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Two different approaches:
Base-level approach: a common set of risk factors describe 
risk at "atomic" level (products) of the entire bank portfolio. 
→ Requires a single bank-wide stochastic scenario generator.

Top-level approach: separately pre-aggregated loss 
distributions for each risk type are combined "on-top" with an 
appropriate inter-risk dependence structure.
→ Notion of inter-risk correlation is born. 

The need for risk aggregation

What is the total risk of the bank? → Calculation of aggregated EC: 
Metric:  VAR, ES, volatility,…
Usage:  ICAAP, rating agencies, shareholders,…
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For multivariate normally distributed risk types, EC is simply a 
multiple of the standard deviation. Hence, for two risk positions

21
2
2

2
1   2 σσρσσσ ++=total

21
2
2

2
1 EC EC 2ρ++= ECECECtotal

Covariance approach: Use (1) as an approximation for total EC 
also in the case of non-normally distributed risk types:

21
2
2

2
1 C C 2 EEECECECtotal ρ++≈

(1)

Top-level approach: covariance approach

Inter-risk correlation
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0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Model MR Model CR Model OpR

EC = 1,000 EC = 3,000 EC = 2,000 
market risk credit risk oprisk

Top-level approach: copula approach
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0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

market risk credit risk oprisk

normal Vasicek lognormal
μ = 0
σ = 1.000 / 3.29 

p  =  0.02
rho  =  0.08

μ = 4.55
σ = 0.95 

Copula

0 1000 2000 3000 4000 5000

EC = ~~~~

EC = 1,000 EC = 3,000 EC = 2,000 

Model MR Model CR Model OpR

Depends on 
the specific 
copula…

Top-level approach: copula approach

• Gaussian copula

• Student t copula
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Current practices for risk aggregation1

70 % of banks use a top-level approach for risk aggregation.

The treatment of diversification (in % of banks):

Diversification ?

No!
Summation approach Yes!

80 %20 %

21
2
2

2
1 C C     2 EEECECECtot ++≈

Covariance
approach

Simulation,
copulas,…

75 % 25 %

ρ

1See: Insights from the joint IFRI/CRO Forum survey on Economic Capital practice and applications.
Available at  http://ifri.ch/publications/Final_position_paper.pdf, henceforth cited as [IFRI/CFO]
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Current practices for risk aggregation1

[IFRI/CFO]:
"Correlation estimates used vary widely, to an extend that is 
unlikely to be solely attributable to differences in business mix." 

10 %

100 %

40 %
Range excluding 

0 and 100 % 
answers

Total range

Overall average 66 %

CR-MR correlation:

1See: Insights from the joint IFRI/CRO Forum survey on Economic Capital practice and applications.
Available at  http://ifri.ch/publications/Final_position_paper.pdf, henceforth cited as [IFRI/CFO]
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The asset-value logreturns Ai linearly depend on the factors Y
and some idiosyncratic factor    , all independent and standard normally 
distributed, 

Portfolio loss is given by                         with

Default dependence between different creditors is modelled by their joint 
dependence on Y.

Definition 1: Normal factor model for credit risk
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Consider a credit portfolio of n loans with exposures     and 
default probabilities                    .
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According to [IFRI/CFO], over 70% of banks use such a Merton-style approach.
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Z linearly depends on the factors Y and some specific risk    : 

Pre-aggregated market risk is described by a random variable Z.               

Definition 2: Normal factor model for market risk
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21

η

The factor weights      and       are allowed to be zero so that
market or credit risk may only depend on a subset of Y. 

kγ ikβ

where     is the volatility of market risk Z.

Z may also represent business risk, financial investment risk
or real estate risk. 

Z is normally distributed with variance     . 2σ

σ
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Similar to Definition 2 (normal factor model MR); however, Z is disturbed 
by a positive mixing variable W, independent from Y and    ,

Definition 3: Shock model for market risk
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where     is the volatility of market risk Z.σ

η

Henceforth we focus on                           where      is a distributed 
random variable with      degrees of freedom, 

follows a scaled t distribution with distribution function

νν SW = νS
Zν

2
νχ

Ẑ
)()( σν xFxF =

where      is a t distribution with    degrees of freedom.νF ν



14

Inter-risk correlation in the normal model

with:   joint default probability      , ijp

( ) ( ), ⋅Φ=⋅ −1
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Suppose MR and CR are described by the joint normal model .        

What can we say about the linear correlation between credit portfolio loss 
L(n) and market risk Z ?

( )ZL n ,)(
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Exposure weights, 
decreasing function of 
the pi.

Suppose MR and CR are described by the joint normal model .        

What can we say about the linear correlation between credit portfolio loss 
L(n) and market risk Z ?

( )ZL n ,)(

( ) ( ), ⋅Φ=⋅ −1
iDdefault point

correlation

Inter-risk correlation in the normal model
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Assume we have 
a parameterized credit risk model but 
no information about market risk. 

What can we say about inter-risk correlation                    ?( )ZL n ,corr )(

Inter-risk correlation bound in the normal model
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Assume we have 
a parameterized credit risk model but 
no information about market risk. 

What can we say about inter-risk correlation                    ?

Using the Cauchy-Schwarz inequality we obtain with 
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Inter-risk correlation bound in the normal model
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MR follows a scaled t-distribution with     degrees of freedom (Definition 3).  
CR follows the normal factor model (Definition 1).     

Suppose MR and CR are described by the joint hybrid model ( )ZL n ˆ,)(

ν

A hybrid model: heavy tails in MR
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Since                    we obtain with  

Suppose MR and CR are described by the joint hybrid model ( )ZL n ˆ,)(
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MR follows a scaled t-distribution with     degrees of freedom (Definition 3).  
CR follows the normal factor model (Definition 1).     

ν

A hybrid model: heavy tails in MR
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A hybrid model: heavy tails in MR

Suppose MR and CR are described by the joint hybrid model ( )ZL n ˆ,)(

From Cauchy-Schwarz it follows that                                         .  1 )()(0 2 ≤ΕΕ≤ WW

Given a positive inter-risk correlation                      , the market risk shock
diminishes the shocked inter-risk correlation                  .

),(corr )( ZL n W
)ˆ,(corr )( ZL n

MR follows a scaled t-distribution with     degrees of freedom (Definition 3).  
CR follows the normal factor model (Definition 1).     

ν
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with uniform asset correlation                   and    

An application to one-factor models

Large homogenous portfolio (LHP) approximation for credit risk

Well-known and popular for credit (e.g. IRB formula of Basel II). 
We set 
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Normal one-factor model: 

One-factor setup for market risk
Rewrite the market risk models of Definition 3 and 4 in terms of the 
single factor , e.g. for the shock modelY~
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An application to one-factor models

One-factor inter-risk correlation: normal model
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An application to one-factor models

One-factor inter-risk correlation: normal model
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One-factor inter-risk correlation: hybrid model
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Average portfolio rating
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Inter-risk correlation bound as a function of the portfolio rating
(Average asset correlation                .) % 10=ρ

normal
factor model

hybrid model:
3=ν
5=ν
10=ν

An application to one-factor models
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,μtoteConsider a credit portfolio with total exposure , expected loss
and variance .     )(var L

pe      tot=μ
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Moment estimator for the inter-correlation bound for non-LHP portfolios:

"IRB approach" for inter-risk correlation

Recall the one-factor inter-correlation bound for the normal model:

Then match:
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Problem: Estimation of      for non-LHP portfolios…

Consider the normal one-factor model:

Copulas are invariant under monotonously increasing transformations.

Portfolio loss                                     is monotonously increasing in      . ( )
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and Z have the same copula as    and Z.L

and Z are bivariate normally distributed. Hence, they are associated by a 
Gaussian copula with parameter 

( ) .~,~corr γ=− ZY
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Credit and market losses are coupled by a Gaussian copula with parameter  .γ~

LHP approximation and copula aggregation

γ~

Y~−
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=

Calculate the ratio on the r.h.s of this equation for a non-LHP portfolio by using

Remedy: Recall that for the normal one-factor model we have

An "IRB approach" for copula aggregation

Problem: For non-LHP portfolios, the copula parameter    cannot 
be calculated directly because the portfolio is not homogenous.
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In the case of 1) we obtain the following estimator for the copula parameter :~γ
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2)  the general formula for               but the moment estimator for   .( )ZL,corr
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Context

• AEGON NV – a large multi-national 
multi-line life insurer

• Operates in US, UK, NL, CA, …
– Several business units within each country

• Developing an internal capital model 
based on a market value balance sheet 

• Need to meet needs of IFRS Phase II 
Solvency II, rating agencies etc
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Context : Economic Capital Basics

• Hold sufficient capital to withstand a 99.5% 
event over the course of 1 year

• Major Risk Types
– Underwriting Risk
– Credit Risk
– A/L Mismatch Risk
– Operational Risk

• Capital determined at the individual risk and 
business unit level and then aggregated up
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Aggregation Models

• Simple Models – assume all risks have an elliptical 
distribution (e.g. multivariate Gaussian or 
Student’s- t)  
– Pro: can aggregate capital using a correlation matrix

– Con: elliptical models  have an underlying spherical 
symmetry, may be too “special”

– Con: For a large company the correlation matrix may 
have tens of thousands of entries

• Some brutal pragmatism required no matter what
.  
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Aggregation Models

• More Complex Models 
– make more detailed assumptions about copula 

(dependency structure), marginal distributions 
etc. 

– Two potentially offsetting issues 
1. Complex model can capture tail dependence 
2. Another  diversification benefit emerges when 

component risks have finite variance and the 
model does not have too much symmetry  
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Complex Models – Presentation Tools

• For a complex model the aggregation process cannot 
be written as a simple formula                                
BUT 

• Under the reasonable assumption that the true capital 
aggregation process satisfies the scaling property

paper shows that there 
is always a family of local formula approximations of 
the form

 ),...,(),...,( 11 nn ccCccC λλλ =
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Presentation Tools

• diversification factors 

• tail correlation matrix 
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Non Elliptical Closed Form Example

• For         consider the  formula
• Exact for aggregating independent stable risks
• Approximate formula for aggregating 

independent compound risks whose severity 
distributions have  regularly varying tails 

• If           then risks have finite variance 
• If            then this is the standard aggregation 

formula

 0>ξ ξξ ][ /1∑=
i

icC

2/1<ξ

2/1=ξ
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Non Elliptical Closed Form Example
ξξ ][ /1∑=

i
icC

 Table 1.1 c 1 = c 2

ξ = 0.35 ξ = 0.50 ξ = 0.65

D=C/(c 1 + c 2 ) 64% 71% 78%

D 1, D 2 64% 64% 71% 71% 78% 78%

D ij 116% -35% 100% 0% 95% 28%
-35% 116% 0% 100% 28% 95%
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Non Elliptical Closed Form Example

• Example Suggests:
– The standard formula may be conservative 

when aggregating risks whose tail indices 
are less than ½.
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Main Conclusions 
• In the absence of elliptical symmetry:

– Tail dependence makes aggregation results 
more conservative (intuitive)

– Lighter tails                 make results more 
liberal

• In the presence of elliptical symmetry
– Neither effect matters to the aggregation 

process
• Can always locally approximate a complex 

model with a simple one

2/1<ξ
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Other Contents in the Paper
• Methods for estimating 

– diversification factors 

– tail correlation matrices 
from real or simulated data

• Some insights into what is, and is not, 
important when choosing marginal 
distributions

• A number of more  “realistic” examples
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formations

2. χ–Plots to help us visualize dependence
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Sklar’s Theorem
Let F(x1, . . . , xn) be an n–dimensional distribution function
with continuous marginals F1,F2, . . . ,Fn. Then there exists
a unique copula function C: [0, 1]n

→ [0, 1] such that

F(x1, x2, . . . , xn) = C (F1(x1),F2(x2), . . . ,Fn(xn)) .

One can also move in the other direction:
Copula +Marginals→ Joint Distribution.
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Copulas and increasing transformations
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Remove marginals to study dependence
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To understand dependence, rank transform your data to
eliminate the marginals as copulas are invariant under
strictly increasing transformations.
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The χ-Plot helps visualize dependence
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χ-Plot Examples
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χ-Plot Examples (Normal copula)
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χ-Plot Examples (Clayton copula)
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χ-Plot Examples (Frank copula)
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The Pair–Copula Construction
Given an n–dimensional joint density function f (x1, . . . , xn)
do the following:

1. ‘Factorize’ it into a product of conditional densities

2. Rewrite each conditional density from the previous
step into a product of bivariate copulas and marginal
densities

3. Model each bivariate copula via one of the many
choices: normal, t, Frank, Gumbel, Galambos, Clayton,
etc. . .
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Three dimensional example
Given f (x1, x2, x3) we can apply steps (1) and (2) to get:

f (x1, x2, x3) = f1(x1) · f2|1(x2|x1) · f3|12(x3|x1, x2)

= f1(x1) ·

c12

(
F1(x1),F2(x2)

)
· f2(x2) ·

c13|2

(
F1|2(x1|x2),F3|2(x3|x2)

)
·

c23

(
F2(x2),F3(x3)

)
· f3(x3).
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Vines to organize decompositions
The decomposition of f (x1, . . . , xn) in the previous slide into
pair–copulas and marginal densities is not unique.

D-vines and canonical vines are two graphical models that
help us organize a subset of all possible decompositions.

Both consists of sequences of trees that show us how to
write a joint density function into pair–copulas and mar-
ginal densities.
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Four dimensional canonical vine
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Four dimensional D-vine
1 2 3 412 23 34
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Example: Currency Rate Changes
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Monthly changes in foreign currency rates to US dollar.
Data Source: FRED database from the Federal Reserve Bank of St. Louis.



2008 ERM Symposium

Initial ML–estimates for canonical vine

ca sd jp

ca–sd sd–jp

Gumbel
1.17

Frank
3.45

Independent

1. Bivariate ML–estimates are easy to calculate

2. These are just initial estimates used to start a global
ML–estimation



2008 ERM Symposium

Maximum likelihood parameter estimates

Pair-copula Family ML estimate
Canada–Sweden Gumbel 1.11
Japan–Sweden Frank 1.62
Canada–Japan given Sweden Independent


