# Prediction Error of the Future Claims Component of Premium Liabilities under the Loss Ratio Approach

(accepted to be published in Variance)

#### **CAS Annual Meeting**

November 8, 2010

Jackie Li PhD, FIAA
Nanyang Business School
Nanyang Technological University, Singapore

# International Regulatory Changes

- International Accounting Standards Board (IASB) proposed that both outstanding claims liabilities and premium liabilities should be assessed at their 'fair values'
- it is generally perceived that : fair value = mean + margin
- this margin allows for different types of variability for insurance liabilities

## Australian Regulatory Changes

- Australian Prudential Standard GPS 310 stipulates that insurance liabilities must be valued at 75<sup>th</sup> percentile
- risk margin = 75th percentile mean
- risk margin is subject to a minimum of one half of standard deviation
- risk margin is usually expressed as a percentage of mean

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

### Stochastic Reserving Methods

- bootstrapping, stochastic chain ladder, Mack model, Bayesian Markov chain Monte Carlo (MCMC) simulation
- produce both mean and variability
- so far, studies focus mainly on process error and estimation error
- extensive literature on outstanding claims liabilities but relatively few on premium liabilities

#### **Premium Liabilities**

- refer to all future claim payments and associated expenses arising from future events after valuation date
- insured under existing unexpired policies
- account for 30% of insurance liabilities for direct insurers and 15-20% for reinsurers in Australia from 2002 to 2004 (Yan 2005)

### Premium Liability Assessment

- prospective method:
   full actuarial assessment from first principles
- retrospective method:
   adjustment of unearned premiums;
   Canadian and Australian accounting standards require addition of premium deficiency reserve if this is smaller than full actuarial assessment

### **Prospective Method**

- historical claims approach: number of claims and average claim size; for short-tailed lines with much data; studied thoroughly under risk theory
- loss ratio approach:
   most common in practice;
   an extension of outstanding claims liability valuation;
   applies loss ratios to unearned premiums;

receives relatively little attention

### Research Objectives

- prospective method
- loss ratio approach
- future claims component
- · weighted / simple average loss ratio
- standard error of prediction
- process error and estimation error

## Notation & Assumptions

- ullet assume all claims are settled in n years
- C<sub>i,j</sub> is cumulative claim amount of accident year *i* and development year *j*
- valuation date is as at end of accident year n
- $C_{i,j}$  data is available for  $i + j \le n + 1$
- $C_{i,j}$  for i + j > n + 1 and  $1 \le i \le n$  refers to outstanding claims liabilities
- $C_{n+1,j}$  refers to premium liabilities
- $E_i$  for  $1 \le i \le n + 1$  is known premiums of accident year i
- C<sub>i,n</sub> / E<sub>i</sub> is ultimate loss ratio of accident year i

|  | <br> |
|--|------|
|  |      |

### Notation & Assumptions

- assume exposure is evenly distributed over each year
- assume exposure distribution of accident year n + 1 is the same as past accident years

# Claims Run-Off Triangle

# **Model Assumptions**

• from Mack (1993)

$$E(C_{i,j+1}/E_i \mid C_{i,1}, C_{i,2},..., C_{i,j}) = C_{i,j}f_j/E_i$$

$$Var(C_{i,j+1}/E_i | C_{i,1}, C_{i,2}, ..., C_{i,j}) = C_{i,j}\sigma_j^2/E_i^2$$

 $C_{i,j}$  and  $C_{g,h}$  are independent for  $i \neq g$ 

• from Schnieper (1991)

$$E(C_{i,1}/E_i)=u$$

$$\operatorname{Var}(C_{i,1}/E_i) = v^2/E_i$$

#### Parameter Estimation

- starting from chain ladder structure
- $f_j$  and  $\sigma_j^2$  are estimated from claims data
- u and v<sup>2</sup> are estimated from claims and premiums data
- unbiased estimators

#### Loss Ratio Estimator

- expected ultimate loss ratio of accident year n + 1 is  $q = E(C_{n+1,n} / E_{n+1})$
- weighted average estimator :

$$\hat{q} = \frac{\sum_{i=1}^{n} C_{i,n+1-i} \hat{f}_{n+1-i} \hat{f}_{n+2-i} ... \hat{f}_{n-1}}{\sum_{i=1}^{n} E_{i}}$$

• simple average estimator :

$$\hat{q}^* = \frac{1}{n} \sum_{i=1}^n \frac{C_{i,n+1-i} \hat{f}_{n+1-i} \hat{f}_{n+2-i} ... \hat{f}_{n-1}}{E_i}$$

• these two estimators are unbiased

#### **Prediction Error**

• mean square error of prediction :

$$MSEP(\hat{q}) = E\left(\left(\frac{C_{n+1,n}}{E_{n+1}} - \hat{q}\right)^{2}\right) = Var\left(\frac{C_{n+1,n}}{E_{n+1}}\right) + Var(\hat{q})$$

i.e. process error + estimation error

- process error is related to future only
- estimation error is related to past only
- standard error of prediction :

$$SEP(\hat{q}) = \sqrt{MSEP(\hat{q})}$$

# **Process Error Component**

variance of ultimate loss ratio of accident year n + 1 :

# **Estimation Error Component**

• variance of loss ratio estimator :

$$\begin{aligned} & \operatorname{Var}(\hat{q}) \approx \frac{1}{\left(\sum_{i=1}^{n} E_{i}\right)^{2}} \sum_{j=1}^{n-1} \left(\sum_{i=n+1-j}^{n} \frac{\operatorname{E}(C_{i,n})}{f_{j}}\right)^{2} \operatorname{Var}(\hat{f}_{j}) \\ &+ \frac{1}{\left(\sum_{i=1}^{n} E_{i}\right)^{2}} \sum_{i=1}^{n} f_{n+1-i}^{2} f_{n+2-i}^{2} \dots f_{n-1}^{2} \operatorname{Var}(C_{i,n+1-i}) \\ &+ \frac{2}{\left(\sum_{i=1}^{n} E_{i}\right)^{2}} \sum_{j=1}^{n-1} \sum_{i=1}^{n-j} \left(\sum_{r=n+1-j}^{n} \frac{\operatorname{E}(C_{r,n})}{f_{j}}\right) (f_{n+1-i} f_{n+2-i} \dots f_{n-1}) \operatorname{Cov}(\hat{f}_{j}, C_{i,n+1-i}) \end{aligned}$$

estimators of variance and covariance terms

# Australian Public Liability (Gross)

| i\j  | 1                   | 2      | 3      | 4      | 5      | 6      | 7      | 8           | 9      | 10    | Premiums |
|------|---------------------|--------|--------|--------|--------|--------|--------|-------------|--------|-------|----------|
| 1981 | 15,898              | 20,406 | 17,189 | 19,627 | 35,034 | 12,418 | 8,922  | 12,555      | 8,965  | 6,693 | 289,732  |
| 1982 | 16,207              | 21,518 | 17,753 | 18,780 | 19,113 | 18,634 | 15,857 | 13,050      | 9,362  |       | 319,216  |
| 1983 | 14,141              | 20,315 | 16,458 | 25,473 | 16,427 | 92,888 | 18,698 | 15,295      |        |       | 314,607  |
| 1984 | 14,649              | 21,162 | 19,084 | 23,857 | 20,171 | 15,098 | 17,637 |             |        |       | 344,446  |
| 1985 | 21,949              | 26,455 | 23,285 | 25,251 | 22,286 | 23,424 |        |             |        |       | 418,358  |
| 1986 | 18,989              | 28,741 | 32,754 | 30,240 | 28,443 |        |        | Outstanding |        |       | 535,658  |
| 1987 | 19,367              | 36,420 | 31,204 | 27,487 |        |        |        | Claims      |        |       | 639,130  |
| 1988 | 26,860              | 39,550 | 33,852 |        |        |        |        | Liabi       | lities |       | 751,897  |
| 1989 | 23,738              | 52,683 |        |        |        |        |        |             |        |       | 780,669  |
| 1990 | 34,567              |        |        |        |        |        |        |             |        |       | 719,181  |
| 1991 | Premium Liabilities |        |        |        |        |        |        |             |        |       | 334,566  |

| Australian Public Liability (Net) |                     |        |        |        |        |        |        |        |        |       |          |
|-----------------------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|----------|
| i\j                               | 1                   | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10    | Premiums |
| 1981                              | 13,451              | 16,801 | 12,947 | 13,752 | 13,802 | 8,583  | 6,847  | 9,237  | 5,641  | 3,784 | 168,975  |
| 1982                              | 13,533              | 17,489 | 13,111 | 13,541 | 13,603 | 11,937 | 10,524 | 8,609  | 5,987  |       | 186,990  |
| 1983                              | 11,808              | 17,525 | 12,644 | 15,609 | 11,821 | 17,305 | 10,524 | 11,061 |        |       | 200,475  |
| 1984                              | 13,309              | 17,806 | 14,777 | 17,295 | 15,340 | 12,060 | 11,752 |        |        |       | 222,843  |
| 1985                              | 19,546              | 22,786 | 19,686 | 21,860 | 19,268 | 18,692 |        |        |        |       | 262,748  |
| 1986                              | 17,865              | 25,888 | 28,194 | 25,578 | 22,985 |        |        | Outst  | anding |       | 333,716  |
| 1987                              | 17,797              | 33,517 | 24,182 | 24,337 |        |        |        | Cla    | ims    |       | 410,429  |
| 1988                              | 24,591              | 33,398 | 28,512 |        |        |        |        | Liabi  | lities |       | 502,869  |
| 1989                              | 21,567              | 46,146 |        |        |        |        |        |        |        |       | 532,298  |
| 1990                              | 30,343              |        |        |        |        |        |        |        |        |       | 545,218  |
| 1991                              | Premium Liabilities |        |        |        |        |        |        |        |        |       | 234,659  |

#### Results

- expected ultimate loss ratio of accident year 1991 :
- 49.2% (gross) 53.6% (net)
- standard error of prediction (% of mean) :
- 47.1% (gross) 33.1% (net)
- gross liability variability
- > net liability variability

# **Concluding Remarks**

- starting point for assessing premium liability variability
- insurance cycle, claims at tail, catastrophes, superimposed inflation, multi-year policies, expenses, recoveries, reinsurance, retrospectively rated polices, unclosed business, refund claims, claims management, underwriting

## **Current Research Projects**

- regression-like estimators
- coherent modeling of two or more lines of business
- over-dispersed Poisson (ODP) and gamma models
- Bayesian analysis and Markov chain Monte Carlo (MCMC) simulation

#### References

- Mack, T., "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin 23(2), 1993, pp. 213-225.
- Schnieper, R., "Separating True IBNR and IBNER Claims," ASTIN Bulletin 21(1), 1991, pp. 111-127.
- Yan, M., "Premium Liabilities," The Institute of Actuaries of Australia XV<sup>th</sup> General Insurance Seminar, 2005.