

2010 CLRS Concurrent Session ST-7 Stephen Lowe and Yi Jing

September 21, 2010

Today's agenda

- Defining the problem
- Performance testing and the actuarial control cycle
- Case studies real-world results

- This presentation is based on the paper
 Claim Reserving: Performance Testing and the Control Cycle
 - by Yi Jing, Joseph Lebens, and Stephen Lowe
 - Published in Variance (2009 V3 I2), available at www.variancejournal.org

Questions for the reserving actuary

- How do you know that the methods you are currently using are the "best"?
 - What evidence supports your selection of methods?
 - What are the right weights for combining the results of the methods?
 - How do you decide when to change methods?
 - What is the confidence range around estimates from each method?
 - How do you evaluate the cost/benefit of developing new input data sources or implementing more complex methods?
- How do you measure and manage reserve risk?
 - How do you avoid overconfidence in the work of "unseasoned" actuaries?

The results of our research illustrate the prevalence of actuarial overconfidence

2004 Confidence Quiz in Emphasis

The Quiz

- Objective: To test respondents understanding of the limits of their knowledge
- Respondents were asked to answer ten questions related to their general knowledge of the global property/casualty industry
- For each answer, respondents were asked to provide a range that offered a 90% confidence interval that they would answer correctly
- Ideally (i.e., if "well calibrated"), respondents should have gotten nine out of ten questions correct

Note: Based on 374 respondents as of 4/5/04. Profile of respondents: 86% work in P/C industry; 73% are actuaries.

Reserves are forecasts!

- An actuarial method is used to produce a forecast of future claim payments
- An actuarial method consists of
 - An algorithm
 - A data set
 - A set of intervention points
- The actuary must
 - 1. Choose a finite set of methods $\{m_1, m_2, ..., m_n\}$ from the universe M
 - 2. Choose a set of weights $\{w_1, w_2, ... w_n\}$ to combine the results of each method together
- Performance testing, via a formal control cycle, can help the actuary make these choices in a rigorous manner

$$\hat{L}_{m}^{(t)} = m(a, d, p)$$

$$L^{(t)} = m(a, d, p) + \varepsilon_{m}$$

Formally testing alternative methods yields some interesting and counterintuitive results

- Sometimes projecting case reserves is the best method
- Methods that use claim counts and averages outperform
- Methods that formally adjust for changing claim settlement rates or changing case reserve adequacy can produce better estimates
- The degree of correlation between methods is an important consideration in selecting methods, and weights used to combine them
- Hindsight errors are larger than those predicted by some stochastic methods

An aside: Case outstanding development

 Case reserve development factors inferred from selected paid and reported development factors

	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108	108-120
Paid ATA Developmen Factors	4.000	2.000	1.650	1.350	1.180	1.080	1.030	1.010	1.000
Cumulative Development Factors	23.625	5.906	2.953	1.790	1.326	1.124	1.040	1.010	1.000
Percent Unpaid	95.8%	83.1%	66.1%	44.1%	24.6%	11.0%	3.9%	1.0%	0.0%
Reported ATA Developmen Factors	1.960	1.380	1.240	1.150	1.070	1.024	1.009	1.003	1.000
Cumulative Development Factors	4.277	2.182	1.581	1.275	1.109	1.036	1.012	1.003	1.000
Percent Unreported	76.6%	54.2%	36.8%	21.6%	9.8%	3.5%	1.2%	0.3%	0.0%
Percent in Case Reserves	19.1%	28.9%	29.4%	22.5%	14.8%	7.5%	2.7%	0.7%	0.0%
Case Reserve Development Factor	5.001	2.875	2.251	1.957	1.665	1.468	1.443	1.433	nm

Performance testing yields a formal measure of skill

- The skill of a method is measured by: $Skill_m = 1 mse_m/msa$
 - mse = mean squared error
 - msa = mean squared anomaly
- Skill is the proportion of variance "explained" by the method

Performance testing of reserving methods can be part of an institutionalized control cycle

The Actuarial Control Cycle for the Reserving Process Embedding Reserve Risk Management

Formal Performance Testing

- Are the current methods appropriate? Would changes to methods improve estimation skill?
- Are the data and other input accurate and sufficient? Would improvements or expansion of data improve estimation skill?
- Are there opportunities to improve process flow?
- Are emerging estimation errors within tolerances?

Reserving Process Elements

- Data used
- Actuarial methods employed
- Operational input
- Judgments and intervention points
- Process flow and timeline
- Quality assurance process

Case Studies

- US Personal Auto Liability
 - Skill of chain-ladder methods
 - 2. Selecting optimal weighting between methods
 - 3. Validating a stochastic reserving model
- Selecting development factors
 - 4. US Personal Auto Liability
 - 5. US Other Liability Occurrence

State Farm – Personal Auto Liability – Schedule P Data

Paid Claim Development Data (in \$ millions)

Accident				i did Oi		pinoni bat	ω (ψ	ono,			
Year	1	2	3	4	5	6	7	8	9	10	11+
1983	1,240	978	424	220	110	61	32	20	11	7	15
1984	1,437	1,164	523	269	143	80	44	27	15	8	18
1985	1,647	1,384	618	355	184	92	54	27	13	8	13
986			_					_		8	13
87	Hist	torical	estimat	tes we	re mad	le at nii	neteen	prior y	/ear-	9	13
88	end	ls and	compa	ared wi	th actu	al run-	off to r	neasur	e skill	7	9
39	CITO	is, and	compa	ai Ca vvi	iii acio	iai ruii		iicasai	C Sixili	10	17
90	For	ır moth	ods we	oro toci	tod					12	19
91 92	• ୮୦୯	ıı ıneui	ous we		leu					9	24
	_a P	aid cha	in ladde	r (\$_WA	iahtad I	atast ai	aht)			10 13	18 27
)3)4	• 1	aid Glia	iii iaddd	η (ψ-ννο	ignica	alesi ei	grit)			14	42
	• R	 Reported chain ladder (\$-weighted latest eight) 								15	33
		•		`	· ·		O	,		14	35
•	• C	ase out	standin	g chain	ladder	(inferre	d case	develop	ment	16	41
8			rom pay	•		`		•		17	36
99	ų.		ioiii pay	illolle a	ina rope	nung pe	, ,			22	
0	• V	/eighted	daverag	ge of ab	ove thr	ee meth	nods, us	sing indi	icated		
01		ptimal v	•	,			,	3			
002	O	puillai v	veignio								
003											
004	5,234	3,215	1,385	876	485						
05	5,168	3,171	1,433	863							
006	5,174	3,213	1,453								
007	5,365	3,421									
800	5,465										

Summary of performance test results over nineteen-year hindsight test period

Observed skill varies by method and maturity

 Note that skill can be negative (e.g., paid method at 36 months), implying that the method induces volatility rather than explaining it

Indicated optimal weights by maturity reflect variances and correlations of errors

@ 24 months	Paid	Reported	Case OS	Std Dev	Weights
Paid CL	100%	33%	-6%	1.84%	.321
Reported CL		100%	92%	1.44%	.679
Case OS CL			100%	2.65%	.000

@ 84 months	Paid	Reported	Case OS	Std Dev	Weights
Paid CL	100%	85%	28%	.23%	.000
Reported CL		100%	74%	.13%	.349
Case OS CL			100%	.12%	.651

Results can be used to validate stochastic reserving models

Methods for selecting age to age (ATA) loss development factors

Simple Average	$\overline{ATA} = \frac{\sum_{i=1}^{n} ATA_{i}}{n}$
Maximum Likelihood	$MLE = e^{\hat{\mu} + \hat{\sigma}^2/2}$, assume lognormal distribution
	$\hat{\mu} = \frac{\sum_{i=1}^{n} \log(ATA_i)}{n} \qquad \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (\log(ATA_i) - \hat{\mu})^2}{n}$
Volume- Weighted Average	$\overline{ATA} = \frac{\sum_{i=1}^{n} L_{2,i}}{\sum_{i=1}^{n} L_{1,i}}$
Latest Observation	$\overline{ATA} = ATA_n$ Which method is best? What is the best value of ATA

US Personal Auto Liability

Actual paid ATA development factors from 12 to 24 months

Sample calculations of ATA factor predictive skill

Accident	12 to 2	24 ATA Fac	ctors	Anomalies			Erro	ors
Year	Actual	WA-7	MLE-7	Actual	WA-7	MLE-7	WA-7	MLE-7
1990	1.856	1.876	1.864	0.164	0.184	0.172	0.020	0.008
1991	1.841	1.879	1.874	0.149	0.187	0.182	0.038	0.033
1992	1.818	1.878	1.879	0.126	0.186	0.187	0.060	0.061
1993	1.804	1.870	1.875	0.112	0.178	0.183	0.066	0.071
1994	1.756	1.858	1.866	0.064	0.166	0.174	0.102	0.110
1995	1.707	1.834	1.844	0.015	0.142	0.152	0.127	0.137
1996	1.685	1.802	1.811	(0.007)	0.110	0.119	0.117	0.126
1997	1.682	1.773	1.781	(0.010)	0.081	0.089	0.091	0.099
1998	1.658	1.749	1.756	(0.034)	0.057	0.064	0.091	0.098
1999	1.669	1.726	1.730	(0.023)	0.034	0.038	0.057	0.061
2000	1.689	1.707	1.708	(0.003)	0.015	0.016	0.018	0.019
2001	1.656	1.692	1.692	(0.036)	(0.000)	(0.000)	0.036	0.036
2002	1.607	1.677	1.678	(0.085)	(0.015)	(0.014)	0.070	0.071
2003	1.603	1.661	1.664	(0.089)	(0.031)	(0.028)	0.058	0.061
2004	1.614	1.649	1.652	(0.078)	(0.043)	(0.040)	0.035	0.038
2005	1.614	1.640	1.642	(0.078)	(0.052)	(0.050)	0.026	0.028
2006	1.621	1.634	1.636	(0.071)	(0.058)	(0.056)	0.013	0.015
2007	1.638	1.628	1.629	(0.054)	(0.064)	(0.063)	(0.010)	(0.009)
2008	1.636	1.622	1.622	(0.056)	(0.070)	(0.070)	(0.014)	(0.014)
Average =	1.692	1.745	1.748					
	Bias =	3.1%	3.3%					
			MSA =	0.006		MSE =	0.004	0.005
						Skill =	33.5%	24.7%

Lack of volatility, coupled with trend in ATA factors, causes long-term averages to have low skill

- Simple average of latest 7 factors is slow to respond to trend in factors
 - Predictive skill of simple average of latest 7 is 24%; very poor fit to pattern of anomalies
 - Predictive skill of simply using latest 1 observation is 90%; most of variation is explained

US Personal Auto Liability

Actual reported ATA development factors from 12 to 24 months

Summary of measured skill for ATA selection methods

US Personal Auto Liability

12 to 24 months paid and reported development factors

ATA Selection Method	Paid Skill	Reported Skill
Simple Average – Latest 1	89.5%	33.4%
Simple Average – Latest 2	79.8%	20.9%
Simple Average – Latest 3	70.2%	12.5%
Simple Average – Latest 7	24.4%	-25.8%
Weighted Average – Latest 7	33.5%	-15.6%
Maximum Likelihood – Latest 7	24.7%	-25.8%

When using 7 observations, weighted average has *highest* skill, better than MLE

US Other Liability Occurrence

Actual paid ATA development factors from 12 to 24 months

US Other Liability Occurrence

Actual reported ATA development factors from 12 to 24 months

Summary of measured skill for ATA selection methods

US Other Liability Occurrence

12 to 24 months paid and reported development factors

ATA Selection Method	Paid Skill	Reported Skill
Simple Average – Latest 3	-63.7%	14.7%
Simple Average – Latest 6	-37.7%	14.0%
Simple Average – Latest 7	-29.9%	11.2%
Weighted Average – Latest 7	-35.2%	9.9%
Maximum Likelihood – Latest 7	-28.8%	11.1%

When using 7 observations, weighted average has *lowest* skill, MLE about the same as simple average

Good reasons to do performance testing

- Opportunity to improve accuracy of estimates
- 2. Formal rationale for selected actuarial methods
- 3. Input to development of reserve ranges
- 4. Cost / benefit of enhancements to data and systems
- 5. Supports Solvency II / Economic Capital
 - Embeds reserve risk management
 - Empirical validation of stochastic reserve risk models
- 6. Manage actuarial overconfidence