

General Idea

Look at sensitivity of reserves to each point in the triangle

Measured by derivative of reserves wrt each incremental point

Good model would not be overly sensitive to any point

Sensitive to point means sensitive to random component of point

Use as a test of models

If test indicates problem points, try to find alternative model

CHARTIS **Robust Methods** Data is generated as a sample from model process Classical view Efficiency of methods like MLE come from this view Could be a more complex process that is generating the data and model is a convenient simplification **■**Problems • Even a few points generated by a different process can throw off the estimated parameters **■**Responses Identify and exclude outliers Try to understand when outliers arise and not use model in those circumstances Try to find models that are not so influenced by those points

Influence CHARTIS CHARTIS

- ■Excluding points ;
- Look at change in parameters from leaving out observations
 - Done for each point
 - Called empirical influence function
- Sample size times change from excluding a point is called gross error sensitivity (GES)
- Look for estimators with low GES but close to efficiency of MLE
- ■Changing points —»
- Look at change in parameters or predictions from changing a point
- E.g., take the derivative of the prediction with respect to each point
 - If the points have a lot of randomness, a point with strong effect will have strong effect from its random component

Reserving Application

Leaving out cells can be awkward so look at **■**Effect of changes derivative of reserve wrt each point in triangle Called impact of the cell on the reserve From Tampubolon PhD thesis Examples from previous CAS papers Derivatives usually done numerically ■Methodology • Redo reserve estimate after small change in Also look at generalized degrees of freedom Change in fitted value for a cell wrt **GDFs** observed value A better measure of degrees of freedom than just counting parameters when model is non-linear GDFs may help understand impacts

6

General Observations

■Chain ladder —»

- All 3 corners of triangle have fairly high impact
 - Lower left
 - All development factors apply to it
 - Impact = cumulative factor
 - Upper right
 - Development factor applies to all accident years
 - Upper right
 - Increasing it reduces all development factors
 - Impact is thus negative and perhaps large

Reducing Impacts □Upper right —» □ Trending and averaging factors in the tail □ Using additive constants for the final lags □ Both useful as individual factors rarely significant at the end □ Consider alternatives to chain ladder □ Cape Cod method models all accident years at same level □ E.g. for on-level loss ratios □ Intermediate models might have just a few accident year levels

> Examples

```
Example 1 - Chain Ladder Triangle and Impacts
                                                              L9 L10 L11 CHARTIS
  L0
         L1
                        L3
                               L4
                                      L5
                                            L6
                                                  L7
                                                         L8
                 L2
 11,305 18,904 17,474
                       10,221
                              3,331 2,671
                                             693
                                                  1,145
                                                         744
                                                              112
                                                                    40
                                                                        13
 8,828 13,953
                                                                    16
              11,505
                       7,668
                              2,943 1,084
                                             690
                                                   179
                                                        1,014
                                                              226
                                                                        616
 8,271 15,324
                9,373
                       11,716
                              5,634 2,623
                                             850
                                                   381
                                                         16
                                                              28
                                                                   558
 7,888 11,942
               11,799
                       6,815
                              4,843
                                     2,745
                                            1,379
                                                   266
                                                         809
                                                               12
 8,529 15,306
               11,943
                       9,460
                              6,097
                                     2,238
                                             493
                                                   136
                                                          11
 10,459 16,873
                              3,524
                                                  1,190
               12,668
                       9,199
                                     1,027
                                             924
                              4,631
 8,178 12,027
               12,150
                       6,238
                                     919
                                             435
 10,364 17,515 13,065 12,451
                              6,165 1,381
 11,855 20,650 23,253 9,175 10,312
 17,133 28,759 20,184 12,874
 19,373 31,091
               25,120
                            L0
                                L1
                                             L3
                                                              L6
                                                                                    L10
 18,433
        29,131
                    AY0
                          -1.21
                                -0.34
                                      0.04
                                            0.39
                                                  0.73
                                                       1.10
                                                             1.48
                                                                   1.85
20,640
                    AY1
                          -1.21 -0.34
                                      0.04
                                            0.39
                                                 0.73
                                                       1.10
                                                             1.48
                                                                  1.85
                                                                              3.35
                                                                                   4.61
                                                                              3.39
                    AY2
                          -1.17 -0.29
                                      0.08
                                            0.44
                                                 0.78
                                                       1.14
                                                             1.53
                                                                  1.89
                                                                        2.51
                                                                                   4.66
                    AY3
                          -1.15 -0.27
                                      0.10
                                            0.46
                                                 0.80
                                                       1.16
                                                            1.55
                                                                  1.91
                                                                        2.53
                                                                              3.41
                    AY4
                                                            1.56
                                                                  1.92
                                                                        2.54
                          -1.14 -0.27
                                      0.11
                                            0.46 - 0.80
                                                      1.17
                    AY5
                          -1.10 -0.23
                                      0.15
                                            0.50
                                                 0.84
                                                            1.59
                                                                  1.96
                                                       1.21
                    AY6
                          -1.07
                               -0.20
                                      0.18
                                            0.53
                                                 0.87
                                                       1.24
                                                             1.62
                    AY7
                          -1.03 -0.16
                                      0.22
                                            0.57
                                                 0.91
                                                       1.28
                    AY8
                          -0.95 -0.08
                                      0.30
                                            0.65
                                                 0.99
                    AY9
                          -0.73
                               0.14
                                      0.52
                                           0.87
                    AY10
                          -0.31 0.57
                                      0.95
                    AY11
                           0.70
                                1.58
                    AY12
                           4.95
```

10

12

Regression model

■Accident years —»

■ All separate

■Lags

■ First 5 development factors

● Plus single additive constant for all cells

● Picks up development after 5 also

■ Diagonals

■ Effects included for 4th 5th 8th 10th and 11th diagonals

■ Residuals

■ Better fit than chain ladder

Example 1 – Regression Model and Impacts (constant development after lag 5 + diagonals) HARTIS

Problem of IID Normal Residuals

Robust analysis showed weakness of alternatives

Example 2 – Taylor-Ashe Triangle and Impacts (Impacts same for CL and ODP) CHARTIS CHARTIS

Lag 0	L1	L2	L3	L4	L5	L6	L7	L8	L9
357,848	766,940	610,542	482,940	527,326	574,398	146,342	139,950	227,229	67,948
352,118	884,021	933,894	1,183,289	445,745	320,996	527,804	266,172	425,046	
290,507	1,001,799	926,219	1,016,654	750,816	146,923	495,992	280,405		
310,608	1,108,250	776,189	1,562,400	272,482	352,053	206,286			
443,160	693,190	991,983	769,488	504,851	470,639				
396,132	937,085	847,498	805,037	705,960					
440,832	847,631	1,131,398	1,063,269						
359,480	1,061,648	1,443,370							
376,686	986,608								
344,014									

	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9
AY0	-3.11	-1.62	-1.01	-0.45	0.01	0.51	1.16	2.27	4.54	12.59
AY1	-2.87	-1.38	-0.77	-0.20	0.25	0.76	1.40	2.51	4.78	
AY2	-2.43	-0.93	-0.33	0.24	0.69	1.20	1.85	2.95		
AY3	-2.21	-0.72	-0.11	0.45	0.91	1.41	2.06			
AY4	-1.95	-0.46	0.15	0.71	1.17	1.67				
AY5	-1.67	-0.18	0.43	0.99	1.45					
AY6	-1.25	0.25	0.85	1.42						
AY7	-0.14	1.35	1.96							
AY8	2.07	3.57								
AY9	13.45									

16

Regression model

Impacts of Regression Model on TA

	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9
AY0	0.65	-0.82	-1.08	-2.07	-0.87	0.97	-0.32	0.33	0.53	12.06
AY1	1.45	-0.02	0.68	0.60	-0.25	1.90	1.40	1.61	1.57	
AY2	1.64	0.75	-0.19	0.84	0.90	1.93	1.66	1.36		
AY3	1.26	0.43	-0.21	0.97	-0.36	1.70	1.71			
AY4	1.62	0.08	0.67	0.37	0.63	1.35				
AY5	1.19	-0.11	0.57	0.51	1.17					
AY6	2.56	1.19	0.91	1.13						
AY7	2.18	1.27	1.49							
AY8	1.72	0.92								
AY9	1.59									

TA Regression

■Remaining problem —» Upper right

■Alternate model

- Lag 9 gets half the % paid as low level
 Consider as a trend to 0% for lag 10
 Still force lag factors to sum to 1.0
 Largest impact now 2.35, and only 2 above 2

Summary and Extensions

- ■Robust analysis looks for observations with high impact on result
- ■Problem in that random component would have high impact
- ■Derivative of reserve wrt each cell used as impact measure
- ■Add to list of model checks
- ■Led to finding improved models in example cases
- ■Possible extension: multiply impact by modeled standard deviation of cell estimate
 - •Would combine impact of a small change with degree of change likely