Measuring the Robustness of Different Claims Reserving Methods Dumaria R. Tampubolon, Ph.D Statistics Research Division Faculty of Mathematics and Natural Sciences Bandung Institute of Technology, Bandung, Indonesia ## Motivation - Efforts to find a "best" estimate of the outstanding claims liability - In general, different forecasting models give different estimates - → How to compare them? Which one is better? 8 November 201 CAS Annual Meeting 2010 ## Motivation - Complexity of the underlying claims generating process - Complexity of the process of claims handling from the time they are notified to their finalization - → Variability in the amount paid in any particular calendar year for claims from a given accident year 8 November 2010 | <u> </u> | <u> </u> |
 | | |----------|----------|------|--| ## **Problem** To study the impact of (small) perturbations in each entry of the runoff triangle on the forecast of the outstanding claims liability, given a particular forecasting model. 9 November 2010 CAS Annual Meeting 2010 ## Robustness Measuring one aspect of the robustness of a model by looking at *how sensitive* it is relative to the entries of a runoff triangle. → How sensitive are the forecast values to (small) perturbations in the data? 8 November 201 CAS Annual Meeting 2010 # A measurement of the sensitivity of a statistic The rate of change of a statistic to a small change in a particular observation $$\frac{\partial T}{\partial X_i}$$ 8 November 2010 # Leverage and Influence Studies on *Leverage and Influence* in Regression or Linear Models, Nonliner Regression, Two-Way Table, etc → Example: The statistic analyzed is the fitted value 8 November 2010 CAS Annual Meeting 2010 # **Sensitivity Analysis** "The study of how the variation in the output of a model can be apportioned, qualitatively or quantitatively, to different sources of variation, and how a given model depends upon the information fed into it". Saltelli, A., et al. (Editors). 2000. Sensitivity Analysis, John Wiley & Sons, page 3 8 November 201 CAS Annual Meeting 2010 # Measurement of Sensitivity Leverage $$\equiv \frac{\Delta \text{estimate O/S}}{\Delta \text{entry}}$$ 8 November 2010 | _ | | | | | | |---|--|--|--|--|--| | _ | | | | | | | _ | _ | _ | | | | | | | _ | | | | | | | _ | _ | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | _ | | | | | | | _ | | | | | | | | | | | | | ## The Importance of Leverage - Gain insights on the forecasting methodology used: - → Very or Moderately or Not Sensitive? - Gain insights on the data: - → Absolute and Relative importance - Gain insights on the uncertainty of the estimate of the outstanding claims liability - → Example: if the leverage is high then the estimate is uncertain 8 November 2010 CAS Annual Meeting 2010 10 ### Leverage - High leverage (positive or negative) is not desirable: - → the forecasting methodology used is very sensitive to small perturbations - → significant difference in the estimates of the unperturbed and the perturbed data (there is an uncertainty in the estimate) 8 November 201 CAS Annual Meeting 2010 11 ## Leverage - Zero (close to zero) leverage is not desirable - → the estimate of the outstanding claims liability is not affected by the perturbations - Moderate leverage values are desirable - → gain insights on the behaviour of the estimate of the outstanding claims liability to small perturbations in the data 8 November 2010 CAS Annual Meeting 2010 |
 |
 | | |------|------|--| |
 |
 | | | | | | | | | | | | | | | | | | ## **Chain Ladder** Chain Ladder Estimate of the Outstanding Claims Liability of Mack's Data: 52 135 8 November 201 CAS Annual Meeting 2010 # Chain Ladder Leverage 0 1 2 3 4 5 6 7 8 9 0 -1.48 -0.637 -0.344 -0.005 0.253 0.571 1.226 2.453 4.922 10.316 1 -1.375 -0.532 -0.24 0.099 0.337 0.675 1.331 2.557 5.026 2 -1.273 -0.43 -0.138 0.201 0.459 0.777 1.433 2.659 3 -1.152 -0.309 -0.016 0.323 0.531 0.899 1.353 4 4 -1.045 -0.202 0.091 0.43 0.638 1.006 5 -0.817 0.026 0.318 0.658 0.915 6 -0.488 0.355 0.647 0.986 9.915 7 0.005 0.893 1.185 9 7.92 8 1.412 2.255 9 7.92 CAS Annual Meeting 2010 15 # Chain Ladder Leverage What happens if claim payments are delayed? For a particular accident year: Pay early \rightarrow a "decrease" in outstanding claims liability estimate Pay later \rightarrow an "increase" in outstanding claims liability estimate 8 November 201 CAS Annual Meeting 2010 # Chain Ladder Leverage What happens when there are very few observations to forecast?Large leverage in the last accident year and at the tail 9 November 2010 CAS Annual Meeting 2010 # Hertig's Model $$l_{ij} \square N(\mu_j, \sigma_j^2)$$, $i = 0, 1, \dots, n-2$ $j = 1, 2, \dots, n-i-1$ 8 November 201 CAS Annual Meeting 2010 # Hertig's Model $$\hat{E}\left[U_{i} \middle| c_{i,n-i-1}\right] = c_{i,n-i-1} e^{\hat{g}_{i}} e^{0.5v_{i}^{2}}$$ $$\hat{g}_{i} = E\left[g_{i}\right] = \mu_{n-i} + \mu_{n-i+1} + \dots + \mu_{n-1}$$ $$Var\left[g_{i}\right] = v_{i}^{2} = \sigma_{i,n-i}^{2} + \sigma_{i,n-i+1}^{2} + \dots + \sigma_{i,n-1}^{2}$$ 8 November 2010 CAS Annual Meeting 2010 # Hertig's Model Hertig's Model Estimate of the Outstanding Claims Liability of Mack's Data: 86 889 O Mayombox 2010 CAS Annual Meeting 2010 Hertig's Model Leverage (1 unit increase) 9 1 2 3 4 5 6 7 8 9 10 1-192 1-311 0-513 0-11 0-48 1201 2.116 3.237 5.489 12.161 1-161.58\$ 1.03 1-1596 0.762 0.977 1.323 2.073 3.707 6.455 12 1-152 0.629 0.034 0.257 0.458 1.142 1.67 2.678 13 0.659 0.469 0.025 0.47 0.026 0.996 1.528 1 0.059 0.05 # Hertig's Model Leverage What happens if claim payments are delayed? For a particular accident year: Pay early \rightarrow a "decrease" in outstanding claims liability estimate Pay later \rightarrow an "increase" in outstanding claims liability estimate 8 November 201 CAS Annual Meeting 2010 # Hertig's Model Leverage - What happens when there are very few observations to forecast? - Large leverage in the last accident year and at the tails - Extremely large leverage in entry (1,0) →unusual observation 8 November 2010 CAS Annual Meeting 2010 ## **CONCLUSION** The (triangle of) Leverage: - 1. Show some characteristics/properties of the forecasting model used - → same leverage pattern across different runoff triangles Chain Ladder and Hertig's Model: *The Negative-Zero-Positive Zones* O Marrambar 2010 CAS Annual Mastine 2010 ## **CONCLUSION** Chain Ladder: - High leverage in the last accident year and at the tails - Smooth leverage Hertig's Model: - High leverage in the last accident year and at the tails - More variability in leverage 8 November 201 CAS Annual Meeting 2010 #### **CONCLUSION** - 2. Show some characteristics of the data - → Hertig's Leverage reflected the unusual observation in the data whereas that of the Chain Ladder did not. 8 November 2010 | • | | |---|------| , | • | | | | | | • | | | | | | | | | | | | | | | |
 | • | | | | | | | |