The Concentration Charge: Reflecting Catastrophe Exposure Accumulation in Rates

Session CPP-54 March 12, 1998
CAS Ratemaking Seminar
Donald Mango
Zurich Centre Group L.L.C.

Why Have a Concentration Charge?

Answer: Exposure Balancing

- In theory Capital Market would diversify away exposure concentration
- True in theory, unsettled in practice
- Current measures inefficient, apply after policies are written:
 - Catastrophe Reinsurance
 - Exposure Indices and Exchanges
- What about exposure balancing at point of sale using insurance pricing structure?
 - would require Portfolio-State Dependent pricing

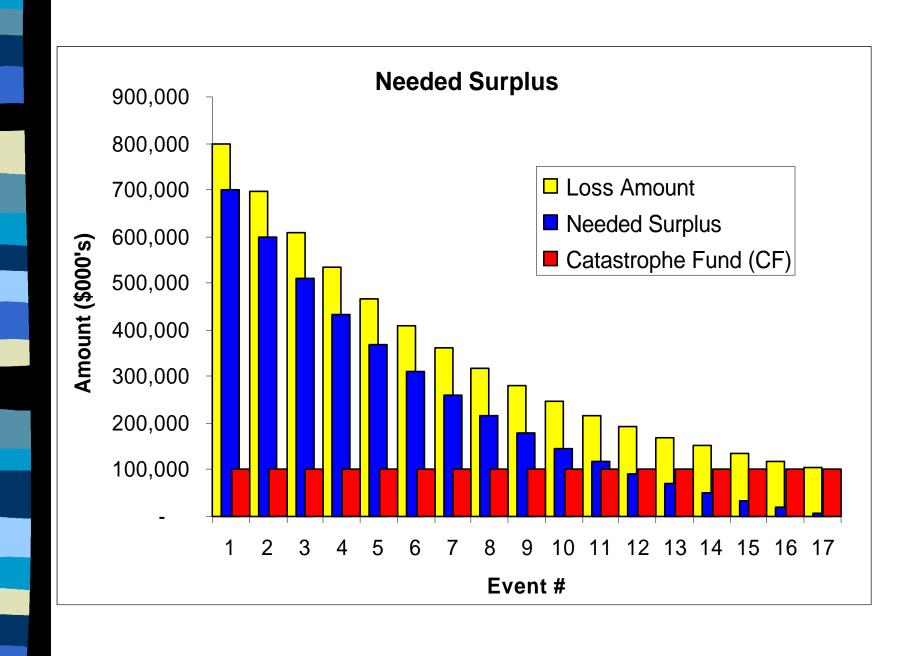
Portfolio State-Independent Pricing

- Filed Loss Cost / LCM approach is portfolio stateindependent (PSI)
- Manual Rate = loss cost + "state-independent" expenses (LAE, Commission, Taxes, Overhead)
- Quoted rate the same no matter if new policy is first or one hundred thousand and first such insured in their area
- Independent of the policies in-force when new policy is quoted -- the "state" of the portfolio

Portfolio State-Dependent Pricing

- No need, since loss costs and most expenses are PSI
- Exposure accumulation threatens solvency which is a cost
- How much it threatens solvency depends on exposure "state" of portfolio (policies in-force)
- Portfolio State Dependent

Barriers to Implementation


- No place to put the Concentration Charge in a filed loss cost/LCM structure
- Computationally Intensive
- Unfair Discrimination

Components of New Approach

- Needed Surplus Distribution
- Surplus Tiers
- Surplus Replenishment Period

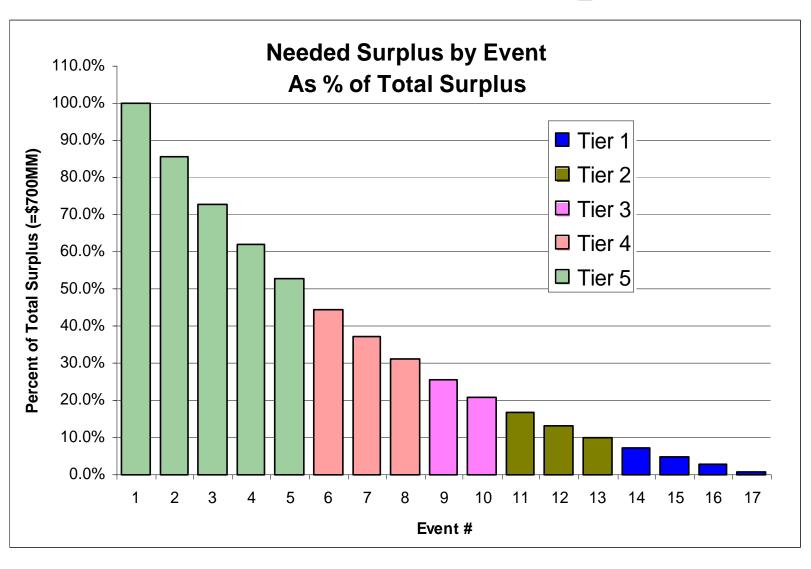
Needed Surplus Distribution

- Catastrophe Fund (CF) = Funds on hand to pay cat losses
- Needed Surplus for event i = NS(i)
 - -NS(i) = MAX [Event i Loss CF, 0]
 - Amount of Surplus funds needed to pay loss
- Can be expressed as a percentage of total available surplus
 - range from 0% to more than 100%

Surplus Tiers

- Economic impact of losing d% of surplus more severe as surplus decreases
 - e.g. Going from 100% --> 90% of surplus not as bad as going from 90% --> 80%
- Identify percentiles of surplus where "operational status" ("DEFCON") of firm changes
- Percentiles demarcate SURPLUS TIERS

Sample Surplus Tiers


Surplus Tier	Percent of Surplus Consumed	Impact
1	0-10%	None – Acceptable Variation
2	10-20%	Regulatory and Rating Watch
3	20-30%	Regulatory Oversight, Ratings Downgrade
4	30-50%	Regulatory Intervention
5	>50%	Reorganization, Runoff or Insolvency

Note the convention that higher numbered tiers represent deeper shocks and more severe impairment to the company.

Event Tiers

- Needed Surplus distribution associates events with % of total surplus consumed
- Tiers demarcated by % of total surplus consumed
- Each event has an associated Tier
 - "Tier 4" event consumes between 30% and 50% of surplus

Event Tiers Graph

The Concentration Charge

- Charge for a new policy added to a highly exposed area
- Depends upon to which Tier the new policy adds losses
- Propose using REPLENISHMENT OF DEPLETED SURPLUS as criteria for developing charge

Replenishment Periods

- Each tier is assigned a replenishment period
 - Higher tiers need to be replenished sooner
- Each additional \$1 of loss to that event exposes a dollar of surplus which must be replenished within that replenishment period
- Annual surplus replenishment load equal to inverse of replenishment period (in years)
 - e.g. To pay back \$1 in five years, collect 20 cents per year

Replenishment Periods (cont'd)

Surplus Tier	Percent of Surplus Consumed	Replenishment Period	Concentration Charge (CC)
1	0-10%	-	-
2	10-20%	5 Years	1/5 = 20%
3	20-30%	3 Years	1/3 = 33%
4	30-50%	2 Years	1/2 = 50%
5	>50%	1 Year	1/1 = 100%

The story so far...

- Needed surplus distribution by modeled event expressed as a percentage of total surplus
- Surplus tiers are percentile ranges of surplus within which a company's operational status is constant, but between which material changes occur
- Each tier has a replenishment period associated with it
- Each event has a tier and therefore a replenishment period
- Concentration charge = 1 / replenishment period

Pricing a New Account

- New account loss for event i = n_i
- Concentration Charge dollars by event

$$CC$$
\$_i = CC _i * n _i

Expected CC\$ over all events

$$CC$$
\$ = Σ_i [CC \$_i * p_i]

Concentration Charge (CC) = expense provision to be applied to the catastrophe loss cost

$$CC = CC$$
\$ / $\Sigma_i [n_i * p_i]$

Example: Homeowners

- Detailed approach = "continuous" PSD pricing
- More "discrete" approach for HO
- Territorial Loss Cost Multipliers
 - Concentration charge developed by territory
 - Loss-based expense included in LCM

Example: Homeowners

	Expense Item	Terr. Y	Terr. Z
(1)	Premium-Based Expense Load	31%	31%
(2)	Concentration Charge	15%	30%
(3)	Loss Cost Multiplier = [1 + (2)] / [1 - (1)]	1.667	1.884

Assumes the concentration charge is included as part of premium for determination of taxes, commission, and other variable expense provisions.

Example: Large Commercial Account

	<i>Item</i>	Identifier	LOW Account	HIGH Account
(1)	Expected Loss	$\sum_i [n_i * p_i]$	\$151.78	\$151.78
(2)	Expected Concentration Charge \$	CC\$	\$9.73	\$33.38
(3)	Concentration Charge = (2)/(1)	CC	6.41%	21.99%

Portfolio State Dependent Pricing and the CAS Ratemaking Principles

Ratemaking Principles

...important that proper actuarial procedures be employed to derive rates that protect the insurance system's financial soundness and promote equity and availability to insurance consumers

- Produces rates which directly reflect threats to financial soundness due to exposure accumulation
- Equitable among policyholders covered under different lines of business and/or different states, the collectibility of whose insurance is threatened by exposure accumulation

Portfolio State Dependent Pricing and the CAS Ratemaking Principles (cont'd)

Ratemaking Principles

 ...important that proper actuarial procedures be employed to derive rates that protect the insurance system's financial soundness and promote equity and availability to insurance consumers

- Portfolio state independent pricing represents an implicit subsidy among cat-exposed policyholders, policyholders in other states and/or lines and/or companies.
- Excessive exposure accumulation threatens the availability of insurance
- Exposure balancing via PSD pricing could lead to more availability

Portfolio State Dependent Pricing and the CAS Ratemaking Principles (cont'd)

Ratemaking Principles

- Principle 1: A rate is an estimate of the expected value of future costs.
- Principle 2: A rate provides for all costs associated with the transfer of risk.
- Principle 3: A rate provides for the costs associated with an individual risk transfer.

- PSD pricing is based on the view that the cost of an individual risk transfer -- writing a cat policy -- depends on the exposure levels already in force within the portfolio
- Insolvency is a potential future cost

Portfolio State Dependent Pricing and the CAS Ratemaking Principles (cont'd)

Ratemaking Principles

Principle 4: A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it is [based on Principles 1-3].

- A PSD pricing process can be as objective and fair as the current paradigm, if it is
 - Systematic
 - Based on sound economic principles
 - Objectively applied
 - Auditable
 - Not subject to distortion or fraud
- Not by definition unfairly discriminatory, instead reflecting consumption of a limited resource

Conclusions

- Provides a connection between current portfolio exposure levels, modeled losses, utility of surplus
- Requires a paradigm shift to PSD pricing
 - Regulatory and social issues to work through
 - Fairness
 - Order dependency
- Meant to be forward looking