static Control	20%	1,016	40.7	792	4.78%		1,807	4.82%	75%	13
	40%	1,509	35.3	389	2.35%		1,898	4.68%	82%	10
	60%	1,683	34.5	321	-2.17%		2,004	4.53%	88%	10
	80%	1,883	34.1	276	-10.90%		2,159	4.31%	94%	12
	90%	2,108	32.5	193	-27.62%		2,301	4.13%	97%	16
Equity Model: Log Norm	nal 15.99%		Yield Curve:	\$US Swaps	at Sept. 30, 2	2008				
Volatility	5.27%									
Long Fwd Rate	5.27%									

Static Control Model - 3 Theoretical Results

 Market Consistency – first order optimality condition is equivalent to statement of market consistency

$$W(a,b,Z) = b \cdot Z + L(a-b), \quad \frac{\partial W}{\partial b} = 0 \Rightarrow Z = \frac{\partial L}{\partial a}\Big|_{a-b}$$

- o Static Hedge the optimal bond position b^* is the static hedge $V(a,Z) = W(a,b^*,Z) \Rightarrow \frac{\partial V}{\partial Z} = b^*$
- Convexity Margin because we are optimizing over static investment strategies (not dynamic) there is an element of conservatism. The static hedge portfolio is always more convex than the liability.

$$\frac{\partial^{2} V}{\partial Z_{i} \partial Z_{j}} = -\left(\frac{\partial^{2} W}{\partial b_{i} \partial b_{j}}\right)^{-1} \iff \text{negative definite}$$

Local knowledge. Global power.

Static Control – Summary so far

Good News

- Method assigns a value very similar to yield curve extension models
- Much more reasonable static hedge strategy due to use of total return asset class (no big monopole or dipole)
- Market Consistent model will properly price all instruments built into the optimization step
- Convexity margin for risks which are not a static linear combination of available instruments

o Bad News:

- Technical Complexity: This approach will require an investment in the proper tools. They do exist today.
- Method is sub-additive when aggregating risks
- Extrapolated Forward Rate curve is NOT continuous, but that is how we avoid the "dipole" problem

Local knowledge. Global power.

29

Static Control – The Unhedged Risk

Consider the following example

Table 4: Yield Curve Shock Analysis

	CTE	Static Hedge	Duration	Total Return	Total Return Hurdle	Total Liability	Level Val'n %	VaR Level	Std Err
Base +50 bp	30%	1,288	37.8	312	1.33%	1,600	5.16%	80%	7
Base	30%	1,383	36.3	471	3.88%	1,854	4.75%	79%	10
Base -50 bp	30%	805	43.4	1,282	4.94%	2,087	4.41%	77%	20
			5	Simple \$ Du	r'n Liab	48,713			
			5	Static Hedge	e \$ Dur'n	50,200			
Yield Curve - 50 I	ор								
	30%	805	43.4	1,282	4.94%	2,087	4.41%	77%	20
	40%	1,477	34.7	697	4.47%	2,174	4.29%	82%	14
	60%	1,864	33.1	446	1.31%	2,310	4.11%	88%	13
	80%	2,168	32.2	334	-7.00%	2,502	3.88%	94%	16

Estimated Economic Capital

128

Local knowledge. Global power.

Static Control – Unhedged Risk

- Can't hedge the risk that we have to change the CTE level to keep the total return target manageable
- o Just like the yield curve extension models
 - We take a gain if the yield curve rises
 - We take a loss if the yield curve drops
- Must hold Economic Capital for this risk
- o As an offset we have the convexity gain

Local knowledge. Global power.

Stochastic Trend Models in Casualty and Life Insurance

Spencer M. Gluck, FCAS, MAAA Gary G. Venter, FCAS, ASA, CERA, MAAA

ERM Symposium May 1, 2009

Introduction

- We focus on trends that are not only stochastic, but dynamic
 - Meaning the parameters may change over time.
 - What are the implications for forecast errors?
- In casualty, we will focus on trends on the diagonal of the triangle, i.e. the calendar year of payment.
- In life, we will focus on mortality trends by calendar year of death.

The Casualty Data

- U.S Industry Workers Compensation payments
- Accident Years (AY) 1979 2007
- Development Years (DY) 0 9
- Net, derived by published data (Schedule P)
 - Adjusted to remove effects of aggregate reinsurance
 - Companies with problematic data excluded

The Life Data

- French Mortality
- Deaths in years 1947 2004
- Age at death from 50 99
- We arrayed it as a casualty-like triangle.

Casualty Model - Background 2 – way multiplicative fixed effects (MFE)

 $oldsymbol{q}_{w, oldsymbol{d}}$ is incremental paid losses

- w for rows (AY)
- d for columns (DY)

$$q_{w,d} = U_w * g_d + e_{w,d}$$

- If q_{w,d} is Poisson (or over-dispersed Poisson), then model is "chain-ladder consistent."
- Possible shortcomings:
 - No calendar year (may not fit real data)
 - May be too many parameters

The Fitted MFE2/ODP

Deviance residuals vs. calendar year of payment:

Chain Ladder – consistent models dramatically overstate the accuracy of the chain-ladder forecast

Using the chain-ladder to predict payments for the next 5 CY's:

- Predicted standard error of 3% versus observed mean square error of 8% – 11%**
- Only 10% of the observed variance is predicted
- 75% of observed errors exceed 2 predicted standard deviations.

** Predicted CV of forecast error (next 5 CY's of payments, no tail) from bootstrapping the MFE2/ODP.

3 – way multiplicative fixed effects (MFE) Calendar year parameters are added

$$q_{w,d} = U_w * g_d * h_{w+d} + e_{w,d}$$

- Now even more parameters
- To reduce parameters:
 - Losses per exposure, so $y_{w,d} = q_{w,d} / E_w$
 - Convert g's and h's to from levels to trends
 - Consider parameters in each direction as parameter types, not necessarily all different.

10

The Stochastic Trend Structure

$$y_{w,d} = \exp\left(\alpha_w + \sum_{i=1}^d \gamma_i + \sum_{j=1}^{w+d} t_j\right) + e_{w,d}$$

- α 's, γ 's and ι 's are the 3 types.
- To make them not all different, we have 2 approaches:
 - Breaks: The same parameter for a number of years.
 Then, at a break point, a new parameter.
 - Filtering: The parameter value changes continuously, but the changes are smooth. The individual values are not independent.

Overview of General Weighted Average (GWA) Filter

- Solution is provided for one parameter "type" a time-ordered series of parameter estimates.
 - Multiple parameter types are solved recursively.
- The true (unknown) parameters are assumed to be the result of a stationary random walk.
 - The single parameter of the random walk, deemed the "adaptive variance" is a user input.
- The parameters are first estimated as separate parameters.
- The smoothed parameter at each point is a GWA of the individual parameters, where:
 - A GWA is an average weighted by a covariance matrix;
 - The covariance matrix reflects the sum of the covariances due to
 (1) parameter estimation error and (2) the random walk process.

16

Model for Mortality

 $m_{w,d}$ is mortality for

- year of birth w,
- year of death d

$$m_{w,d} = \exp(c_d u_w + a_d + b_d h_{w+d}) + e_{w,d}$$

- Note there are 5 parameter types
- This data can handle many more parameters
 - Some parameter reduction still may be desirable

Conclusion:

What are the implications for forecast error?

- Trends that change over time are often evident in historical data.
- Models with static parameters may significantly underestimate time-related forecast error.
- The GWA filter can assist in detecting the true process through the noise of estimation error, while correcting for induced autoregressive effects.
- Estimates of forecast error will be realistic only when they include provisions for systemic time-related risk.
 - Some judgment will be required in selecting the form and parameters of the systemic risk model.