
1997 Atlanta Casualty Loss Reserve Seminar Track #3

1

- I. Downward Bias for High-Low Averages
- II. Study Purposes, Approach, and Data
- III. Review Results of AM Best Data
- IV. Simulation Results for Limited Volume Data
- V. Conclusions

- I. Downward Bias for High-Low Averages
- Wu, C. P., "Bias of Excluding High and Low Data for Long-Tailed Distributions," *Journal of Actuarial Practices*, 4, 1996, 143: 158.

- I. Downward Bias of High-Low Averages
- Wu, C. P., "Bias of Excluding High and Low Data for Long-Tailed Distribution," *Journal of Actuarial Practices*, 4, 1996, 143: 158.
 - Lognormal distribution

 $\ln X \sim N(\mu, \sigma^2)$

Downward Bias = E(X)'/E(X) - 1

$$= \{ \Phi[\Phi^{-1}(1-p) - \sigma] - \Phi[\Phi^{-1}(p) - \sigma] \} / (1-2p)$$
(1)

 Φ : Standard normal inverse function

p: % of upper and lower data excluded

- I. Downward Bias of High-Low Averages
- The indicated bias given in Equation (1) depends on the amount of data being excluded (p) and the shape factor (σ), but not on the location factor, (μ): the higher the skewness, the higher the downward bias.
- The indicated bias given in Equation (1) is based on very large amount of data.
- Equation (1) can be used to correct the downward bias.

- A Case Study: Chain-Ladder Loss Reserving Approach
 - Assume that age-to-age loss development factors are lognormally distributed:

 $\ln D_i \sim N(\mu_i, \sigma_i^2)$

- Age-to-ultimate factors are also lognormally distributed:
 - $UD_i = D_i * D_{i+1} * D_{i+2....}$

 $\ln UD_{i} \sim N(\mu_{i} + \mu_{i+1} + \mu_{i+2} + \dots, \sigma_{i+1}^{2} + \sigma_{i+2}^{2} + \sigma_{i+3}^{2} + \dots)$

- If the lognormal parameters are known for D_i , Equation (1) can be used to correct the bias associated with the high-low averages.

Exhibit 2. Paid Loss and Loss Development Factor Triangles for Industry Medical Malpractice Claims-Made Insurance*

Paid Losses:

(in Millions)

Accident	Earned			De	velopme	ent	Age, Mo	nth						
Year	<u>Premium</u>	<u>12</u>	24		36		48		<u>60</u>	<u>72</u>	<u>84</u>	<u>96</u>	108	<u>120</u>
1986	\$ 14,322	\$ 559	\$ 1,532	\$	2,807	\$	4,082	\$	5,299	\$ 6,130	\$ 6,674	\$ 7,104	\$ 7,362	\$ 7,505
1987	\$ 17,371	\$ 556	\$ 1,737	\$	3,075	\$	4,395	\$	5,680	\$ 6,497	\$ 7,105	\$ 7,504	\$ 7,695	
1988	\$ 17,340	\$ 1,006	\$ 2,185	\$	3,676	\$	5,445	\$	6,624	\$ 7,456	\$ 8,063	\$ 8,410		
1989	\$ 16,493	\$ 1,105	\$ 2,441	\$	4,470	\$	6,053	\$	7,257	\$ 8,214	\$ 8,791			
1990	\$ 16,582	\$ 1,061	\$ 2,885	\$	4,643	\$	6,318	\$	7,628	\$ 8,507				
1991	\$ 16,272	\$ 1,351	\$ 2,896	\$	4,751	\$	6,411	\$	7,632					
1992	\$ 15,785	\$ 1,326	\$ 2,904	\$	4,830	\$	6,567							
1993	\$ 15,902	\$ 1,304	\$ 3,085	\$	4,898									
1994	\$ 16,853	\$ 1,348	\$ 3,320											
1995	\$ 17,102	\$ 1,402												

Age-to-Age Factors:											
Accident	Earned		[Developmer	nt Age, Mon	ths					
Year	<u>Premium</u>	<u>12-24</u>	24-36	36-48	48-60	<u>60-72</u>	<u>72-84</u>	84-96	<u>96-108</u>	<u>108-120</u>	
1986	\$ 14,322	2.7436	1.8318	1.4541	1.2982	1.1568	1.0888	1.0644	1.0363	1.0195	
1987	\$ 17,371	3.1250	1.7700	1.4294	1.2925	1.1437	1.0936	1.0562	1.0255		
1988	\$ 17,340	2.1724	1.6825	1.4811	1.2166	1.1257	1.0814	1.0430			
1989	\$ 16,493	2.2090	1.8311	1.3542	1.1989	1.1318	1.0703				
1990	\$ 16,582	2.7188	1.6092	1.3607	1.2073	1.1152					
1991	\$ 16,272	2.1446	1.6404	1.3493	1.1904						
1992	\$ 15,785	2.1905	1.6630	1.3595							
1993	\$ 15,902	2.3659	1.5876								
1994	\$ 16,853	2.4625									
1995	\$ 17,102										
Age-to-Age Development Factors:											Tail**
5 Years Average***		2.3764	1.6663	1.3810	1.2211	1.1346	1.0835	1.0545	1.0309	1.0195	1.0515
3-of-5 Average***		2.3396	1.6376	1.3581	1.2076	1.1337	1.0835	1.0545	1.0309	1.0195	1.0515
Age-to-Ultimate Development Factors:											
5 Years Average***		9.5669	4.0257	2.4160	1.7495	1.4327	1.2627	1.1654	1.1051	1.0720	1.0515
3-of-5 Average***		8.9953	3.8448	2.3479	1.7287	1.4315	1.2627	1.1654	1.1051	1.0720	1.0515

1997 Atlanta CLRS

by Cheng-sheng Peter Wu

Exhibit 3. Lognormal Parameters for Loss Development Factors

Natural Logarithm Transformation of the Age-to-Age Factors in Exhibit 2:

Acc	cident		0	Developmer	nt Age, Mon	ths				
Y	<u>'ear</u>	<u>12-24</u>	<u>24-36</u>	<u>36-48</u>	<u>48-60</u>	<u>60-72</u>	<u>72-84</u>	<u>84-96</u>	<u>96-108</u>	<u>108-120</u>
	1986	1.0093	0.6053	0.3744	0.2610	0.1456	0.0851	0.0624	0.0356	0.0193
	1987	1.1394	0.5710	0.3572	0.2566	0.1343	0.0895	0.0547	0.0251	
	1988	0.7758	0.5203	0.3928	0.1960	0.1184	0.0783	0.0421		
	1989	0.7925	0.6049	0.3032	0.1814	0.1238	0.0679			
	1990	1.0002	0.4757	0.3080	0.1884	0.1090				
	1991	0.7629	0.4950	0.2996	0.1743					
	1992	0.7841	0.5086	0.3071						
	1993	0.8611	0.4622							
	1994	0.9012								
	1995									
Age-to-Age Development Fa										
Lognormal Mean - All-Year Av	0	0.8918	0.5304	0.3346	0.2096	0.1262	0.0802	0.0531	0.0304	0.0193
Logonormal Variance - All-Year Av	<i>rerage</i>	0.0174	0.0032	0.0015	0.0015	0.0002	0.0001	0.0001	0.0001	0.0000

by Cheng-sheng Peter Wu

Exhibit 4. Modified High-Low Averages for Loss Development Factors

Age-to-Age Factors in Exhibit 2:

Accident		I	Developmer	nt Age, Mor	nths					
Year	<u>12-24</u>	<u>24-36</u>	<u>36-48</u>	<u>48-60</u>	<u>60-72</u>	<u>72-84</u>	<u>84-96</u>	<u>96-108</u>	<u>108-120</u>	
1986	2.7436	1.8318	1.4541	1.2982	1.1568	1.0888	1.0644	1.0363	1.0195	
1987	3.1250	1.7700	1.4294	1.2925	1.1437	1.0936	1.0562	1.0255		
1988	2.1724	1.6825	1.4811	1.2166	1.1257	1.0814	1.0430			
1989	2.2090	1.8311	1.3542	1.1989	1.1318	1.0703				
1990	2.7188	1.6092	1.3607	1.2073	1.1152					
1991	2.1446	1.6404	1.3493	1.1904						
1992	2.1905	1.6630	1.3595							
1993	2.3659	1.5876								
1994	2.4625									
1995										
Lognormal Parameters from Exhibit 3:										
Lognormal Mean - All-Year Average	0.8918	0.5304	0.3346	0.2096	0.1262	0.0802	0.0531	0.0304	0.0193	
Logonormal Variance - All-Year Average	0.0174	0.0032	0.0015	0.0015	0.0002	0.0001	0.0001	0.0001	0.0000	
3-of-5 Average	2.3396	1.6376	1.3581	1.2076	1.1337	1.0835	1.0545	1.0309	1.0195	1.0515
% of High and Low Data Excluded	2.3390	20.0%	20.0%	20.0%	20.0%	1.0035	1.0545	1.0309	1.0195	1.0515
Indicated Downward Bias	-0.68%	-0.12%	-0.06%	-0.06%	-0.01%					
Modified 3-of-5 Average	2.3557	1.6396	1.3590	1.2083	1.1338	1.0835	1.0545	1.0309	1.0195	1.0515
Modified 3-01-5 Average	2.3337	1.0590	1.5550	1.2005	1.1550	1.0055	1.0545	1.0309	1.0195	1.0010
Age-to-Ultimate Development Factors:										
5-Year Average	9.5669	4.0257	2.4160	1.7495	1.4327	1.2627	1.1654	1.1051	1.0720	1.0515
3-of-5 Average	8.9953	3.8448	2.3479	1.7287	1.4315	1.2627	1.1654	1.1051	1.0720	1.0515
Modified 3-of-5 Average	9.0799	3.8545	2.3509	1.7299	1.4317	1.2627	1.1654	1.1051	1.0720	1.0515

1997 Atlanta CLRS

by Cheng-sheng Peter Wu

Exhibit 5. Comparison of Utimate Losses and Reserves Across Different Averaging Techniques

(in Millions)

Age to Ultimate Loss Development Factors Total Reserves **Utimate** Losses Undeveloped Modfied Modfied Modfied Paid 5-Year 30-5 3œf-5 3**d**-5 3**d**-5 3d-5 Accident 3d-5 5-Year 5-Year Yeer Losses <u>Average</u> Average Average Average Average Average Average Average <u>Average</u> 1986 \$ 1.0515 1.0515 7,891 \$ 7,891 \$ 7,891 387 \$ 387 \$ 7,505 1.0515 \$ 387 \$ 8,249 \$ 8,249 \$ 1.0720 \$ 554 \$ 554 \$ 1987 \$ 7,695 1.0720 1.0720 \$ 8,249 554 884 \$ 1988 \$ 8,410 1.1051 1.1051 9294 \$ 9294 \$ 9,294 \$ 884 \$ 884 1.1051 \$ 1989 \$ \$ 1.454 \$ 8791 1.1654 1.1654 1.1654 10.244 \$ 10.244 \$ 10.244 1.454 \$ \$ 1.454 1990 \$ 8,507 1.2627 1.2627 1.2627 10,741 \$ 10,741 \$ 10,741 \$ 2,234 \$ 2234 \$ 2234 \$ 1991 \$ 7.632 1.4327 1.4317 10,934 \$ 10,925 \$ 10,926 \$ 3302 \$ 3293 \$ 3294 1.4315 1.7299 11,488 \$ 11,352 \$ 11,359 \$ 4,922 \$ 4,785 \$ 1992 \$ 6,567 1.7495 1.7287 \$ 4,793 1993 \$ 23509 4.898 24160 23479 \$ 11,833 \$ 11,499 \$ 11,514 \$ 6,935 \$ 6,602 \$ 6616 1994 \$ 3320 4.0257 3.8545 13.366 \$ 12.765 \$ 12.797 \$ 10,046 \$ 9,445 \$ 3.8448 \$ 9,477 1995 \$ 1.402 9,5669 9.0799 \$ 13,416 \$ 12,615 \$ 12,733 \$ 12014 \$ 11,212 \$ 11,331 89953 \$ 107,457 \$105,576 \$ 105,749 \$ 42,731 \$ 40,850 \$ 41,024 \$ 64,726 Total:

1997 Atlanta CLRS

II. Study Purposes, Data, Approach

- Study Purposes
 - Are real-world LDFs really long-tailed?
 - What is the level of downward bias for the real-world data?
 - How does the bias vary by line of business, data size, development age, and paid and incurred methods?
 - What is the effect of limited volume data on the bias?

II. Study Purposes, Data, and Approach

- Data
 - A total of 140 loss triangles from the AM Best 1996 database covering 1986 to 1995 loss development history.
 - Half are incurred triangles and half are paid triangles.
 - 7 major liability lines are reviewed: WC, PAL, CAL, MM-Occurrence, MM-Claims Made, PL, OL.
 - Half are large multiline and multistate companies and half are medium or small companies.

II. Study Purposes, Data, and Approach

- Approach
 - 3-of-5 factor averages vs. 5-year factor averages.
 - Straight loss development approaches are used.
 - Toward the tail, only straight averages are used.
 - No incurred tail is used and paid tail is equal to the ratio of incurred loss and paid loss at 120 months.
 - All data points are used to calculate the lognormal parameters.
 - Equation (1) is used to correct the bias.

III. Review Results of AM Best Data

- Are real-world LDFs long-tailed?
 - Assume that
 - > At development age i, a total loss of L_i are reported.
 - > From i to i+1, a total loss of l_i is further reported.

Both L_i and l_i can be approximated by lognormal distributions.
Then:

$$\begin{split} D_i &= (L_i + l_i) / L_i \\ ln(D_i) &= ln[1 + l_i / L_i] = c + ln(L_i) - ln(l_i) \\ \text{So, } ln(D_i) \text{ is normally distributed and } D_i \text{ is lognormally distributed.} \end{split}$$

III. Review Results of AM Best Data

- Are the real-world LDFs long-tailed?
 - # of data with lower reserve indications for 3-of-5 averages

Line of Business	<u>Paid</u>	Incurred	Total
WC	5	6	10
PAL	5	6	10
CAL	5	4	10
MM, Occurrence	10	10	10
MM, Claims-Made	9	6	10
PL	10	10	10
AL	<u>8</u>	<u>6</u>	<u>10</u>
Total	52	48	70

III. Review Results of AM Best Data

- What is the level of downward bias for the real-world data?
 - The high-low averages can easily lead to a double digit downward bias for highly volatile lines such as MM, PL, and OL

III. Review Results of AM Best Data

- How does the bias vary by line of business, data size, development age, and paid and incurred methods?
 - The bias is higher for more volatile lines.
 - The bias is higher for smaller companies.
 - For WC, PAL, CAL, the bias is insignificant after 72 months.
 - For MM, PL, and OL, the bias is still noticeable after 72 months.
 - There is no systematic difference in the bias level between paid and incurred development factors.

IV. Simulation Results for Limited Volume Data

- For the real-world applications, only limited volume of data is available, therefore Equation (1) needs to be adjusted because:
 - Sample parameters will be used as the true parameters.
 - 3-of-5 averages exclude the upper and lower 20% of 5 data points only.

IV. Simulation Results for Limited Volume Data

- Large scale of simulations are used to study limited volume effect:
 - Select a set of μ and σ .
 - Generate 4000 replicates and each replicate has 5 lognormal random data.
 - For each replicate, calculate the bias based on Equation (1) and the sample parameters. Compare the results when the true parameters are used.
 - Calculate the 3-of-5 averages for each of the 4000 replicates and compare the results to Equation (1).

IV. Simulation Results for Limited Volume Data Ratio of Average Bias - Sample Parameters vs True Parameters

			μ		
		<u>2.0</u>	<u>1.0</u>	<u>0.5</u>	<u>0.1</u>
	<u>1.2</u>	90.6%	91.5%	91.2%	91.8%
	<u>0.9</u>	93.2%	93.2%	94.9%	94.1%
σ	<u>0.5</u>	97.5%	97.7%	97.3%	97.9%
	<u>0.1</u>	99.5%	99.9%	99.5%	99.6%
	<u>0.05</u>	100.2%	98.8%	100.4%	100.9%

by Cheng-sheng Peter Wu

IV. Simulation Results for Limited Volume Data

Ratio of Simulated Bias to Equation (1)

			μ		
		<u>2.0</u>	<u>1.0</u>	<u>0.5</u>	<u>0.1</u>
	<u>1.2</u>	68.3%	67.5%	67.4%	67.1%
	<u>0.9</u>	80.7%	80.2%	80.6%	80.6%
σ	<u>0.5</u>	93.1%	92.8%	93.6%	93.8%
	<u>0.1</u>	99.8%	99.8%	99.9%	99.7%
	<u>0.05</u>	99.9%	99.9%	99.9%	99.9%

by Cheng-sheng Peter Wu

V. Conclusions

- Significant downward bias will exist if high-low averages are used for loss development factors.
- The bias is significant for highly volatile lines or small size of data.
- The bias for real-world data may become even higher when, for example, less mature data or quarterly data is used.

by Cheng-sheng Peter Wu

V. Conclusions

- What is the bias level of using high-low averages for loss development factors?
 - Downward bias level for 3-of-5 averages:

		Average		
	<u>1.2</u>	<u>1.5</u>	<u>2.0</u>	<u>3.0</u>
	1.5 -0.5 -1.0%			
	<u>2.0</u> –2.0~–5.0%	-1.0%~-2.0%		
Maximum	<u>3.0</u> -6.0~-12.0%	-4.0%~-10.0% -	-2.5%~-4.0%	
	<u>5.0</u>	-10.0%~-20.0% -	-7.0%~-15.0%	-3.0%~-6.0%
	<u>7.0</u>	-1	10.0%~-20.0%	-5.0%~-9.0%
	<u>10.0</u>			-12.0%~-25.0%

1997 Atlanta CLRS