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Antitrust Notice

• The Casualty Actuarial Society is committed to adhering strictly to the
letter and spirit of the antitrust laws. Seminars conducted under the aus-
pices of the CAS are designed solely to provide a forum for the expression
of various points of view on topics described in the programs or agendas
for such meetings.

• Under no circumstances shall CAS seminars be used as a means for
competing companies or firms to reach any understanding expressed or
implied that restricts competition or in any way impairs the ability of
members to exercise independent business judgment regarding matters
affecting competition.

• It is the responsibility of all seminar participants to be aware of antitrust
regulations, to prevent any written or verbal discussions that appear to
violate these laws, and to adhere in every respect to the CAS antitrust
compliance policy.
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What is Burning Cost (for Excess)?

Key Features

• Fairly early on in accident year

• Reserving an excess layer, but have ground up loss values

• Not a lot of excess losses to make excess loss triangle/dont rely on excess
triangle

• Multiply each ground up loss by average LDF (for this AY/RY).

• See which losses pierce excess retention, and by how much, to get “ul-
timate” excess loss
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What is Wrong with Burning Cost?

• Claims do not all develop by the same percentage-some more,
some less

– Logical that claims that eventually become large develop
more than average

– Differences in actual development from claim to claim
more consistent with a probability distribution for devel-
opment

• IBNR not included

– Discussed later
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Conceptual Correction of Burning Cost—Setup

• Have random variables “X” and “Y ” for

– The random amount (severity) of an individual undevel-

oped loss (X)

– The random amount of an individual ultimate loss (Y )

• Add in a random development factor R so that, for actual

claim values x, r, y, we know x× r = y
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Conceptual Correction of Burning Cost—Eliminating Bias

• Require X ×R ∼Y

• This means that X ×R and Y are equal in distribution

• That means that a random sample from X multiplied by a
random sample from R is, a priori, equal to a random sample
from the entire Y distribution

– Thus, the expected value of X × R in any layer is the
expected value of Y in the layer

– X×R generates unbiased estimates of the ultimate losses,
Y ’s, in any layer
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Turnkey Methodology for Estimating the Probability Mass Func-
tion sR(r) of R

All the methods may be implemented using the standard spread-
sheet software on my computer

... performing one method is challenging, though.

Need a lot of methods for different situations—will abbreviate
some items to stay within time limit.

Will just show math—ask questions if need advice on doing com-
putations/spreadsheet implementation.
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Log Transform

• Finding a multiplier R such that X ×R ∼Y is really hard

• Finding an additive distribution is easier, so take logs to get

ln(X) + ln(R) ∼ ln(Y )

• Simplify the symbols with random variables U = ln(X), Z =

ln(R), W = ln(Y ), U + Z ∼W
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Formulas to Convert Initial Severity Distributions to those of Log

Distributions

For example, sU is a probability distribution like sX, and must
total 1.0. Need to use formula (divide by derivative of transform)
for substitution of variables du

dxdx in integral from basic calculus
for densities of U, Z, W .

sU(ln(x))

x
= sX(x) = sX(exp(u)); sX(exp(u)) exp(u) = sU(u); sX(exp(u)) = sU(u) exp(−u);

sZ(ln(r))

r
= sR(r) = sR(exp(z)); sR(exp(z)) exp(z) = sZ(z); sR(exp(z)) = sZ(z) exp(−z); and,

sW(ln(y))

y
= sY (y) = sY (exp(w)); sY (exp(w)) exp(w) = sW(w); sY (exp(w)) = sW(w) exp(−w).
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The Matrix Method
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First Basic Method —The Matrix Method

• For start

– Take sets of points “g” apart, in U, Z, and W.

– Assign approximate probability in each interval to the dis-

crete point representing the interval

∗ [U]i = gsU(ig) = gsX(exp(ig)) exp(ig)’s for i = 0,1,2, ..., l

∗ [Z]j = gsZ(jg) = gsR(exp(jg)) exp(jg)’s for j = 0,1,2, ...,m

∗ [W]k = gsW (kg) = gsY (exp(kg)) exp(kg)’s for k = 0,1,2, ..., n
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Key Start to Matrix Method

• Assumption on last slide that the indices i, j, k start at zero

is not required, and is not always best approach

– But is best for the illustration

• Core of this method=how can the index i of U and the index

j for Z add to zero for index k of W? U and Z must both

be zero

• So, up to effects of using discrete points, [W]0 ≈ [U]0× [Z]0
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Key Start to Matrix Method

• Similarly, for W = 1, one index of U or Z must be one, the

other must be zero [W]1 ≈ [U]0 × [Z]1 + [U]1 × [Z]0

• Continuing the process, we get

[W]k ≈
k∑
i=0

[U]i × [Z]k−i.
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The Matrix Equation

• Result is matrix equation [W] = [U∗]× [Z], where [U∗] is

[U∗] =


U0 0 0 ...
U1 U0 0 ...
U2 U1 U0 ...
... ... ... ...


– (brackets dropped inside the matrix).

• Note that the indices need not start at zero, so [U∗] could

have a different shape, but they must be subject to the same

additive principles
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Solution—Estimate of R

• Matrix equation may be overconstrained (i > j), so have best

estimate [Z] =

(
[U∗]T × [U∗]

)−1

×
(

[U∗]T × [W]

)

• Then, for the rj = exp(jg)’s, sR(rj) = [Z]j/(g × exp(jg))
(point estimate-for curve fit)

• Could use [Z]j’s as weights for development factor rj’s (be
sure development into excess layer is covered)

• All the matrix setup and equation solution may be done using
standard spreadsheet software
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Matrix Method Example
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Step 1–Calculation of [U] from Values of sX

First step... (grid spacing =g=.3) (all input data assumed)

u (or .3i) x = exp(u) sX(x) sU(u) = xsX(x) [U]i = .3sU(u)
0 1.000 .333 .333 .100

.3 1.350 .494 .667 .200

.6 1.822 .549 1.000 .300

.9 2.460 .339 .833 .250
1.2 3.320 .151 .500 .150

Step 2–Calculate the [W] for various indices k from values of sY
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Step 3–Matrix Equation

[U∗]× [Z] = [W], or


.10 0 0 0
.20 .10 0 0
.30 .20 .10 0
.25 .30 .20 .10
.15 .25 .30 .20

× [Z] =


.010
.040
.100
.185
.235
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Step 4–Matrix Algebra Spreadsheet Program Best Estimate So-

lution

Solution fulfills [U∗]T × [U∗]× [Z] = [U∗]T × [W] or


.2250 .1925 .1250 .0550
.1925 .2025 .1550 .0800
.1250 .1550 .1400 .0800
.0550 .0800 .0800 .0500

× [Z] =


.12050
.13825
.11750
.06550
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Step 5–Results of Final Square Matrix Algebra (from Spread-

sheet Program)

[Z] =


.1
.2
.3
.4
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Step 6 –Results of Using Discrete Random Development Factors

Index “j” [Z]j Wtd.
0 1 2 3 Average

[Z]j 0.1 0.2 0.3 0.4
exp(.3j) = r = LDF 1.000 1.350 1.822 2.460
Loss 1 $5,000 $5,000 $5,000 $5,000
Developed $5,000 $6,749 $ 9,111 $12,298
Excess $100,000 $0 $0 $0 $0 $0
Loss 2 $50,000 $50,000 $50,000 $50,000
Developed $50,000 $67,493 $91,106 $122,980
Excess $100,000 $0 $0 $0 $22,980 $9,192
Loss 3 $75,000 $75,000 $75,000 $75,000
Developed $75,000 $101,239 $136,659 $184,470
Excess $100,000 $0 $1,239 $36,659 $84,470 $45,034

Total Est. Excess $54,226
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Step 7 –Results of Using Curve Fit Random Development Fac-

tors (Poor Fit)

Index “j”
0 1 2 3

[Z]j 0.1 0.2 0.3 0.4
exp(.3j) = r 1.000 1.350 1.822 2.460
sR(r) = [Z]j/(.3 exp(.3j)) 0.33333 0.49387 0.54881 0.54209
Uniform distribution of Best Fit:

Avg. Value s = .47953; Inverse=Interval Length = 2.0837 (Use 2.0)
sR-Wtd. Avg. of Points = Center of Interval=1.7378 (Use 1.7)
Selected Uniform Distribution with Mass .5 on [.7,2.7)

Mahler Excess Function =
∫ 2.7
100,000/C .5(rC − 100,000)dr,

for each claim amount C such that 1.7C ≥ 100,000
Loss 1 5,000 Excess = 0
Loss 2 50,000 Excess = 6,125
Loss 3 75,000 Excess = 35,021

Total 41,146
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Matrix Method Enhancements
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Some Possible Basic Improvements in the Matrix Method (More

in Paper)

• “Twice” as many rows (i’s) as columns (j’s)

• Correct mean

• Correct variance

• Correct total probability
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Another Possible Basic Improvement in the Matrix Method

• Instead of starting near zero, focus on the upper end of the

distribution

– Also to target LDFs most likely to generate excess claims

[U∗] =


... ... ... ...
... ... ... ...
... Ul Ul−1 Ul−2
... 0 Ul Ul−1
... 0 0 Ul

 ,

25



Curve Fitting Methods
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Fitting Z via Mean and Variance Matching

• We already know

– Mean of Z is E[Z] = E[W ]− E[U ], W and U are known.

– Variance of Z is V ar[Z] = V ar[W ]− V ar[U ].

• Can use method of moments to fit Pareto, etc. distibution

• Important to choose family of distributions that has approx-

imately right large loss potential.
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Fitting a Distribution for Z by Matrix-Based Parameter Estima-
tion

• Method:

– Pick curve family

– Pick smallish number of points (j’s) on which to compute [Z]j’s using
current selected curve

– Compute [U∗] corresponding to i’s, k’s, U

– Pick initial values determining curve (Step 4)

– Multiply [Z] by determined [U∗] and compare to [W] (sum of squared
errors, etc.)

– Have spreadsheet program change values determining curve and go
to Step 4 until best estimate found
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Example of Matrix-Based Parameter Estimation

This method best illustrated by example...

Optimal Pareto Parameters xM = 2.79 α = 1.64

Pareto Squared
Index [U∗] Values [Z] [U∗]× [Z] [W] Error Weight

0 0.1 0.0 0.0 0.0 0.2618 0.0262 0.010 0.00026 4
1 0.2 0.1 0.0 0.0 0.1411 0.0665 0.040 0.00070 5
2 0.3 0.2 0.1 0.0 0.0855 0.1153 0.100 0.00023 6
3 0.4 0.3 0.2 0.1 0.0562 0.1698 0.185 0.00023 7
4 0.5 0.4 0.3 0.2 0.2243 0.235 0.00003 8

Weighted Sum = .0078
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Matching Pareto Parameters of Y

• Sometimes, very (or mostly) upper layer losses are targeted

• Pareto is oft-used in this layer

• Paper shows (Penderzoli and Rathie, probability of sum of Pareto distri-
butions), that when Y has Pareto character with shape parameter α, so
does R

• May compute Pareto parameter with probabilities/percentiles p1, p2 near
unity and cumulative severity distribution FY of Y

α =
ln
(

1−p1

1−p2

)
ln
(
F −1
Y (p2)
F −1
Y (p1)

).
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Fourier Analysis—A Heavily Mathematical Approach

• Fourier transform (in this case, characteristic function) changes
a random variable X to a separate function ϕT , with a sep-
arate independent variable (ω), i.e. ϕT (ω) = E[exp(iωX)]

• Nice property ϕU(ω)× ϕZ(ω) = ϕW (ω),
or ϕZ(ω) = ϕW (ω)/ϕU(ω) (for all ω)

• Are you prepared to explain that the “i” part gives you an
“imaginary” number

• My spreadsheet software has a discrete Fourier transform,
but it is poorly documented-I referred to this earlier
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Testing the Results

• Helpful to take X and the computed R and run Monte Carlo

simulation of Y

• Put careful attention on the layer you are targeting.

• Especially if the first approach misses Y considerably, con-

sider using more than one method.
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Finding External Data for X and Y and Making the

Most of It.
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Reason for Using External Data

• If develop R off data X and Y that are from the dataset to

be developed , then you’ll always just get Y

• may work if Y is from prior years in fully, fully credible (in-

cluding upper layers) program
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Sources of External Data - Internal to Company

• Distributions from Larger Bodies of Claims

• Have countrywide distribution stand in for state data

• Total (all programs combined) or larger program data for
individual program.

• With adjustment formulas on next page, may reasonably cor-
rect data with different claims claims handling, different close
by maturities, etc.
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Modify Mean and Variance to Match Patterns of Baseline Data

• May have, e.g., TPA-handled program when most data has in-house
handling

– Have adjustment factor LDFalternate
LDFbenchmark

×X for average/mean LDF difference

– For variance, could transform x to

xtransformed = µX +
β

α
(x− µX),

β = S.D. of Benchmark, α = S.D. of specific data.

∗ Makes variance look like variance of benchmark distribution, then
apply R.

∗ Better approach using geometric mean/variance characteristics in
paper.
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Advisory Organization Data

• Can estimate ultimate severity from ILF’s/ELPPF’s

• Use various circulars creatively

• Consider purchasing data.

37



IBNR Claims
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Pure IBNR Claims

• Potential Issues with IBNR Claims

– They don’t get included when you develop individual claims

– They may tend to be larger than the claims reported to

date
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Resolution of IBNR Issue

• IBNR claims may be larger, but the ultimate loss distribution

sY accounts for all claims, so claims developed by the random

development factor R reflect the costs of all claims, even the

IBNR claims not even present in X.

• Do need to multiply each final excess cost computation (not

just some property of Y ) by count development factor.
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Summary

• Wide variety of methods and proposals for source data for

random development factors presented

• Should make the process a reasonable option for most prac-

titioners.
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???
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