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1. Matrices as Linear Mappings
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x is a point in n-dimensional real-number space.  It
packages n pieces of information.

How to multiply a vector by a scalar and how to add two
n-dimensional vectors are obvious.

Define the unit vector un,i as the Rn vector whose ith

element is one, the other elements being zeroes.
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By the properties of addition and scalar multiplication,
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Consider a linear mapping A: Rn→ Rm

Linear as to scalar multiplication: A(αx) = αA(x)

Linear as to vector addition: A(x1+x2) = A(x1)+A(x2).

In general,

Therefore, a linear mapping is uniquely determined by to
where it maps the unit vectors of Rn.
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Let Ai = A(un,i) ∈ Rm.  Every linear mapping can be represented by
the m×n matrix [A1 … An].  The ith column of the matrix specifies
the vector of Rm to which A maps the ith unit vector of Rn.

So,

This looks like matrix multiplication, although matrix
multiplication has not yet been defined (see slide 14).

How to multiply a matrix by a scalar and how to add two m×n
matrices are obvious.
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If A and B are two linear mappings from Rn to Rm, then,

Matrix addition is commutative and associative.  There is a zero
matrix, and every matrix has an additive inverse.  These are the
addition characteristics of rings.

But what about matrix multiplication?



8

B A x B A x

B A

B A

B A B A x

= 1

= 1

• =

=
F
HG

I
KJ

=

=

∑

∑

b gb g b gc h

b g
b g b gb g

x

x

i
i

n

i

i
i

n

i

n1 L

Let B (l×m) represent a mapping from Rm to Rl.  Let ‘•’
represent the composition of mappings.  B•A maps from Rn to
Rl.  But:

The columns of B•A make sense.  For example, A maps un,1 to A1,
then B maps A1 to B(A1).  So the ith column of B•A shows to what
vector of Rl B•A maps un, i.
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Composition (•) is always a commutative operator:
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A B C x A B C x

A B x C x

A B x A C x

A B x A C x

B C A x B C A x

B A x C A x

B A x C A x x
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Composition distributes over matrix addition:
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Being commutative and distributive, the composition of linear
mappings behaves like multiplication.  More accurately,
multiplication of two matrices is really the composition of two
mappings.

It is really easier to think of an m×n matrix A as the linear
mapping  A: Rn→ Rm.  The columns of A show to where the
unit vectors of Rn are mapped.

Matrices are linear mappings.
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Partitioned mappings (matrices) compose (multiply) as follows:
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Recall from slide 6:
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Combining the partition rules of this and the previous slide…
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As long as the B and A are partitioned conformably, the ijth cell
of the mapping B•A, or of the matrix product BA, will be :

B A ,  or B Aik kj
k

ik kj
k

•∑ ∑
Partitionwise multiplication is no different from elementwise
multiplication.  In fact, the elements are just the finest
partitions,  (1×1) partitions.

Matrix multiplication must have been first defined (by Cayley,
Hamilton, Sylvester?) according to the interpretation of
matrices as linear mappings.  ‘B times A’ is ‘B of A.’
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2. The Linear Statistical Model

Information is an n-dimensional vector (n-tuple).

Models explain the more complicated by the less complicated.

Example:  A car moves in a straight line at a constant velocity.
At times t1,…, tn its position is observed to be d1,…, dn.  Time
is the independent variable and distance is the dependent
variable.  We define our time and distance scales such that at
time zero the car is at a distance zero.

We know that there will be some number r such that di = r· ti.

The linear model for this example is:
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If we know t, the independent variable, we can explain the n-
dimensional d in terms of the 1-dimensional r.  Reducing
complexity is the essence of modeling.

Predictive power is a by-product.  When we know r, we can
predict distances for new tis.
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f is some map from Rk to Rt.  If f is a linear map, then we can
express f as some t×k matrix X, and the model becomes:

y t kf× ×=1 1b g b ge jβ

Here is a model which explains a t-dimensional phenomenon
in k-dimensions (hopefully k < t):

y X

X

t k

t k k

× ×

× ×

=

=
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b g b g
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e jβ

β

y may look like a complicated t-dimensional phenomenon; but
in reality it’s just k-dimensional.  This is understanding!
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As we saw in the slide 6:
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Xβ is a  linear combination of the columns of X.  This is a
subspace of Rt of at most k dimensions.  The model states that
the t observations must fall within this subspace.

In other words, y is operating under k, rather than t, degrees of
freedom.  We have deepened our understanding, if k < t.

When the right β is found, prediction for new Xs is possible.
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But reality is usually messy.  Models are approximate:

The equality is regained by adding a random error term; so the
model becomes a statistical model:

y t kf× ×≈1 1b g b ge jβ

y et k tf× × ×= +1 1 1b g b g b ge jβ

Specifically, a linear model becomes a linear statistical model:

y et t k k t× × × ×= +1 1 1b g b g b g b gX β

(E[e] = 0.  And let Var[e] = Σ = σ2Φ, which is symmetric t×t.)



20

Two in-depth papers by the author on estimating the β of the linear
statistical model and on predicting:

1. “Loss Prediction by Generalized Least Squares,” PCAS 
LXXXIII (1996), 436-489.

2. “Conjoint Prediction of Paid and Incurred Losses,” CAS Forum,
Summer 1997, 241-379.

The author’s “Bible” on the subject:

George G. Judge, et al., Introduction to the Theory and Practice of
Econometrics, 2nd edition (Wiley, 1988).

But here follows a “quick and dirty” derivation of the estimator …
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If the square (k×k) matrix WX has an inverse (non-singular):

 The last equality holds because β, W, and X are constants, and E[e] = 0.
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So we have a Linear-in-y and Unbiased Estimator of β:
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In the references it is derived that Var[Ae] = AVar[e]A'.  Hence:
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In the special case that WΣW' = X'W' (or W = X'Σ-1):

Var $ββ =

= ′

WX

X X

-1

-1 -1

b g
c hΣ



24

This special W exploits the variance of e, so that:

∀ ′ ≤ ′ ′ ′−W X X WX W W X W
-1 -1 -1Σ Σ1c h b g b g

The inequality is meaningful in the context of non-negative
definite matrices (Appendix A of paper).

The special W makes for the Best Linear Unbiased Estimator:
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The estimator is invariant to the scale of W.  For any scalar α ≠ 0:

So the BLUE of β is invariant to the scale of Var[e]:

α α α αW X W WX W WX W
-1 -1 -1 -1b gc hb g b g b gy y y= =
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Later on σ2 can be estimated (page 69 of paper).  Shape, not scale!
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The simplest shape is the identity, or Φ = It.  Then the BLUE is:

$ββ = ′ ′ = ′ ′X I X X I X X X-1 -1 -1 -1

t tc h b gy y

To use the identity shape when the true shape is otherwise —
perhaps we’re ignoring information — is to settle for a not-
as-good estimator; but it’s still an unbiased estimator.

This “quick and dirty” approach (with the k×t matrix W) is
related to the interesting subject of instrumental variables.
Consult Judge’s Econometrics textbook, pages 577-579.

Now follows a geometrical interpretation of the linear
statistical model, otherwise known as least squares …
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$ββ = ′ ′X X X
-1b g y

can be shown (Judge, 190-192) to minimize the function:

f β β βbg b gb g= − ′ −y yX X ,

which function represents the square of the Euclidean distance
between y from Xβ.  But X(t×k)β (k×1) is a k-dimensional subspace of
the Rt which y inhabits.  (Recall from slide 18 that Xβ is a linear
combination of the columns of X.)

To minimize f(β) is to find the point closest to y of the subspace
spanned by X.  At this point, at this particular Xβ, y drops a
perpendicular to the subspace: y − ⊥X X$ $β ββe j
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The closer y is to the subspace, the more tempted we are to say that y
is     (barring a little randomness, which we can quantify and
manage).  And a t-dimensional phenomenon is more or less reduced
to k dimensions.  To repeat, this is a deeper understanding, if k < t.

In general,                                                              minimizes:$ββ = ′ ′X X X-1 -1 -1Φ Φc h y

f β β βbg b g b g= − ′ −−y yX XΦ 1

This represents a generalized Euclidean distance between y and Xβ,
since Φ will penalize differences in some directions more heavily
than differences in other directions.  With a non-identity (and
positive definite) Φ, constant distance from a center takes the form
of an ellipse, rather than that of a circle.

X $ββ
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Prediction

Estimating the parameter (β) of a statistical model usually
isn’t enough.  Typically, we’ll want to predict new ys, given
new Xs.

Also, we ought to know how much the phenomenon can vary
from our prediction — to know the variance of the prediction
from its expected value.

Predictions can be correlated with what we’ve observed.  We
can’t always have the simple world of i.i.d. (independent,
identically distributed)

The formulation, with the help of partitioned matrixes:
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1 rows of observations, t2

1 is t1  is t1× β is k×1,  is t1× , Φ12 is ×t2, etc.  The
Φ matrix is symmetric, so Φ12 21'.

y1 s are known (or taken for granted).

y2 contains missing values.  We want to estimate (or predict) it.

y2 is …
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Φ21 ≠ 0 allows errors in the observations to affect the predictions.

Looks nasty, but really quite gentle.  Proof in Appendix C of
“Conjoint Prediction.”  Also see pages 68f. of this paper.
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3. Credibility and Prior Information

“Readers who have come this far may conclude from what
they’ve read that casualty actuarial science is the study and
application of the theory of credibility, and that’s all.  Is it all?”

Matthew Rodermund, Foundations of Casualty Actuarial Science, 19.

It’s hard to answer “No” to Rodermund’s question.  Actuaries
love the ‘Z×A+(1–Z)×E’ credibility formula.  It blends
observation (‘A’ for ‘actual’) and prior opinion (‘E’ for
‘expected’).

But a (linear) statistical model does the blending even better …
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Observations only: t1 rows from source 1, and t2 rows from source 2.

Simple variance structure in that the sources do not covary (off-
diagonal Σs are zero).

The BLUE of β is …
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Not too bad when one has a feel for partitioned matrices (slide 14).

Next to last equation looks like a (matrix) weighted average.  This
can be made explicit …
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The estimator of the two-source model weights the estimators of the
one-source models according to the inverses of the variances of those
estimators (harmonic average — Appendix A).

Since β is k×1, this is credibility in k dimensions.
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Var Var Var
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As Appendix A explains (using positive definite matrices), the two-
source estimator is of less variance than either of the one-source
estimators.  The more knowledge, the better.

The second source doesn’t actually have to be observed. It can be
theory, opinion, or guess — anything on which you’re willing to rely.
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The second source, or the prior information, doesn’t even have to be
a complete model, so that a β2 could be estimated:
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1 1 1 1 1$ββ c hc h
If k×k R'V-1R is of rank j≤k, the variance of the two-source estimator
will be improved along j orthogonal axes.  If j<k, then R'V-1R is
singular and the second source cannot produce its own estimate for
β.  But it still improves the mixed estimator in j out of k dimensions.
See Appendix A.
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Sorry, no example is given in this presentation.  But the paper works
out several examples.

Benefits of statistical modeling to credibility:

• Provides an systematic and orderly framework.

• Furnishes variances of estimates and predictions, as well as means.

• Extends credibility from one to k dimensions.
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4. Credibility and Random Effects

Hardest part of the paper — Sections 9 and 10, and Appendix E.

Given n related groups, with non-covarying es and vs:

y e e

v v

y v e

i t i t k i k i t i i t t

i i i k k

i i i i i

i i i i i i

i i i i i
Var

Var

Var

× × × × ×

×

= + =

= + =

= + +

= + = ′ +

1 1 1

0

0

0

b g b g b g b g b g

b g
b g

X , 

But ,  V

So X X

X , X VX

β

β β

β

β

Σ
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This is just a linear statistical model, so we can estimate β0, the βis,
and any predictions built on the βis.

If V is unknown, it may be estimated by the method of variance
components (ML method also possible — Appendix F).

If V is large, the βis are free and the groups have much credibility.
If V is small, the βis are close to β0 and the groups have little
credibility.

Appendix E discusses the random-effects model in detail.  A
beautiful result is that the simple average of the estimates of the βis
must equal the estimate of β0.  In effect, credibility democratizes the
groups.

Section 10 presents a random-effects trend model, a two-
dimensional credibility problem.
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5. Conclusion

Arthur Bailey challenged (1945-1950) classical statistics with three
problems which justified his “greatest accuracy credibility:”

• Use of prior information in estimation (Z×A+(1–Z) ×E)

• Estimating for an individual that belongs to a heterogeneous
population (merit and experience rating — a fruitful subject for
Bayesian credibility.  See Appendix B)

• Estimating for groups together, which is more accurate than
estimating each separately (the random-effects model.  See
Sections 9 and 10, and Appendix E)

The paper shows how modern statistics solves these problems, to
the legitimization and enrichment of credibility.
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