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Overview

 Conditional Aggregate Distribution (CAD) Method

 Convergence Theorem

 Mixed Poisson Distributions
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Conditional Aggregate Distribution (CAD) Method
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Collective Risk Model (CRM)

 Claim sizes are independent and identically distributed X(i)

 Claim counts N are independent from the X(i)

 Total claims Z=X(1) + … + X(N)

 EZ=EX EN
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 EZ EX EN

 VZ=VZ EN+VN (EX)2

Simulating the CRM

 Problem: When EN is large it can take a long time to simulate 
X(1),…,X(N)

 Common Solution: 

 Split claims sizes into large claim and small claims

 Simulate large counts NL and large claims sizes Y(k) with a CRM

Z Y(1) + Y(N
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— ZL=Y(1) + … Y(NL)

 Simulate total small claims in aggregate

 Small and Large might be left independent or correlated with a copula or 
other mechanism

Correlation of Small and Large Losses for CRM
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CRM Large and Small losses can be correlated
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Conditional Aggregate Distribution (CADk) Algorithm

1. Simulate total counts N

2. Simulate large counts NL conditional on N

 NL~Binomial because N and X(k) are independent and the X(k) are iid.

 NS=N-NL

3. Simulate large sizes Y(1)…Y(NL)

F (x)=F (x)/(1 F()) ( is the threshold between large and small losses)
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 FY(x)=FX(x)/(1-F())  ( is the threshold between large and small losses)

 ZL =Y(1)+…+ Y(NL)

4. Simulate aggregate small losses conditional on NS

 Simulate an approximation to ZS|NS by drawing from a distribution that 
matches the first k moments of ZS|NS.

 Call this Z ̃S the CAD distribution

5. Deliver {Z̃S, ZL (Y(1),…, Y(NL)}

CAD Method approximates CRM nicely
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Summary of CAD Features

 Advantages of CADk –

 Fast, easy to program.

 Preserves first k moments and Pearson correlation (k>=2).

 Provides structural method for modeling dependence of small, large losses.

 Also, apparently converges.
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 That is, can observe that CAD provides good fits to ZS.

 Here, we assume severity distribution is fixed with distribution of N 
depending consistently on .

 Fits are good even for “middling” values of 

Convergence Theorem
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Mixed Poisson

 N is a mixed Poisson if N~Poisson(), where is a random parameter.

 Write =G, where EG=1 and VarG=c.

 Eg – Negative Binomial, G~Gamma[1/c,c]

 G is the mixing distribution, c the contagion parameter.

 If Z is a mixed Poisson CRM, then so are ZS, ZL, with same G.
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 (ZS ,ZL)=c/[(ZS)(ZL)],  =c.v.
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“Severity is Irrelevant” 

 Limiting behavior of a mixed Poisson CRM is controlled by the mixing 
distribution:

 Theorem (Mildenhall): If Z is a mixed Poisson CRM then Z/EZ→G as 
→∞.

 This is “weak convergence”, aka “convergence in distribution”  
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Convergence Theorem

 Significance to CAD method:  Suppose we use Gamma as the 
CAD-family ZS̃ approximating ZS. 

 Then Z̃S =Gamma[NSa,]=1,...N_S(Gamma[a,]), a, constants.

 This converges to G by Theorem (after normalizing by the mean, 
of course).

 Generalized Convergence Theorem: N mixed Poisson with
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 Generalized Convergence Theorem: N mixed Poisson with 
mixing dist G, Yn random variables s.t. EYn=nm, and Var(Yn)<=njs2

for 0<=j<2. Then YN_/(m)→G as →∞.

 YN_ is defined by YN_ |(N =n)= Yn. 

 Note: variance won’t converge for j>=2.

“Severity, CAD distribution are irrelevant”

 Example 1 – Yn=X1+…+Xn, Xi iid.  Then EYn=nEX, Var(Yn)=nVarX, and 
YN_ is CRM so get Mildenhall’s theorem.

 Example 2 – For CADk with k>=2, set Yn= Z̃S |NS=n.  Then Yn satisfies 
theorem with j=1, and YN_ = Z̃S, so Z̃S converges to G (as does ZS).

 Example 3 – Set Yn = Z̃S +ZL|(NS=n-B,NL=B), where B~Bin(n,q).  This 
shows that CADk converges in an overall sense for k>=1
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shows that CADk converges in an overall sense for k>=1.

 Even a CAD1 method will converge as long as the variance is under 
control (j<2).

 Convergence in evidence for moderately sized portfolios.
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Convergence Theorem

 Proof of Theorem:

 Can take m=1.  Must show that Lim →∞ Y_N_/(t)=G(t), where  is the 
characteristic function X(t) = EeitX.

 Bounded Convergence Theorem allows switching Lim and E·.

 Poisson characteristic function: e(e^it-2).
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 Expand  in Taylor series. 

 Fact (Durret): X(t)=1+itEX+E[X2]O(t2).

Convergence Theorem

 Last Line of Proof: 

LimY_N_/(t)=E[LimE[Y_n(t/G,NG=n]]

=LimE[ei(t/nG,NG=n]=LimE[eG(e^it-1)]

=LimE[eG(it/+O((t/)^2)]=LimE[eGit]=G(t).

 1st “=” is BCT, 2nd “=” is from earlier steps eliminating other terms with
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 1  is BCT, 2  is from earlier steps eliminating other terms with 
Durrett fact and j<2; 3rd is Poisson char. fcn.; 4th is Durrett fact applied 
to X=1.

Mixed Poisson
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More Mixed Poisson

 So, choice of mixing distribution G is important - Controls 
characteristics of Z (Z̃), ZS (Z̃S), and even ZL, to a lesser extent.

 Choices other than Gamma are allowable.

 Choice of G might reflect an assumption about skewness.

 Note, choosing Gamma is such an assumption (“skew-nu” ratio = 2).
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 Paper gives parameterizations for many possibilities:

 Usual suspects – Gamma, Lognormal (Uniform, Inverse Gaussian).

 High-Skew – Pareto, (shifted) Exponential.

 Discrete – Discrete Uniform, Poisson, Binomial

 Component and shifted versions

 Adding shift drives up skewness and effective minimum value.

CAD with Limited Information

 Generally, do not need full severity distribution to run CAD.

 Start with: EZ (EZS), (Z) ((ZS)), NL), severity distribution for ZL.

 Consistent choice of ,c is then enough to run a CAD2 model.

 That is, can derive formulas for E[ZS|NS], (ZS|NS) that do not involve 
small loss severity.
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 Consistent means you do not obtain a result like EXS>EXL.

CAD with Limited Information

 Derivation of Equations

 E[ZS|NS]=NSEXS=NSEZS/NS)=NS(EZ-EZL)/((1-q))  [q=(NL)/]

 (ZS|NS)=(XS)/sqrt(NS)=sqrt([(NS)(2(ZS)-c)-1]/NS)=…

© 2011 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.towerswatson.com
Presentation2

21

=sqrt([(1-q)[(EZ)2((Z)2-c)-(EZL)2((ZL)2-c)]-(EZ-EZL)2]/(NS(EZ-EZL)2)
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Reinsurance Example

 Loss Assumptions: 

 Large loss threshold  = $200k, max. loss = $1m, 

 EZ=$25m, (Z)=0.28, (NL)=21.5

 Empirical distribution for XL, =500, c=0.0625.

 Coverage on ZXoL=ZL- NL,, ZNet=ZS+ NL
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 Coverage

 Section 1 – Stop-Loss $25m xs $20m on ZNet+50%ZXoL.

 Section 2 – Coverage on remaining 50% of ZXoL.

 ZXoL limited to $12.5m per section.

 Premium = $10m of which $1.5m is R\I margin.

 Remainder to EA, PC = 100% of residual EA.

Reinsurance Example

 Used Igloo software to analyze cover with nine different assumptions 
for the mixing distribution G.

 Analysis based on full contract cash flows – premium at time 0, mid-tail 
type payout patterns, discount rate = 3%.

 Rich set of outputs – Summary and percentile statistics, for NPV(Loss), 
NPV(PC) NPV(Income) Prob(Negative NPV) ERD TVaR capital
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NPV(PC), NPV(Income), Prob(Negative NPV), ERD, TVaR capital, 
RoRAC return metric.

 Also, many charts.

 Conclusion:  Though results do not vary greatly, could be enough to 
produce different accept/reject decisions.  Uniform mixing distribution is 
somewhat of an outlier.

Multiple Lines of Business

 Mixed Poisson used for “common shock” correlation model.

 Here, mixing distributions are of the form Gi=G1[c1]G2,i[c2,i], where G1 is 
the common component and the G2,i are the line-specific components.

 Independent (“straight”) product with ci=c1+c2,i+c1c2,i.

 Can also use “twisted product”: Gi=G1[c1]G2,i[c2,i/G1] (Eg: ISO Risk 
L d N i Bi i l i h i k d l)
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Load Negative Binomial with parameter risk model).

 For twisted product ci=c1+c2,i.

 Each formulation results in correlations ij=c1/(ij).

 Multiline CAD with twisted product common shock – Can also impose 
correlation at CAD step.


