

Casualty Actuarial Society Frees

Introduction

Actuarial Applications of a Hierarchical Insurance Claims Model

Edward W. (Jed) Frees

University of Wisconsin - Madison and Insurance Services Office

joint work with

Peng Shi - Northern Illinois University
Emiliano Valdez - University of Connecticut

This paper appeared in Astin Bulletin 39 (1), 165-197.

Nov 8, 2010

Outline

Casualty Actuarial Society Frees

Introduction

- Micro-Level Data
- Model Estimation
- Macro-Effects Inference
 - Individual Risk Rating
 - Predictive Distributions for Portfolios
 - Predictive Distributions for Reinsurance
- Concluding Remarks
- 6 Appendix A Parameter Estimates
- Appendix B Singapore

Basic Data Set-Up

Casualty Actuarial Society Frees

Micro-Level

Model Estimation

Macro-Effects Inference Individual Risk Rating Predictive

Predictive
Distributions for
Portfolios
Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore • "Policyholder" i is followed over time t = 1, ..., 9 years

- Unit of analysis "it"
- Have available: exposure e_{it} and covariates (explanatory variables) \mathbf{x}_{it}
 - Covariates often include age, gender, vehicle type, driving history and so forth
- Goal: Understand how time t and covariates impact claims yit.
- Statistical Methods Viewpoint
 - Basic regression set-up almost every analyst is familiar with.
 - It is part of the basic actuarial education curriculum
 - Incorporating cross-sectional and time patterns is the subject of longitudinal data analysis - a widely available statistical methodology

Casualty Actuarial Society Frees See, for example, my 2004 book.

Micro-Level Data

Model Estimation

Macro-Effects Inference

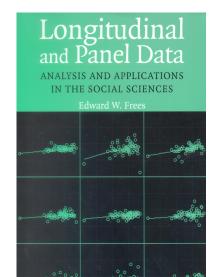
Individual Risk Rating

Predictive Distributions for

Portfolios
Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates



More Complex Data Set-Up

Casualty Actuarial Society

Frees

Micro-Level Data Model

Estimation

Macro-Effects

Inference Individual Risk Rating Predictive

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

- Variations motivated by insurance company records
- For each it, could have multiple claims, j = 0, 1, ..., 5
- For each claim (y_{itj}) , consider different types the financial impact.
 - $y_{itj,1}$ claim for injury to a party other than the insured "injury";
 - $y_{itj,2}$ claim for damages to the insured, including injury, property damage, fire and theft "own damage"; and
 - y_{itj,3} claim for property damage to a party other than the insured - "third party property".
- Distribution for each claim is typically medium to long-tail
- The full multivariate claim may not be observed. For example:

 Distribution of Claims by Claim Type Observed.

Claim Combination	(y_1)	(y_2)	(y_3)	(y_1, y_2)	(y_1, y_3)	(y_2, y_3)	(y_1, y_2, y_3)	
Percentage	0.4	73.2	12.3	0.3	0.1	13.5	0.2	

Hierarchical insurance claims model

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating Predictive

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B - Singapore

• Traditional to predict/estimate insurance claims distributions:

Cost of Claims = Frequency \times Severity

Joint density of the aggregate loss can be decomposed as:

$$f(N, \mathbf{M}, \mathbf{y}) = f(N) \times f(\mathbf{M}|N) \times f(\mathbf{y}|N, \mathbf{M})$$

joint = frequency × conditional claim-type
× conditional severity

- This natural decomposition allows us to investigate/model each component separately.
- Frees and Valdez (2008), Hierarchical Insurance Claims Modeling, Journal of the American Statistical Association.

Model features

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore Allows for risk rating factors to be used as explanatory variables that predict both the frequency and the multivariate severity components.

- Helps capture the long-tail nature of the claims distribution through the GB2 distribution model.
- Provides for a "two-part" distribution of losses when a claim occurs, not necessary that all possible types of losses are realized.
- Allows us to capture possible dependencies of claims among the various types through a t-copula specification.

Literature on claims frequency/severity

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects

Individual Risk Rating Predictive Distributions for Portfolios

Portfolios
Predictive
Distributions for
Reinsurance
Concluding

Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore There is large literature on modeling claims frequency and severity

- Klugman, Panjer and Willmot (2004) basics without covariates
- Kahane and Levy (JRI, 1975) first to model joint frequency/severity with covariates.
- Coutts (1984) postulates that the frequency component is more important to get right.
 - Many recent papers on frequency, e.g., Boucher and Denuit (2006)
- Applications to motor insurance:
 - Brockman and Wright (1992) good early overview.
 - Renshaw (1994) uses GLM for both frequency and severity with policyholder data.
 - Pinquet (1997, 1998) uses the longitudinal nature of the data, examining policyholders over time.
 - considered 2 lines of business: claims at fault and not at fault; allowed correlation using a bivariate Poisson for frequency; severity models used were lognormal and gamma.
 - Most other papers use grouped data, unlike our work.

Data

Casualty Actuarial Society Frees

Micro-Level Data

Estimation

Macro-Effects
Inference
Individual Risk
Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B - Singapore

 Model is calibrated with detailed, micro-level automobile insurance records over eight years [1993 to 2000] of a randomly selected Singapore insurer.

- Year 2001 data use for out-of-sample prediction
- Information was extracted from the policy and claims files.
- Unit of analysis a registered vehicle insured i over time t (year).
- The observable data consist of
 - number of claims within a year: N_{it} , for $t = 1, ..., T_i, i = 1, ..., n$
 - type of claim: M_{itj} for claim $j = 1, ..., N_{it}$
 - the loss amount: y_{itjk} for type k = 1, 2, 3.
 - exposure: e_{it}
 - \bullet vehicle characteristics: described by the vector \mathbf{x}_{it}
- The data available therefore consist of

$$\left\{e_{it},\mathbf{x}_{it},N_{it},M_{itj},y_{itjk}\right\}$$
.

Covariates

Casualty Actuarial Society Frees

Micro-Level Data

Estimation

Macro-Effects

Individual Risk Rating Predictive Distributions for Portfolios

Portfolios
Predictive
Distributions for
Reinsurance
Concluding

Remarks
Appendix A -

Appendix A Parameter Estimates

Appendix B -Singapore Year: the calendar year - 1993-2000; treated as continuous variable.

Vehicle Type: automotive (A) or others (O).

• Vehicle Age: in years, grouped into 6 categories -

• 0, 1-2, 3-5, 6-10, 11-15, <=16.

Vehicle Capacity: in cubic capacity.

• Gender: male (M) or female (F).

Age: in years, grouped into 7 categories -

• ages >=21, 22-25, 26-35, 36-45, 46-55, 56-65, <=66.

 The NCD applicable for the calendar year - 0%, 10%, 20%, 30%, 40%, and 50%.

Models of each component

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk

Rating
Predictive
Distributions for
Portfolios
Predictive
Distributions for

Reinsurance Concluding Remarks

Appendix A -Parameter Estimates

- The most complex was the random effects negative binomial count model.
- For our data, a negative binomial model using vehicle type, age, capacity and driver gender age and NCD was most appropriate.
- For the claims type (M_{itj}) , we used a multinomial logit with covariates year, vehicle year and type.

Severity

Casualty Actuarial Society

Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore We are particularly interested in accommodating the long-tail nature of claims.

 We use the generalized beta of the second kind (GB2) for each claim type with density

$$f(y) = \frac{\exp(\alpha_1 z)}{y |\sigma| B(\alpha_1, \alpha_2) [1 + \exp(z)]^{\alpha_1 + \alpha_2}},$$

where $z = (\ln y - \mu)/\sigma$.

- μ is a location parameter, σ is a scale parameter and α_1 and α_2 are shape parameters.
- With four parameters, the distribution has great flexibility for fitting heavy tailed data.
- Introduced by McDonald (1984), used in insurance loss modeling by Cummins et al. (1990).
- Many distributions useful for fitting long-tailed distributions can be written as special or limiting cases of the GB2 distribution; see, for example, McDonald and Xu (1995).

GB2 Distribution

(parameters approach zero or infinity)

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk

Rating Predictive Distributions for

Postributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

"Transformed Beta" Family of Distributions Two parameters Mean and higher Mode > 0 moments always Lognormal exist Gamma Inverse gamma Three parameters Inverse Transformed transformed gamma gamma Four parameters Transformed beta Weibull Inverse Weibull Inverse Burr Pareto Inverse Pareto Loglogistic Mode = 0 Mean and higher moments never exist Special case Limiting case -----b

Fig. 4.7 Distributional relationships and characteristics.

Heavy-Tailed Regression Models

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks Appendix A -

Appendix A -Parameter Estimates

Appendix B -Singapore Loss Modeling - Actuaries have a wealth of knowledge on fitting claims distributions. (Klugman, Panjer and Willmot, 2004, Kleiber and Kotz, 2003) (Wiley)

- Data are often "heavy-tailed" (long-tailed, fat-tailed)
- Extreme values are likely to occur
- Extreme values are the most interesting do not wish to downplay their importance via transformation
- Studies of financial asset returns is another good example Rachev et al. (2005) "Fat-Tailed and Skewed Asset Return Distributions" (Wiley)
- Healthcare expenditures Typically skewed and fat-tailed due to a few yet high-cost patients (Manning et al., 2005, J. of Health Economics)

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects

Individual Risk

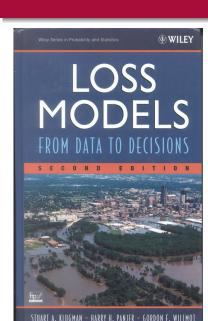
Rating Predictive

Distributions for Portfolios Predictive Distributions for

Reinsurance Concluding Remarks

Appendix A -Parameter Estimates

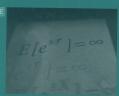
Appendix B -Singapore



Fat-Tailed and Skewed Asset Return Distributions

Implications for Risk Management, Portfolio Selection, and Option Pricing

WILEY FINANCE



Svetlozar T. Rachev, Christian Menn, Frank J. Fahozzi

GB2 regression

Casualty Actuarial Society Frees

Micro-Level Data

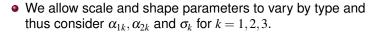
Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates



- Despite its prominence, there are relatively few applications that use the GB2 in a regression context:
 - McDonald and Butler (1990) used the GB2 with regression covariates to examine the duration of welfare spells.
 - Beirlant et al. (1998) demonstrated the usefulness of the Burr XII distribution, a special case of the GB2 with $\alpha_1=1$, in regression applications.
 - Sun et al. (2008) used the GB2 in a longitudinal data context to forecast nursing home utilization.
- We parameterize the location parameter as $\mu_{ik} = \mathbf{x}'_{ik} \beta_k$:
 - Thus, $\beta_{k,j} = \partial \ln \mathbb{E}(Y|\mathbf{x})/\partial x_j$
 - Interpret the regression coefficients as proportional changes.

Dependencies among claim types

Casualty Actuarial Society Frees

Micro-Level

Model Estimation

Macro-Effects Inference Individual Risk Rating Predictive

Predictive
Distributions for
Portfolios
Predictive
Distributions for
Reinsurance
Concluding

Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore • We use a parametric copula (in particular, the *t* copula).

• Suppressing the $\{i\}$ subscript, we can express the joint distribution of claims (y_1, y_2, y_3) as

$$F(y_1, y_2, y_3) = H(F_1(y_1), F_2(y_2), F_3(y_3)).$$

- Here, the marginal distribution of y_k is given by $F_k(\cdot)$ and $H(\cdot)$ is the copula.
- Modeling the joint distribution of the simultaneous occurrence of the claim types, when an accident occurs, provides the unique feature of our work.
- Some references are: Frees and Valdez (1998), Nelsen (1999).

Macro-Effects Inference

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects

Inference Individual Bisk

Rating Predictive

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore Analyze the risk profile of either a single individual policy, or a portfolio of these policies.

- Three different types of applications:
 - Predictive mean of losses for individual risk rating
 - allows the actuary to differentiate premium rates based on policyholder characteristics.
 - quantifies the non-linear effects of coverage modifications like deductibles, policy limits, and coinsurance.
 - possible "unbundling" of contracts.
 - Predictive distribution of portfolio of policies
 - assists insurers in determining appropriate economic capital.
 - measures used are standard: value-at-risk (VaR) and conditional tail expectation (CTE).
 - Examine effects on several reinsurance treaties
 - quota share versus excess-of-loss arrangements.
 - analysis of retention limits at both the policy and portfolio level.

Individual Risk Rating

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects

Inference Individual Risk

Rating

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

- The estimated model allowed us to calculate predictive means for several alternative policy designs.
 - based on the 2001 portfolio of the insurer of n = 13,739 policies.
- For alternative designs, we considered four random variables:
 - individuals losses, y_{ijk}
 - the sum of losses from a type, $S_{i,k} = y_{i,1,k} + ... + y_{i,N_i,k}$
 - the sum of losses from a specific event, $S_{EVENT,i,j} = y_{i,j,1} + y_{i,j,2} + y_{i,j,3}$, and
 - an overall loss per policy, $S_i = S_{i,1} + S_{i,2} + S_{i,3} = S_{EVENT,i,1} + ... + S_{EVENT,i,N_i}$.
- These are ways of "unbundling" the comprehensive coverage, similar to decomposing a financial contract into primitive components for risk analysis.

Modifications of standard coverage

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects

Inference Individual Risk

Individual Risl Rating

Predictive
Distributions for
Portfolios
Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

- We also analyze modifications of standard coverage
 - deductibles d
 - coverage limits u
 - ullet coinsurance percentages lpha
- These modifications alter the claims function

$$g(y; \alpha, d, u) = \begin{cases} 0 & y < d \\ \alpha(y - d) & d \le y < u \\ \alpha(u - d) & y \ge u \end{cases}.$$

Calculating the predictive means

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating Predictive

Dietributions for **Portfolios** Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

• Define $\mu_{ik} = E(y_{iik}|N_i, K_i = k)$ from the conditional severity model with an analytic expression

$$\mu_{ik} = \exp(\mathbf{x}_{ik}^{'}\boldsymbol{\beta}_{k}) \frac{\mathbf{B}(\alpha_{1k} + \sigma_{k}, \alpha_{2k} - \sigma_{k})}{\mathbf{B}(\alpha_{1k}, \alpha_{1k})}.$$

Basic probability calculations show that:

$$E(y_{ijk}) = \Pr(N_i = 1)\Pr(K_i = k)\mu_{ik},$$

$$E(S_{i,k}) = \mu_{ik} \Pr(K_i = k) \sum_{n=1}^{\infty} n \Pr(N_i = n),$$

$$E(S_{EVENT,i,j}) = Pr(N_i = 1) \sum_{k=1}^{3} \mu_{ik} Pr(K_i = k), \text{ and}$$

$$E(S_i) = E(S_{i,1}) + E(S_{i,2}) + E(S_{i,3}).$$

 In the presence of policy modifications, we approximate this using simulation (Appendix A.2).

A case study

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation Macro-Effects

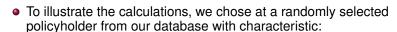
Inference Individual Risk

Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates



- 50-year old female driver who owns a Toyota Corolla manufactured in year 2000 with a 1332 cubic inch capacity.
- for losses based on a coverage type, we chose "own damage" because the risk factors NCD and age turned out to be statistically significant for this coverage type.
- The point of this exercise is to evaluate and compare the financial significance.

Predictive means by level of NCD and by insured's age

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Table 3. Predictive Mean by Level of NCD								
Type of Random Variable	Level of NCD							
	0	10	20	30	40	50		
Individual Loss (Own Damage)	330.67	305.07	267.86	263.44	247.15	221.76		
Sum of Losses from a Type (Own Damage)	436.09	391.53	339.33	332.11	306.18	267.63		
Sum of Losses from a Specific Event	495.63	457.25	413.68	406.85	381.70	342.48		
Overall Loss per Policy	653.63	586.85	524.05	512.90	472.86	413.31		

Table 4. Predictive Mean by Insured's Age								
Type of Random Variable	Insured's Age							
	≤ 21	22-25	26-35	36-45	46-55	56-65	≥ 66	
Individual Loss (Own Damage)	258.41	238.03	198.87	182.04	221.76	236.23	238.33	
Sum of Losses from a Type (Own Damage)	346.08	309.48	247.67	221.72	267.63	281.59	284.62	
Sum of Losses from a Specific Event	479.46	441.66	375.35	343.59	342.48	350.20	353.31	
Overall Loss per Policy	642.14	574.24	467.45	418.47	413.31	417.44	421.93	

- Paper gives additional results by level of NCD, insured's age
- Paper gives means and confidence intervals
- Paper gives coverage modifications (deductible, policy limits, coinsurance) by NCD and age

Predictive Distribution for Portfolios

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Distributions for Portfolios Predictive Distributions for

Reinsurance
Concluding
Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore • For a single contract, the prob of zero claims is about 93%.

• This means that the distribution has a large point mass at zero.

- As with Bernoulli distributions, there has been a tendency to focus on the mean to summarize the distribution
- We consider a portfolio of randomly selected 1,000 policies from our 2001 (held-out) sample
- Wish to predict the distribution of $S = S_1 + ... + S_{1000}$
 - The central limit theorem suggests that the mean and variance are good starting points.
 - The distribution of the sum is not approximately normal; this is because (1) the policies are not identical, (2) have discrete and continuous components and (3) have long-tailed continuous components.
 - This is even more evident when we "unbundle" the policy and consider the predictive distribution by type

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios

Predictive Distributions for Reinsurance

Concludina Remarks

Appendix A -Parameter Estimates

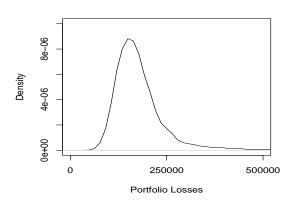


Figure: Simulated Predictive Distribution for a Randomly Selected Portfolio of 1,000 Policies.

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive
Distributions for
Portfolios
Predictive

Distributions for Reinsurance Concluding Remarks

Appendix A -Parameter Estimates

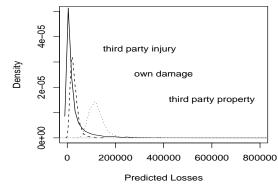


Figure: Simulated Density of Losses for Third Party Injury, Own Damage and Third Party Property of a Randomly Selected Portfolio.

Risk Measures

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation Macro-Effects

Inference
Individual Risk
Rating
Predictive

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B - Singapore

 We consider two measures focusing on the tail of the distribution that have been widely used in both actuarial and financial work.

- The Value-at-Risk (VaR) is simply a quantile or percentile; $Var(\alpha)$ gives the 100(1 α) percentile of the distribution.
- The Conditional Tail Expectation (*CTE*) is the expected value conditional on exceeding the $Var(\alpha)$.
- Larger deductibles and smaller policy limits decrease the VaR in a nonlinear way.
- Under each combination of deductible and policy limit, the confidence interval becomes wider as the VaR percentile increases.
- Policy limits exert a greater effect than deductibles on the tail of the distribution
- The policy limit exerts a greater effect than a deductible on the confidence interval capturing the *VaR*.

Casualty Actuarial Society

Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk

Predictive Distributions for Portfolios

Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

Table 7. VaR by Percentile and Coverage Modification with a Corresponding Confidence Interval

Coverage N	Modification		Lower	Upper		Lower	Upper	
Deductible	Limit	VaR(90%)	Bound	Bound	VaR(95%)	Bound	Bound	VaR(99%)
0	none	258,644	253,016	264,359	324,611	311,796	341,434	763,042
250	none	245,105	239,679	250,991	312,305	298,000	329,689	749,814
500	none	233,265	227,363	238,797	301,547	284,813	317,886	737,883
1,000	none	210,989	206,251	217,216	281,032	263,939	296,124	716,955
0	25,000	206,990	205,134	209,000	222,989	220,372	225,454	253,775
0	50,000	224,715	222,862	227,128	245,715	243,107	249,331	286,848
0	100,000	244,158	241,753	247,653	272,317	267,652	277,673	336,844
250	25,000	193,313	191,364	195,381	208,590	206,092	211,389	239,486
500	50,000	199,109	196,603	201,513	219,328	216,395	222,725	259,436
1,000	100,000	197,534	194,501	201,685	224,145	220,410	229,925	287,555

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects
Inference

Coverage Medification

Interence Individual Risk Rating

Predictive
Distributions for
Portfolios
Predictive
Distributions for

Reinsurance
Concluding
Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore Table 8. CTE by Percentile and Coverage Modification with a Corresponding Standard Deviation

Standard

Coverage ivi	loanication		Standard	Standard			
Deductible	Limit	CTE(90%)	Deviation	CTE(95%)	Deviation	CTE(99%)	
0	none	468,850	22,166	652,821	41,182	1,537,692	
250	none	455,700	22,170	639,762	41,188	1,524,650	
500	none	443,634	22,173	627,782	41,191	1,512,635	
1,000	none	422,587	22,180	606,902	41,200	1,491,767	
0	25,000	228,169	808	242,130	983	266,428	
0	50,000	252,564	1,082	270,589	1,388	304,941	
0	100,000	283,270	1,597	309,661	2,091	364,183	
250	25,000	213,974	797	227,742	973	251,820	
500	50,000	225,937	1,066	243,608	1,378	277,883	
1,000	100,000	235,678	1,562	261,431	2,055	315,229	

Standard

Unbundling of coverages

Casualty Actuarial Society

Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for **Portfolios** Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Singapore

Appendix B -

Decompose the comprehensive coverage into more "primitive" coverages: third party injury, own damage and third party property

- Calculate a risk measure for each unbundled coverage, as if separate financial institutions owned each coverage.
- Compare to the bundled coverage that the insurance company is responsible for
- Despite positive dependence, there are still size advantages

Table 9. VaR and CTE by Percentile

for Unbundled and Bundled Coverages								
		VaR			CTE			
Unbundled Coverages	90%	95%	99%	90%	95%	99%		
Third party injury	161,476	309,881	1,163,855	592,343	964,394	2,657,911		
Own damage	49,648	59,898	86,421	65,560	76,951	104,576		
Third party property	188,797	209,509	264,898	223,524	248,793	324,262		
Sum of Unbundled Coverages	399,921	579,288	1,515,174	881,427	1,290,137	3,086,749		
Bundled (Comprehensive) Coverage	258,644	324,611	763,042	468,850	652,821	1,537,692		

How important is the copula?

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios

Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

Very!!

Table 10. VaR and CTE for Bundled Coverage by Copula									
	VaR			CTE					
Copula	90%	95%	99%	90%	95%	99%			
Effects of Re-Estimating the Full Model									
Independence	359,937	490,541	1,377,053	778,744	1,146,709	2,838,762			
Normal	282,040	396,463	988,528	639,140	948,404	2,474,151			
t	258,644	324,611	763,042	468,850	652,821	1,537,692			
	Effects	of Changing	Only the Depe	endence Stru	cture				
Independence	259,848	328,852	701,681	445,234	602,035	1,270,212			
Normal	257,401	331,696	685,612	461,331	634,433	1,450,816			
t	258,644	324,611	763,042	468,850	652,821	1,537,692			

Quota Share Reinsurance

Casualty Actuarial Society

Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

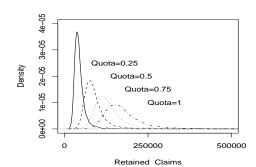
Predictive Distributions for Portfolios Predictive

Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

- A fixed percentage of each policy written will be transferred to the reinsurer
- Does not change the shape of the retained losses, only the location and scale
- Distribution of Retained Claims for the Insurer under Quota Share Reinsurance. The insurer retains 25%, 50%, 75% and 100% of losses, respectively.



Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Inference
Individual Risk
Rating
Predictive

Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

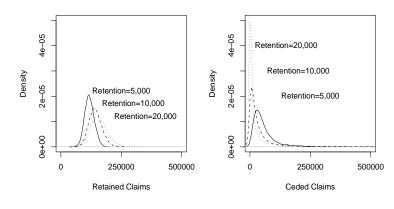


Figure: Distribution of Losses for the Insurer and Reinsurer under Excess of Loss Reinsurance. The losses are simulated under different primary company retention limits. The left-hand panel is for the insurer and right-hand panel is for the reinsurer.

Casualty Actuarial Society

Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk

Rating
Predictive
Distributions for

Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

Table 11. Percentiles of Losses for Insurer and Reinsurer under Reinsurance Agreement

	Percentile for Insurer									
Quota	Policy Retention	Portfolio Retention	1%	5%	10%	25%	50%	75%	90%	
0.25	none	100,000	22,518	26,598	29,093	34,196	40,943	50,657	64,81	
0.5	none	100,000	45,036	53,197	58,187	68,393	81,885	100,000	100,00	
0.75	none	100,000	67,553	79,795	87,280	100,000	100,000	100,000	100,00	
1	10,000	100,000	86,083	99,747	100,000	100,000	100,000	100,000	100,00	
1	10,000	200,000	86,083	99,747	108,345	122,927	140,910	159,449	177,01	
1	20,000	200,000	89,605	105,578	114,512	132,145	154,858	177,985	200,00	
0.25	10,000	100,000	21,521	24,937	27,086	30,732	35,228	39,862	44,25	
0.5	20,000	100,000	44,803	52,789	57,256	66,072	77,429	88,993	100,00	
0.75	10,000	200,000	64,562	74,810	81,259	92,195	105,683	119,586	132,76	
1	20,000	200,000	89,605	105,578	114,512	132,145	154,858	177,985	200,00	
				Perc	entile for Rein	surer				
Quota	Policy Retention	Portfolio Retention	1%	5%	10%	25%	50%	75%	90%	

Quota	Policy Retention	Portiolio Retention	1%	5%	10%	25%	50%	/5%	90%
0.25	none	100,000	67,553	79,795	87,280	102,589	122,828	151,972	194,458
0.5	none	100,000	45,036	53,197	58,187	68,393	81,885	102,630	159,277
0.75	none	100,000	22,518	26,598	29,093	36,785	63,771	102,630	159,277
1	10,000	100,000	0	8,066	16,747	36,888	63,781	102,630	159,277
1	10,000	200,000	0	0	992	5,878	18,060	43,434	97,587
1	20,000	200,000	0	0	0	0	2,482	24,199	78,839
0.25	10,000	100,000	68,075	80,695	88,555	104,557	127,652	161,743	215,407
0.5	20,000	100,000	45,132	53,298	58,383	68,909	84,474	111,269	167,106
0.75	10,000	200,000	23,536	28,055	31,434	39,746	54,268	81,443	135,853
1	20,000	200,000	0	0	0	0	2,482	24,199	78,839

Concluding Remarks

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating Predictive Distributions for Portfolios Predictive

Reinsurance Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

• Capture
• Provides

Model features

- Allows for covariates for the frequency, type and severity components
- Captures the long-tail nature of severity through the GB2.
- Provides for a "two-part" distribution of losses when a claim occurs, all possible types of losses may not be realized.
- Allows for dependencies among claims through a copula
- Allows for heterogeneity from the longitudinal nature of policyholders (not claims)

Recent and Ongoing Related Work

- At ISO, we are using similar models for US homeowners experience (to appear in Astin Bulletin)
- At ISO, we are developing measures (that we call "Gini" index) to assess out-of-sample model performance
- In Astin Bulletin (2010), Antonio, Frees and Valdez have compared companies' performance using multilevel, intercompany experience
- I am working with a UW doctoral student (Winnie Sun) to examine behavior of auto and homeowners experience from a local P & C Insurer, funded by CAS.
- I am working with two UW doctoral students (Xiaoli Jin and Joyce Xiao) to implement these strategies on health care expenditures

Micro-level Data

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore This paper shows how to use micro-level data to make sensible statements about "macro-effects."

- For example, the effect of a policy level deductible on the distribution of a block of business.
- Certainly not the first to support this viewpoint
 - Traditional actuarial approach is to development life insurance company policy reserves on a policy-by-policy basis.
 - See, for example, Richard Derrig and Herbert I Weisberg (1993)
 "Pricing auto no-fault and bodily injury coverages using micro-data and statistical models"
- However, the idea of using voluminous data that the insurance industry captures for making managerial decisions is becoming more prominent.
 - Gourieroux and Jasiak (2007) have dubbed this emerging field the "microeconometrics of individual risk."
 - See ARIA news article by Ellingsworth from ISO
- Academics need greater access to micro-level data!!

Some References

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

Papers are available at

http://research3.bus.wisc.edu/jfrees

- Dependent Multi-Peril Ratemaking Models, by EW Frees, G. Meyers and D. Cummings, Oct 2009. To appear in Astin Bulletin: Journal of the International Actuarial Association
- Summarizing Insurance Scores Using a Gini Index, by EW Frees, G. Meyers and D. Cummings, July 2010. Submitted for publication to *Journal of the* American Statistical Association.
- Predictive Modeling of Multi-Peril Homeowners Insurance, by EW Frees, G. Meyers and D. Cummings, September 2010. Under review with the Casualty Actuarial Society's Ratemaking Committee.
- Regression Modeling with Actuarial and Financial Applications, Cambridge University Press (2010), by EW Frees. Support materials available at http://research.bus.wisc.edu/RegActuaries.

The fitted frequency model

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating Predictive Distributions for

Portfolios
Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Appendix B -Singapore

lable A.1. Fitted Negative Binomial Model									
Parameter	Estimate	Standard Error							
intercept	-2.275	0.730							
year	0.043	0.004							
automobile	-1.635	0.082							
vehicle age 0	0.273	0.739							
vehicle age 1-2	0.670	0.732							
vehicle age 3-5	0.482	0.732							
vehicle age 6-10	0.223	0.732							
vehicle age 11-15	0.084	0.772							
automobile*vehicle age 0	0.613	0.167							
automobile*vehicle age 1-2	0.258	0.139							
automobile*vehicle age 3-5	0.386	0.138							
automobile*vehicle age 6-10	0.608	0.138							
automobile*vehicle age 11-15	0.569	0.265							
automobile*vehicle age ≫16	0.930	0.677							
vehicle capacity	0.116	0.018							
automobile*NCD 0	0.748	0.027							
automobile*NCD 10	0.640	0.032							
automobile*NCD 20	0.585	0.029							
automobile*NCD 30	0.563	0.030							
automobile*NCD 40	0.482	0.032							
automobile*NCD 50	0.347	0.021							
automobile*age ≪21	0.955	0.431							
automobile*age 22-25	0.843	0.105							
automobile*age 26-35	0.657	0.070							
automobile*age 36-45	0.546	0.070							
automobile*age 46-55	0.497	0.071							
automobile*age 56-65	0.427	0.073							
automobile*age ≫66	0.438	0.087							
automobile*male	-0.252	0.042							
automobile*female	-0.383	0.043							

Table A 1 Fitted Negative Rinomial Model

The fitted conditional claim type model

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for

Reinsurance Concludina Remarks

Appendix A -Parameter Estimates

Appendix B -
Singapore
20 / 42

Table A.2. Fitted Multi Logit Model									
	Parameter Estimates								
Category(M)	intercept	year	vehicle age ≫6	non-automobile	automobile*age ≫46				
1	1.194	-0.142	0.084	0.262	0.128				
2	4.707	-0.024	-0.024	-0.153	0.082				
3	3.281	-0.036	0.252	0.716	-0.201				
4	1.052	-0.129	0.037	-0.349	0.338				
5	-1.628	0.132	0.132	-0.008	0.330				
6	3.551	-0.089	0.032	-0.259	0.203				

The fitted conditional severity model

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference

Individual Risk Rating Predictive Distributions for

Portfolios Predictive Distributions for Reinsurance

Concludina Remarks

Appendix A -Parameter Estimates

Table A.4. Fitted Severity Model by Copulas Types of Copula									
Parameter		Independence Normal Copula			t-Copula				
	Estimate	Standard	Estimate	Standard	Estimate	Standard			
		Error	Error			Error			
Third Party Injury									
$\sigma_{\rm l}$	0.225	0.020	0.224	0.044	0.232	0.079			
α_{11}	69.958	28.772	69.944	63.267	69.772	105.245			
α_{21}	392.362	145.055	392.372	129.664	392.496	204.730			
intercept	34.269	8.144	34.094	7.883	31.915	5.606			
Own Damage									
σ_2	0.671	0.007	0.670	0.002	0.660	0.004			
α_{12}	5.570	0.151	5.541	0.144	5.758	0.103			
α_{22}	12.383	0.628	12.555	0.277	13.933	0.750			
intercept	1.987	0.115	2.005	0.094	2.183	0.112			
year	-0.016	0.006	-0.015	0.006	-0.013	0.006			
vehicle capacity	0.116	0.031	0.129	0.022	0.144	0.012			
vehicle age ≪5	0.107	0.034	0.106	0.031	0.107	0.003			
automobile*NCD 0-10	0.102	0.029	0.099	0.039	0.087	0.031			
automobile*age 26-55	-0.047	0.027	-0.042	0.044	-0.037	0.005			
automobile*age ≫56	0.101	0.050	0.080	0.018	0.084	0.050			
Third Party Property									
σ_3	1.320	0.068	1.309	0.066	1.349	0.068			
α_{13}	0.677	0.088	0.615	0.080	0.617	0.079			
α_{23}	1.383	0.253	1.528	0.271	1.324	0.217			
intercept	1.071	0.134	1.035	0.132	0.841	0.120			
vehicle age 1-10	-0.008	0.098	-0.054	0.094	-0.036	0.092			
vehicle age ≫11	-0.022	0.198	0.030	0.194	0.078	0.193			
year	0.031	0.007	0.043	0.007	0.046	0.007			
Copula									
ρ_{12}	-	-	0.250	0.049	0.241	0.054			
ρ_{13}	-	-	0.163	0.063	0.169	0.074			
ρ_{23}	-	-	0.310	0.017	0.330	0.019			

Driven by frequency or severity?

Casualty Actuarial Society Frees

Micro-Level Data

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive Distributions for Portfolios Predictive Distributions for Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

Table A.5. Effect of NCD on Analytic Predictive Mean								
NCD	0	10	20	30	40	50		
Probability of no accident under various NCD								
No accident	0.916	0.924	0.928	0.929	0.935	0.942		
Expected losses under various NCD								
Third party injury	10.669	10.669	10.669	10.669	10.669	10.669		
Own damage	2.532	2.532	2.320	2.320	2.320	2.320		
Third party property	2.765	2.765	2.765	2.765	2.765	2.765		

Table A.6. Effect of Age Category on Analytic Predictive Mean							
Age	≤ 21	22-25	26-35	36-45	46-55	56-65	≥ 66
Probability of no accident under various age category							
No accident	0.912	0.920	0.933	0.940	0.942	0.946	0.945
Probability of losses type under various age category							
Third party injury	0.027	0.027	0.027	0.027	0.031	0.031	0.031
Own damage	0.686	0.686	0.686	0.686	0.870	0.870	0.870
Third party property	0.408	0.408	0.408	0.408	0.277	0.277	0.277
Expected losses under various age category							
Third party injury	10.669	10.669	10.669	10.669	10.669	10.669	10.669
Own damage	2.407	2.407	2.320	2.320	2.320	2.618	2.618
Third party property	2.765	2.765	2.765	2.765	2.765	2.765	2.765

A bit about Singapore

Casualty Actuarial Society Frees

Micro-Level Data Model

Estimation

Macro-Effects
Inference

Individual Risk Rating Predictive Distributions for

Portfolios
Predictive
Distributions for
Reinsurance

Concluding Remarks

Appendix A -Parameter Estimates

- Singa Pura: Lion city. Location: 136.8 km N of equator, between latitudes 103 deg 38' E and 104 deg 06' E. [islands between Malaysia and Indonesia]
- Size: very tiny [647.5 sq km, of which 10 sq km is water]
 Climate: very hot and humid [23-30 deg celsius]
- Population: 4+ mn. Age structure: 0-14 yrs: 18%, 15-64 yrs: 75%, 65+ yrs 7%
- Birth rate: 12.79 births/1,000. Death rate: 4.21 deaths/1,000;
 Life expectancy: 80.1 yrs; male: 77.1 yrs; female: 83.2 yrs
- Ethnic groups: Chinese 77%, Malay 14%, Indian 7.6%; Languages: Chinese, Malay, Tamil, English

A bit about Singapore

Casualty Actuarial Society Frees

Micro-Level

Model Estimation

Macro-Effects Inference Individual Risk Rating

Predictive
Distributions for
Portfolios
Predictive
Distributions for
Reinsurance

Appendix A -Parameter Estimates

Appendix B -Singapore

Concluding Remarks As of 2002: market consists of 40 general ins, 8 life ins, 6 both, 34 general reinsurers, 1 life reins, 8 both; also the largest captive domicile in Asia, with 49 registered captives.

- Monetary Authority of Singapore (MAS) is the supervisory/regulatory body; also assists to promote Singapore as an international financial center.
- Insurance industry performance in 2003:
 - total premiums: 15.4 bn; total assets: 77.4 bn [20% annual growth]
 - life insurance: annual premium = 499.8 mn; single premium = 4.6 bn
 - general insurance: gross premium = 5.0 bn (domestic = 2.3; offshore = 2.7)
- Further information: http://www.mas.gov.sg