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1. Matrices as Linear Mappings

V ector x = M% R"

X IS a point in n-dimensional rea-number space. It
packages n pieces of information.

How to multiply a vector by a scalar and how to add two
n-dimensional vectors are obvious.

Define the unit vector u,; as the R" vector whose it
element is one, the other elements being zeroes.



By the properties of addition and scalar multiplication,
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Consider alinear mapping A: R'"® R™
Linear asto scalar multiplication: A(ax) = aA(X)
Linear asto vector addition: A(X;+X,) = A(X)+A(X,).

In general,

A bg: A %% A ﬁl xiun,iil% él xAG. . h

Therefore, a linear mapping Is uniquely determined by to
where it maps the unit vectors of R".



Let A; = A(u,) I R™ Every linear mapping can be represented by
the mxn matrix [A; ... A]. The i column of the matrix specifies
the vector of R™to which A maps the it unit vector of R".

0,

Angéf XiAGn,ihé XA :[Al An]%%

This looks like matrix multiplication, although matrix
multiplication has not yet been defined (see dlide 14).

How to multiply a matrix by a scalar and how to add two mxn
matrices are obvious.



If A and B are two linear mappings from R" to R™, then,
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Matrix addition is commutative and associative. Thereisazero
matrix, and every matrix has an additive inverse. These are the
addition characteristics of rings.

But what about matrix multiplication?



Let B (I"'m) represent a mapping from R™ to R. Let ‘¢
represent the composition of mappings. BeA maps from R" to

. But: Ag}g:B(ADg]
o e f
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The columns of BeA make sense. For example, A mapsu,; to A,
then B maps A, to B(A,). So theith column of BeA shows to what
vector of R BeA maps u,, ;.



Composition (¢) is always a commutative operator:
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Composition distributes over matrix addition:
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Being commutative and distributive, the composition of linear
mappings behaves like multiplication. More accurately,
multiplication of two matrices is really the composition of two

mappings.

It Is really easier to think of an mxn matrix A as the linear
mapping A: R"® R™ The columns of A show to where the
unit vectors of R" are mapped.

Matrices are linear mappings.
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Partitioned mappings (matrices) compose (multiply) as follows:

B A®G (0,0 0,0

BIAL E [A,]=[BA, | [ BA,]
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Recall from dide 6:

Abg:én XiAGn,ihén XA =[A; o AL
=1 =1

So, [A, i | A,

In general, [ ﬁ

1
=

Combining the partition rules of this and the previous dide...
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Aslong as the B and A are partitioned conformably, the ijth cell
of the mapping BeA, or of the matrix product BA, will be:

Eol Bik ' Alq'1 or Eol BikAlq'
k k

Partitionwise multiplication is no different from elementwise
multiplication. In fact, the elements are just the finest
partitions, (1x1) partitions.

Matrix multiplication must have been first defined (by Cayley,
Hamilton, Sylvester?) according to the interpretation of
matrices as linear mappings. ‘B timesA’ is‘B of A’
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2. The Linear Statistical Model

Information is an n-dimensional vector (n-tuple).
Models explain the more complicated by the less complicated.

Example: A car movesin astraight line at a constant velocity.
At timest,,..., t itsposition is observed to be d,,..., d,. Time
IS the independent variable and distance is the dependent
variable. We define our time and distance scales such that at

time zero the car 1s at a distance zero.
We know that there will be some number r such that d =r-t;.

The linear modd for thisexampleis:

15



db'lg: = tb'lgh'lg

If we know t, the independent variable, we can explain the n-
dimensional d in terms of the 1-dimensional r. Reducing
complexity s the essence of modeling.

Predictive power is a by-product. When we know r, we can
predict distancesfor new t;s.
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Here is a model which explains a t-dimensional phenomenon
In k-dimensions (hopefully k < t):

yb'lg: f®b’1§j

f is some map from R<to R.. If fisalinear map, then we can
express f as some txk matrix X, and the model becomes:

X@p g
Xb’kd) blg

y may look like a complicated t-dimensional phenomenon; but
In reality it'sjust k-dimensional. Thisis understanding!

yb'lg
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Aswe saw in the dide 6:

yb'lg: X b'kd) b'lg

[X, - xk]mlg
b X, k

= b X, +.. +

Xb isa linear combination of the columns of X. Thisis a
subspace of R of at most k dimensions. The model states that
the t observations must fall within this subspace.

In other words, y Is operating under Kk, rather than t, degrees of
freedom. We have deepened our understanding, if k <t.

When theright b isfound, prediction for new Xsis possible.
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But reality isusually messy. Models are approximate:

yb’lg» f @ bld

The equality isregained by adding a random error term; so the
model becomes a statistical model:

yb’lg: f @ bld + eb’lg
Specifically, alinear model becomes alinear statistical model:

yb’lg: X b kd) b'1g+ eb’lg

(E[€] =0. Andlet Var[g] = S = s?F, which is symmetric txt.)

19



Two in-depth papers by the author on estimating the b of the linear
statistical model and on predicting:

1. “Loss Prediction by Generalized Least Squares,” PCAS
LXXXII (1996), 436-489.

2. “Conjoint Prediction of Paid and Incurred Losses,” CAS Forum,
Summer 1997, 241-379.

The author’s “Bible’ on the subject:

George G. Judge, et al., Introduction to the Theory and Practice of
Econometrics, 2™ edition (Wiley, 1988).

But here follows a*“quick and dirty” derivation of the estimator ...
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Yb1g= X b «@ b 1g* €b g
Wy =Wp K +We
If the square (kx k) matrix WX has an inverse (non-singular):
h)/x gWy = MX gWXb + MIX gWe
v x Owy =b + v x Owe
E[h)/x gWy] = E[b + rx gWe]
= b

The last equality holds because b, W, and X are constants, and E[€e] = 0.

21



So we have a Linear-in-y and Unbiased Estimator of b:
b = MIX gWy
- [vx gwhb +eQ
= h)/x gWXb + h)/x gWe
= b + h)/x gWe

E:B: = b
Var 6 :Var[h)lx gWe]



In the referencesit is derived that Var[Ae] = AVar[e]A". Hence
Var [6] =Var [h)/x gWe]
= h)/x gWVar le]w Gb o (@
= [/ x Owsw a4 o J

In the special case that WSW' = X'W' (or W = X'S?):
Var|b | = [ x g
-GsxN



This special W exploits the variance of e, so that:

“w G xNe k)/xgwswcl&qwag

The inequality is meaningful in the context of non-negative
definite matrices (Appendix A of paper).

The special W makes for the Best Linear Unbiased Estimator:
b = m/X gWy
- & sx Ax Sty
= Var[B]X Sy
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The estimator isinvariant to the scale of W. For any scalar a * 0:
@Ng hb\Ng: k)/xga TaWy = k)/XgWy
So the BLUE of b isinvariant to the scale of Var[e]:
b = G s x Ax Sy
= @ S °F hxj'lx @ °F Ny

- G E X Ax ¢ 1y
Later on s2 can be estimated (page 69 of paper). Shape, not scalel
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The simplest shape isthe identity, or F = 1.. Thenthe BLUE is:

6:(E<<u;1xhxcu;1y: qugqu

To use the identity shape when the true shape is otherwise —
perhaps we're ignoring information — is to settle for a not-
as-good estimator; but it’s still an unbiased estimator.

This “quick and dirty” approach (with the kxt matrix W) is
related to the interesting subject of instrumental variables.
Consult Judge' s Econometrics textbook, pages 577-579.

Now follows a geometrical interpretation of the linear
statistical model, otherwise known as least squares ...
26



b = [} & Ox o
can be shown (Judge, 190-192) to minimize the function:

fbg: - ng@- Xb Q)

which function represents the square of the Euclidean distance
between y from Xb. But X gD 1) 1S @ k-dimensional subspace of
the R which y inhabits. (Recall from dlide 18 that Xb is a linear
combination of the columns of X.)

To minimize f(b) is to find the point closest to y of the subspace
spanned by X. At this point, at this particular Xb, y drops a
perpendicular to the subspace: @ - X bJ’\ Xb
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The closer y is to the subspace, the more tempted we are to say that y
is X b (barring a little randomness, which we can quantify and
manage). And at-dimensional phenomenon is more or less reduced
to k dimensions. To repeat, thisis adeeper understanding, if k <t.

In general, 6 = (X i X hX - ‘1y minimizes:

fbg: - ng='1b- Xb (

This represents a generalized Euclidean distance between y and Xb,
since F will penalize differences in some directions more heavily
than differences in other directions. With a non-identity (and
positive definite) F, constant distance from a center takes the form
of an ellipse, rather than that of acircle.

28



Prediction

Estimating the parameter (b) of a statistical model usually
Isn't enough. Typically, we'll want to predict new ys, given
new Xs.

Also, we ought to know how much the phenomenon can vary
from our prediction — to know the variance of the prediction
from its expected value.

Predictions can be correlated with what we' ve observed. We
can't aways have the ssmple world of i.i.d. (independent,
identically distributed)

The formulation, with the help of partitioned matrixes:
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PP P

L rows of observations, t,

RER Ist;x b is kxl, Ist;x , F, IS Xt, etc. The
F matrix issymmetric,soF,, ;.

Y, s are known (or taken for granted).

Yy, contains missing values. We want to estimate (or predict) it.

Y, is... o



92 = X26 +F 21F illel' X16J

whereb = QF X, hXﬂF 1Y

Var[Yz ; 92] =S 2@ 2 = FoF 111F 12
+@2 - F 21F illxllqar[ﬁ]az - F 21F illxlh
where Var[b] = s Zﬁgﬂ:ijxlh

F ., 1 Oalowserrorsin the observations to affect the predictions.

Looks nasty, but really quite gentle. Proof in Appendix C of
“Conjoint Prediction.” Also see pages 68f. of this paper.
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3. Credibility and Prior Information

“Readers who have come this far may conclude from what
they’ve read that casualty actuarial science is the study and
application of the theory of credibility, and that’s all. Isital?

Matthew Rodermund, Foundations of Casualty Actuarial Science, 19.

It's hard to answer “No” to Rodermund’ s question. Actuaries
love the ‘ZxA+(1-2)xE’ credibility formula. It blends
observation (‘A’ for ‘actual’) and prior opinion (‘E’ for
‘expected’).

But a (linear) statistical model does the blending even better ...
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KENG RE- RN <

Observations only: t; rows from source 1, and t, rows from source 2.

Simple variance structure in that the sources do not covary (off-
diagonal Ss are zero).

TheBLUEOf bis...
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:@%ﬂ i B
b 84 88

= Bs;'x, +xg5;%, @ sy, + x5y, N
-var[b|@ sy, + g5,y

Not too bad when one has afeel for partitioned matrices (slide 14).

Next to last equation looks like a (matrix) weighted average. This

can be made explicit ...
34



b = Bgs;X, + X15,X, By, +x3s;ly, N
= Bg5;X, + X5;3X, N@s;3x, @ g5;%, P g5y, +- J
= G657, + X85, X, NNBs; % b, + X85, b,
=@ [b,]+var'[b,]] @ [b,]p, +var[b,]b.]

The estimator of the two-source model weights the estimators of the
one-source models according to the inverses of the variances of those
estimators (harmonic average — Appendix A).

Since b iskx1, thisis credibility in k dimensions.
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Vab| =@ [b,]+var b, ]|
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vafb| <varlb,], vap,

As Appendix A explains (using positive definite matrices), the two-
source estimator Is of less variance than either of the one-source
estimators. The more knowledge, the better.

The second source doesn’t actually have to be observed. It can be
theory, opinion, or guess — anything on which you're willing to rely.
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The second source, or the prior information, doesn’t even have to be
a complete model, so that a b, could be estimated:

bl
h=QBs x+re RAGS y+Rv TN

If kxk R'V-IR isof rank j£k, the variance of the two-source estimator
will be improved along j orthogonal axes. If j<k, then RV-1R is
singular and the second source cannot produce its own estimate for
b. But it still improves the mixed estimator in j out of k dimensions.
See Appendix A.
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Sorry, no example is given in this presentation. But the paper works
out several examples.

Benefits of statistical modeling to credibility:
* Provides an systematic and orderly framework.
 Furnishes variances of estimates and predictions, as well as means.

 Extends credibility from one to k dimensions.
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4. Credibility and Random Effects

Hardest part of the paper — Sections 9 and 10, and Appendix E.

Given n related groups, with non-covarying es and vs.
yih;)lg:xibk@ibl +e|li)1g Var[a] :Sili)tig
Butb; =b, +v;, Varlv, | = Vg g
0y, = Xjb, + biVi +€ g
=Xb, +t;, Var[t,]| =X, VXe+S,
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Thisisjust alinear statistical model, so we can estimate b, the b;s,
and any predictions built on the b;s.

If V is unknown, it may be estimated by the method of variance
components (ML method also possible — Appendix F).

If V islarge, the b;s are free and the groups have much credibility.

If V is small, the b;s are close to b, and the groups have little
credibility.

Appendix E discusses the random-effects model in detall. A
beautiful result is that the ssimple average of the estimates of the b;s
must equal the estimate of b,. In effect, credibility democratizes the
groups.

Section 10 presents a random-effects trend model, a two-
dimensional credibility problem.
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5. Conclusion

Arthur Bailey challenged (1945-1950) classical statistics with three
problems which justified his “ greatest accuracy credibility:”

« Use of prior information in estimation (ZxA+(1-Z) XE)

« Estimating for an individual that belongs to a heterogeneous
population (merit and experience rating — a fruitful subject for
Bayesian credibility. See Appendix B)

e Estimating for groups together, which is more accurate than
estimating each separately (the random-effects model. See
Sections 9 and 10, and Appendix E)

The paper shows how modern statistics solves these problems, to
the legitimization and enrichment of credibility.
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Corrections

Page:Line Text Change

74:14 0.904 0.113

74:15 4.240 0.606

87:1 ends of the introduction and | end

118:3 element variance

121:1 subscript | is ranges subscript i ranges
137:2

a0~ - (- - - (- )

é:(( - #)- (0= ), - - (- )

147:11 and 14 (three times)

X, TX¢

Vice President of Actuarial Research and Devel opment
American Re-insurance Company (as of March 16, [halliwell @amre.com)
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