\sim	-		-			
Co	n11	ล	Re	gre	5510	n
\sim	pu	ıu	110	5 10,	JULI	

RAHUL A. PARSA DRAKE UNIVERSITY

&
STUART A. KLUGMAN
GOCIETY OF ACTUARIES

Outline

- Ordinary Least Squares (OLS) Regression
- Generalized Linear Models (GLM)
- Copula Regression
- o Continuous case
- o Discrete Case
- Examples

Notation

- Notation:
- Y Dependent Variable
- $X_1, X_2, \cdots X_k$ Independent Variables
- Assumption
- Expected value of Y is related to X's in some functional form

$$E[Y | X_1 = x_1, ..., X_n = x_n] = f(x_1, x_2, ..., x_n)$$

OLS Regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

$$\varepsilon_i \square \text{Normal}(0, \sigma^2)$$
 and independent

OLS Regression

$$\hat{Y} = (XX)^{-1}XY$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}$$

OLS - Multivariate Normal Distribution

- Assume $Y, X_1, ..., X_k$ jointly follow a multivariate normal distribution. This is more restrictive than usual OLS.
- \bullet Then the conditional distribution of Y | \boldsymbol{X} has a normal distribution with mean and variance given by

$$E(Y \mid X = \underline{x}) = \underline{\mu}_{y} + \sum_{YX} \sum_{XX}^{-1} (\underline{x} - \underline{\mu}_{x})$$

$$Variance = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{yx}$$

OLS & MVN

- Y-hat = Estimated Conditional mean
- It is the MLE
- Estimated Conditional Variance is the error variance
- OLS and MLE result in same values
- Closed form solution exists

Generalization of OLS

- Is *Y* always linearly related to the *X*s?
- What do you do if the relationship between is non-linear?

GLM – Generalized Linear Model

- Y/x belongs to the exponential family of distributions and $E(Y | X = \underline{x}) = g^{-1}(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$
- g is called the link function
- xs are not random
- Conditional variance is no longer constant
- Parameters are estimated by MLE using numerical methods

GLM

- Generalization of GLM: *Y* can have any conditional distribution (See *Loss Models*)
- Computing predicted values is difficult
- No convenient expression for the conditional variance

Copula Regression

- Ycan have any distribution
- Each X_i can have any distribution
- The joint distribution is described by a Copula
- Estimate Y by E(Y/X=x) conditional mean

Copula

Ideal Copulas have the following properties:

- ease of simulation
- closed form for conditional density
- different degrees of association available for different pairs of variables.

Good Candidates are:

- Gaussian or MVN Copula
- t-Copula

-	

MVN Copula -cdf

- CDF for the MVN Copula is $F(x_1, x_2,...,x_n) = G(\Phi^{-1}[F(x_1)],...,\Phi^{-1}[F(x_n)])$
- where *G* is the multivariate normal cdf with zero mean, unit variance, and correlation matrix *R*.

MVN Copula - pdf

• The density function is

$$f(x_1, x_2, \dots, x_n)$$

=
$$f(x_1) f(x_2) \cdots f(x_n) \exp \left\{ -\frac{v^T (R^{-1} - I)v}{2} \right\} * |R|^{-0.5}$$

Where v is a vector with tth element

$$v_i = \Phi^{-1}[F(x_i)]$$

Conditional Distribution in MVN Copula

• The conditional distribution is

$$f(x_{n} | x_{1},...,x_{n-1})$$

$$= f(x_{n}) \exp \left\{ -0.5 \left[\frac{\{\Phi^{-1}[F(x_{n})] - r^{T}R_{n-1}^{-1}v_{n-1}\}^{2}}{(1 - r^{T}R_{n-1}^{-1}r)} - \{\Phi^{-1}[F(x_{n})]\}^{2} \right] \right\}$$

$$\times (1 - r^{T}R_{n-1}^{-1}r)^{-0.5}$$

$$v_{n-1} = (v_{1},...,v_{n-1})$$

$$R = \begin{bmatrix} R_{n-1} & r \\ r^{T} & 1 \end{bmatrix}$$

Copula Regression - Continuous Case

- Parameters are estimated by MLE.
- If $Y, X_1, ..., X_k$ are continuous variables, then we can use the previous equation to find the conditional mean.
- One-dimensional numerical integration is needed to compute the mean.

Copula Regression -Discrete Case	
When one of the covariates is discrete	
Problem:	
• Determining discrete probabilities from the Gaussian copula requires computing many	
multivariate normal distribution function values and thus computing the likelihood	
function is difficult.	
	1
Copula Regression – Discrete Case	
Solution:	
Replace discrete distribution by a continuous distribution using a uniform	
kernel.	
	J
	1
Copula Regression – Standard Errors	
How to compute standard errors of the	
estimates? • As $n \rightarrow \infty$, the MLE converges to a normal	
distribution with mean equal to the	
parameters and covariance the inverse of the information matrix.	
$I(\theta) = -n * E \left[\frac{\partial^2}{\partial \theta^2} \ln(f(X, \theta)) \right]$	
L.* J	

How to compute Standard Errors

- Loss Models: "To obtain the information matrix, it is necessary to take both derivatives and expected values, which is not always easy. A way to avoid this problem is to simply not take the expected value."
- It is called "Observed Information."

Examples

- All examples have three variables simulated using MVN copula
- R Matrix : 1 0.7 0.7 0.7 1 0.7 0.7 0.7 1
- Error measured by $\sum (Y_i \hat{Y}_i)^2$
- Also compared to OLS

Example 1

- Dependent Gamma; Independent both Pareto
- X2 did not converge, used gamma model

Variables	X1-Pareto)	X2-Pareto	X3-Gamma
Parameters	3, 100		4, 300	3, 100
MLE	3.44, 161.1	1	1.04, 112.003	3.77, 85.93
Error:	Copula OLS	59000.5 637172.8		

		Example 1		
• Maxii matri		nood estim	ate of corre	elation
	1	0.711	0.699	
R-hat =	0.711	1	0.713	
	0.699	0.713	1	

Example 1a – Two dimensional
• Only X3 (dependent) and X1 used.
 Graph on next slide (with log scale for x) shows the two regression lines.

Donone	lent – X3		ample		
• X1 & X		ed			o no model
Variables	X1-Parete)	X2-P	areto	X3-Gamma
Parameters	3, 100		4, 300		3, 100
MLE		F(x) = x/n - 1/2n $f(x) = 1/n$		n – 1/2n	4.03, 81.04
	I(X) = 1/n		f(x) =	= 1/n	
Error:	T(x) = 1/h Copula	595,	f(x) = 947.5	= 1/n	
Error:				= 1/n	

Example 2 – empirical model ted earlier, when a marginal

- As noted earlier, when a marginal distribution is discrete MVN copula calculations are difficult.
- Replace each discrete point with a uniform distribution with small width.
- As the width goes to zero, the results on the previous slide are obtained.

Example 3 • Dependent – X3 – Gamma • X1 has a discrete, parametric, distribution • Pareto for X2 estimated by Exponential X1-Poisson X2-Pareto Parameters 4, 300 3, 100 MLE 5.65 119.39 3.67, 88.98 • Error: Copula 574,968 OLS 582,459.5

		E	xample	e 4			
-		ent – X3 - estimated			lly		
• C = #	of	obs ≤ x ar	nd a = ((# 0	of ob	s = x	
Variables		X1-Poisson	X2-P	areto	,	X3-Gan	ıma
Parameters		5	4, 3	300		3, 100)
MLE	F(:	f(x) = c/n + a/2n f(x) = a/n	4, 300 3, 100 F(x) = x/n - 1/2n $f(x) = 1/n$ 3.96, 82.48		.48		
Error:		Copula	OLS			GLM	
		559,888.8	582,459	9.5	65:	2,708.98	

Once again, a discrete distribution must be replaced with a continuous model. The same technique as before can be used, noting that now it is likely that some values appear more than once.

• Depend • X2 & X		X1 - F	Pois		
Variables	X1-Pois	son		X2-Pareto	X3-Gamma
					110 Guillian
Parameters	5			4, 300	3,100
Parameters MLE	5 5.67		F(x	4, 300 f(x) = x/n - 1/2n f(x) = 1/n	
		110.04	F(x	x) = x/n - 1/2n	3,100 $F(x) = x/n - 1/2n$