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Outline

¢ Ordinary Least Squares (OLS) Regression
» Generalized Linear Models (GLM)
« Copula Regression
Continuous case
Discrete Case
» Examples

Notation

* Notation:

*Y — Dependent Variable

* X;, X,,--- X, Independent Variables
» Assumption

» Expected value of Y is related to X’s in some
functional form

ELY | X, =X X, =X 0= T (X, %0000 X,)

1 %n




» The Ordinary Least Squares model has Y
linearly dependent on the Xs.

Yi =B+ BXy+ B Xy 4+ [ X+ 6
&, 1 Normal(0,5°) and independent
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 The parameter estimate can be obtained by
least squares. The estimate is:

Y =(XX)'XYy
Y’\i:/}o+ﬁ1x1i+"'+/}kxki

* Assume Y, X,,..., X, jointly follow a
multivariate normal distribution. This is
more restrictive than usual OLS.

« Then the conditional distribution of Y | X
has a normal distribution with mean and
variance given by

EQY | X =%) = f, + T Tk (X 18

Variance =X, — 2, 25 Z 1«




» Y-hat = Estimated Conditional mean
o It is the MLE

» Estimated Conditional Variance is the error
variance

» OLS and MLE result in same values
« Closed form solution exists
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« Is Y always linearly related to the Xs?

» What do you do if the relationship between
is non-linear?

* Y|x belongs to the exponential family of
distributions and

E(Y|X=X)=0"(8+AX++AX)
» g is called the link function
* xs are not random
« Conditional variance is no longer constant

» Parameters are estimated by MLE using
numerical methods




* Generalization of GLM: Y can have any
conditional distribution (See Loss Models)

» Computing predicted values is difficult

* No convenient expression for the
conditional variance

4/27/2011

¢ Y can have any distribution
 Each X; can have any distribution

¢ The joint distribution is described by a
Copula

« Estimate Y by E(Y|X=x) — conditional mean

Ideal Copulas have the following properties:
« ease of simulation
¢ closed form for conditional density

« different degrees of association available for
different pairs of variables.

Good Candidates are:
» Gaussian or MVN Copula
* t-Copula
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MVN Copula -cdf

* CDF for the MVN Co;;ula is

F (%000 %,) = G(@[F (X)].... @7 [F (x,)])
» where G is the multivariate normal cdf with
zero mean, unit variance, and correlation
matrix R.

MVN Copula - pdf

(\ )

¢ The density function is
F (X, %0000 X,)
vI(RT=1)v 4
= £06) f (%) f(nﬁxp{—% *R?
Where v is a vector with ith element
Vi =07[F(%)]

Copula vs. Normal Density
//7§
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Bivariate Normal Copula with Beta Bivariate Normal Distribution
and Gamma marginals




Copula vs. Normal
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Contour plot of the Bivariate Contour plot of the Bivariate
Normal Copula with Beta and Normal Distribution
Gamma marginals
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Conditional Distribution in MVN Copula

» The conditional distribution is

FOG X0 0%00)
_ PO RV e 2
= f(&)eXp{ﬁ-S{ (—r'R'n) {07 TFOOTY }}
x(A-r'RLN®
= _ Rn—l r
Vn—l_(vl""’vn—l) R —|: rT l:|

Copula Regression - Continuous Case

.
 Parameters are estimated by MLE.

«If Y, X,,...,X, are continuous variables,
then we can use the previous equation to
find the conditional mean.

» One-dimensional numerical integration is
needed to compute the mean.




When one of the covariates is discrete

Problem:

 Determining discrete probabilities from the
Gaussian copula requires computing many
multivariate normal distribution function
values and thus computing the likelihood
function is difficult.
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Solution:

* Replace discrete distribution by a
continuous distribution using a uniform
kernel.

» How to compute standard errors of the
estimates?

* As n -> o, the MLE converges to a normal
distribution with mean equal to the
parameters and covariance the inverse of the
information matrix.

— * 62

1(0)=-n E{agz In(f (X ,H))}




 Loss Models: “To obtain the information
matrix, it is necessary to take both
derivatives and expected values, which is not
always easy. A way to avoid this problem is
to simply not take the expected value.”

o It is called “Observed Information.”
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¢ All examples have three variables —
simulated using MVN copula

1 0.7 0.7
* R Matrix : 07 1 0.7

07 [@z |i

* Error measured by > (v,-Y,)?

* Also compared to OLS

» Dependent — Gamma; Independent — both
Pareto

» X2 did not converge, used gamma model

Variables X1-Pareto X2-Pareto X3-Gamma

Parameters 3,100 4,300 3,100

MLE 3.44,161.11 1.04, 112.003 3.77, 85.93
Copula 59000.5

Error:

OLS 637172.8




Example 1 - Standard Errors
)
\J

« Diagonal terms are standard deviations and
off-diagonal terms are correlations

X, Pareto X, Gamma X, Gamma

[Alpha; [Theta, |Npha, [Thets, [Apha, [Thetas  [Riz1)  |RG.)  [R32)
|Alpha; 0.266606| 0.966067| 0.359065| -0.33725| 0.349482| -0.33268| -0.42141| -0.33863| -0.29216|
[Thete; [ 0.966067] 15.50974] 0.390428] -0.25236[ 0.346448] -0.26734] -0.37496] -0.29323] -0.25393]
[Alpha, | 0.359065] 0.390428] 0.025217] -0.78766| 0.438662| -0.35533[ -0.45221 0.30294] -0.42453]
[Theta, | -0.33725| -0.25236] -0.78766| 3.558369] -0.38489] 0.464513] 0.49683] 0.35608] 0.470009
[Alpha; | 0.349482] 0.346448] 0.438662] -0.38489] 0.100156[ -0.93602] -0.34454] -0.46358] -0.4629]
[Theta, -0.33268| -0.26734| -0.35533| 0.464513| -0.93602| 2.485305|
R(2,1) | 0.42141] 0.37496| -045221] 0.496853| 0.

R(3.1) 0.29323| -0.30294)
kG2

-0.29216] -0.25393] -0.42493]

0.365629)] 0.

0.470009] -0.46292] 0.481122] 0.465885] 0.
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Example 1
B\
\,

» Maximum likelihood estimate of correlation
matrix

R-hat= o711 1 0.713

0.699 0.713 1

Example 1a — Two dimensional
¢ Only X3 (dependent) and X1 used.

» Graph on next slide (with log scale for x)
shows the two regression lines.




Example 1a - Plot
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Example 2

* Dependent — X3 - Gamma

* X1 & X2 estimated empirically (so no model
assumption made)

Variables X1-Pareto X2-Pareto X3-Gamma
Parameters 3,100 4,300 3,100
MLE F(x) =x/n—1/2n F(x) =x/n —1/2n 4.03, 81.04
f(x) = 1/n f(x) =1/n
Error: Copula 595,947.5
OLS 637,172.8
GLM 814,264.754

Example 2 — empirical model

« As noted earlier, when a marginal
distribution is discrete MVN copula
calculations are difficult.

» Replace each discrete point with a uniform
distribution with small width.

¢ As the width goes to zero, the results on the
previous slide are obtained.

10



» Dependent — X3 — Gamma
» X1 has a discrete, parametric, distribution
« Pareto for X2 estimated by Exponential

Variables X1-Poisson X2-Pareto X3-Gamma
Parameters 5 4, 300 3,100
MLE 5.65 119.39 3.67, 88.98

o Error: Copula 574,968
OLS 582,459.5
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* Dependent — X3 - Gamma
» X1 & X2 estimated empirically
»C = # of obs < x and a = (# of obs = x)

Variables X1-Poisson X2-Pareto X3-Gamma
Parameters 5 4, 300 3,100
MLE F(x) =c¢/n + a/2n F(x) =x/n - 1/2n 3.96, 82.48
f(x) =a/n f(x) =1/n
EI'I'OI': Copula OLS GLM
559,888.8 582,459.5 652,708.98

« Once again, a discrete distribution must be
replaced with a continuous model.

» The same technique as before can be used,
noting that now it is likely that some values
appear more than once.
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Example 5

» Dependent — X1 - Poisson
» X2, estimated by exponential
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Variables X1-Poisson X2-Pareto X3-Gamma
Parameters 5 4, 300 3,100
MLE 5.65 119.39 3.66, 88.98
Error:
Copula 108.97
OLS 114.66
Example 6
» Dependent — X1 - Poisson
» X2 & X3 estimated empirically
Variables X1-Poisson X2-Pareto X3-Gamma
Parameters 5 4, 300 3,100
MLE 5.67 F(x) =x/n—1/2n F(x) =x/n—1/2n
f(x) = 1/n f(x) = 1/n

EI'I‘OI‘Z Copula 110.04

OLS 114.66
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