#Compare ChainLadder and GAMLSS standard model #Perform the analysis on PPA Data groups2Scan<-unique(privatePassengersAutoRawData$GRCODE) #function that returns BE for ChainLadder and GAMLSS standard model doBEs<-function(group) { #Prepare data dataGr<-subset(privatePassengersAutoRawData, GRCODE==group, select=c("AccidentYear","DevelopmentYear","DevelopmentLag","CumPaidLoss_B")) ##fix negative/equal incremental payments for(i in 2:nrow(dataGr)) { if((dataGr$CumPaidLoss_B[i]<=dataGr$CumPaidLoss_B[i-1])&(dataGr$AccidentYear[i]==dataGr$AccidentYear[i-1])) dataGr$CumPaidLoss_B[i]=dataGr$CumPaidLoss_B[i-1]+1 } #get reserve and ultimate payment ultimatePayments<-with(subset(dataGr, DevelopmentLag==10), sum(CumPaidLoss_B)) lastPayments<-with(subset(dataGr, AccidentYear+DevelopmentLag==1998), sum(CumPaidLoss_B)) reserve<-ultimatePayments-lastPayments #(true reserve) #prepare data ##collect df4Triangles<-subset(dataGr, AccidentYear+DevelopmentLag<=1998) names(df4Triangles)=c("ay","dy","dev","cumpaid") triGr<-as.triangle(df4Triangles,origin="ay",dev="dev",value="cumpaid") #make the triangles require(ChainLadder) incrementalTriangle<-as.data.frame(cum2incr(triGr)) incrementalTriangle$ay<-factor(incrementalTriangle$ay,ordered=TRUE) incrementalTriangle$dev<-factor(incrementalTriangle$dev,ordered=TRUE) triangleDf<-subset(incrementalTriangle, !is.na(value)) predictionDf<-subset(incrementalTriangle, is.na(value)) #take only the unfilled predictionDf<-predictionDf[,c("ay","dev")];rownames(predictionDf)<-NULL #estimate the models ##chain ladder chainladderReserve<-summary(MackChainLadder(triGr, alpha=2))$Totals[4,1] #ALPHA = 2 Murphy BLUE #gamlss gamlssModel<-gamlss(formula=value~ay+dev, sigma.formula = ~ay, data=triangleDf, family="GA", control=con) gamlssReserve<-sum(predict(gamlssModel, newdata=predictionDf,type="response")) out<-data.frame(group=group,real=reserve, CL=chainladderReserve, GAMLSS=gamlssReserve) invisible(out) } #perform the BE for all PAP triangles if(exists("resultsAll")) rm(resultsAll) for(i in groups2Scan) { ciao<-tryCatch(doBEs(i),error = function(e){return( out=data.frame(group=i,real=NA, CL=NA, GAMLSS=NA))}) if(exists("resultsAll")) resultsAll<-rbind(resultsAll,ciao) else resultsAll<-ciao } #check the RMSE resultsAll<-subset(resultsAll, is.finite(real)) cor(resultsAll[,2:4],use="complete") library(caret) with(resultsAll, RMSE(pred=CL, obs=real)) with(resultsAll, RMSE(pred=CL, obs=GAMLSS))