

# Optimal Growth for Property and Casualty Insurance Companies

Luyang Fu, Ph.D., FCAS 11/14/2012, CAS Annual Meeting

## CINCINNATI INSURANCE COMPANIES

## Agenda

- Introduction
- Equilibrium New Business Percentage
- Growth Impact Curve
- Growth Limit Curve
- Constrained Maximum Growth
- Optimal Growth
- Case Study



## Rapid Growth is one of top causes of financial impairment



#### Conflicts between Growth and Profitability

- Faster growth may reduce profitability
  - Lower price
  - Loose underwriting
  - Attract more NB, NB has higher loss and expense ratios

#### Conflicts between Growth and Profitability

- Aghion and Stein (2008): constraints on management time and other resources
- Harrington, Danzon, and Epstein (2008):insurance companies often sacrifice profit margins by cutting price excessively in the soft market to maintain sales volume
- Ma (2009): profitability will be eroded significantly when a high growth target is achieved by lowering underwriting standards

#### Aging Phenomenon

- D'Arcy and Doherty (1989; 1990): loss ratio improves with policy age
- Cohen(2005): Evidence from personal auto
- Wu and Lin (2009)
  - 8 lines of business, 25 books, \$29 billion premium
  - New business has loss ratios 7% (GL) to 18% (BOP) higher than renewal business
  - New business has retentions 3% (personal auto) to 19% (personal home) lower than renewal business

#### D'Arcy and Gorvett (2004) Optimal Growth Paper

- A milestone: first study
- Three-factor econometrics model
  - Market value=a+b\*surplus+c\*NWP+d\*combined ratio
  - 15 companies: b=2.13, c=1.57, d=-23,878,168
  - 14 companies (Excluding AIG): b=1.85, c=0.28, d=-2,076,192
- Run DFA simulations
- Does optimal growth rate exist?
  - Using 14-company parameters: optimal growth = 0%
  - Using 15-company parameters: optimal growth = 10%

## Practical concerns of applying D'Arcy and Gorvett (2004)

- Data availability: Mutual, reciprocal, subsidiary, and privatelyheld companies do not have observed market values
- Parameter Risks: Volatile results by including AIG or not
- Complicated DFA simulations: not easy to understand and apply.

#### Improvements from Fu (2012):

- Data availability: traditional actuarial database.
- Parameter Risks: no regression which is subject to volatility of equity market.
- Deterministic: easy to understand and apply.
- Study the conditions for the existence of optimal positive growth.

#### Disadvantages of Fu (2012): no stochastic insights

- Cannot be analyzed in the classical mean-variance framework of modern financial economics.
- No risk frontier.

## Equilibrium New Business Percentage

Required NB percentage to achieve 15% overall growth when 10% of the current book of business consists of NB

| Year (t) | RB Exposure (1) | NB Exposure<br>(2) | RB %<br>(3)=(1)/(5) | NB %<br>(4)=(2)/(5) | Exposure<br>(5)=(1)+(2) |
|----------|-----------------|--------------------|---------------------|---------------------|-------------------------|
| 1        | 0.900           | 0.100              | 90.0%               | 10.0%               | 1.000                   |
| 2        | 0.890           | 0.260              | 77.4%               | 22.6%               | 1.150                   |
| 3        | 1.009           | 0.314              | 76.3%               | 23.7%               | 1.323                   |
| 4        | 1.159           | 0.362              | 76.2%               | 23.8%               | 1.521                   |
| 5        | 1.333           | 0.416              | 76.2%               | 23.8%               | 1.749                   |

Assume RB retention ratio 90% and NB retention 80% 0.89= 0.9\*90%+0.1\*80%; 0.26=1.15-0.89 1.009=0.89\*90%+.26\*80%; 0.314=1.15^2-1.009

## Equilibrium New Business Percentage

Required NB percentage to achieve 15% overall growth when 25% of the current book of business consists of NB

| Year (t) | RB Exposure | NB Exposure | RB %  | NB %  | Exposure |
|----------|-------------|-------------|-------|-------|----------|
| 1        | 0.750       | 0.250       | 75.0% | 25.0% | 1.000    |
| 2        | 0.875       | 0.275       | 76.1% | 23.9% | 1.150    |
| 3        | 1.008       | 0.315       | 76.2% | 23.8% | 1.323    |
| 4        | 1.159       | 0.362       | 76.2% | 23.8% | 1.521    |
| 5        | 1.333       | 0.416       | 76.2% | 23.8% | 1.749    |

## **Equilibrium New Business Percentage**

- Percentage of NB exposure converges at 23.8%.
- Notation: Q exposure; G growth rate; A NB percentage
  - Exposure = prior (1+growth):  $Q_t = Q_{t-1}(1+G_t)$
  - NB= total \* NB percentage:  $Q_{n,t} = Q_t A_t = Q_{t-1} (1 + G_t) A_t$
  - RB = prior NB Renewal+ prior RB renewal:  $Q_{r,t} = Q_{t-1}A_{t-1}R_{n,t} + Q_{t-1}(1-A_{t-1})R_{r,t}$
  - Total = NB+RB:  $Q_{t-1}(1+G_t) = Q_{t-1}(1+G_t)A_t + Q_{t-1}A_{t-1}R_{n,t} + Q_{t-1}(1-A_{t-1})R_{r,t}$
- Solving for ENBP:

$$A_{t} = \frac{1 + G_{t} - R_{r,t}}{1 + G_{t} + R_{n,t} - R_{r,t}} = 1 - \frac{R_{n,t}}{1 + G_{t} + R_{n,t} - R_{r,t}}$$

## **Growth Impact Curve**

#### Growth Impact Curve shows the underwriting fact:

- Combined ratio is an increasing function of growth
- Growth reduces underwriting profit margin

$$C_{t} = A_{t}C_{n,t} + (1 - A_{t})C_{r,t} = \frac{(1 + G_{t} - R_{r,t})C_{n,t} + R_{n,t}C_{r,t}}{1 + G_{t} + R_{n,t} - R_{r,t}}$$



Surplus capacity can constrain the growth of an insurance company

- Premium-to-surplus ratio
  - Regulator;
  - Rating agency
  - Internal ERM
- To avoid over-leverage, the profit growth after tax and dividend has to keep up the pace with sales growth

- Surplus constraints on the growth: evidence from academia
  - Davis 1979;
  - Hagstrom 1981;
  - Gron 1994;
  - Winter 1994;
  - Cummins and Danzon 1997;
  - Wang et al. (2011)

• I is investment, lambda is found-generating coefficient, S is surplus; Investment Asset is:

$$I_{t} = \lambda * WP_{t} + S_{t}$$

• t is tax and Y is investment yield; retained profit after tax and dividend is:

$$\pi_t = [EP_t * (1 - C_t) * (1 - t_u) + I_t Y_t * (1 - t_I)] * (1 - D_t)$$

To maintain target premium-to-surplus ratio K:

$$\frac{WP_{t+1}}{S_{t+1}} = \frac{WP_t * (1 + G_{t+1})}{S_t + \pi_t} \le K_t$$

#### To maintain a target premium-to-surplus ratio K

Combined Ratio needs to be below a threshold

$$C_{t} \leq 1 - \frac{WP_{t} * (1 + G_{t+1}) - K_{t} * S_{t} - K_{t} * I_{t} * Y_{t} * (1 - t_{I}) * (1 - D_{t})}{EP_{t} * (1 - t_{u}) * (1 - D_{t}) * K_{t}}$$

 Or, the growth has to be below a threshold under certain profit level

$$G_{t+1} \le \frac{K_t * (S_t + \pi_t)}{WP_t} - 1$$

#### Growth limit curve shows the capital constraint

- Faster growth requires lower combined ratio to generate extra capital to support such growth
- Do not cross the line: if the combined ratio is over the curve, premium growth > surplus growth, the leverage ratio will increase and penetrate the "target".



$$C_{t} \leq 1 - \frac{WP_{t} * (1 + G_{t+1}) - K_{t} * S_{t} - K_{t} * I_{t} * Y_{t} * (1 - t_{I}) * (1 - D_{t})}{EP_{t} * (1 - t_{u}) * (1 - D_{t}) * K_{t}}$$

### Constrained Maximum Growth

#### Balance two conflicting goals:

- Growth Impact curve faster growth drives up combined ratio from the perspective of underwriting performance
- Growth Limit curve faster growth requires lower combined ratio from the perspective of capital management
- Max growth rate under the capital constraint: the intersection M between two curves.



## **Optimal Growth**

#### **Insurance Company Valuation**

- \$\phi\$ is expected price-to-book ratio;
- η is the expected price-to-sales ratio
- w is weight given to surplus-indicated company value

$$V_{t+n} = W * \phi * S_{t+n} + (1-W) * \eta * WP_{t+n}$$

#### To maximize the company value

$$Max_{G} W * \phi * S_{t+n} + (1-W) * \eta * WP_{t} * (1+G)^{n}$$

#### **Assumptions**

At market price level,

- NB loss ratio is 75%, RB loss ratio is 62%;
- NB retention is 78%, RB retention is 84%;
- NB expense ratio is 37%, RB expense ratio is 32%;

G is the exposure growth rate, R is the retention ratio, dp is the rate difference from market

- $G_t = 2\% 1.5*dp_t$ , the lower the price, the faster the growth
- $R_{r,t} = 84\% 0.2*dp_t$ , the lower the price, the higher the retention  $R_{n,t} = 78\% 0.3*dp_t$

#### **Equlibriun New Business Percentage**



$$A_{t} = \frac{1 + G_{t} - R_{r,t}}{1 + G_{t} + R_{n,t} - R_{r,t}}$$

## Equilibrium NB percentages, loss and combined ratios by growth

| Exposure<br>Growth | dp  | NB<br>Retention | RB<br>Retention | ENBP  | NB LR | RB LR | NB CR  | RB CR | whole<br>Book CR |
|--------------------|-----|-----------------|-----------------|-------|-------|-------|--------|-------|------------------|
| 8.0%               | -4% | 79.2%           | 84.8%           | 22.7% | 78.1% | 64.6% | 115.1% | 96.6% | 100.8%           |
| 6.5%               | -3% | 78.9%           | 84.6%           | 21.7% | 77.3% | 63.9% | 114.3% | 95.9% | 99.9%            |
| 5.0%               | -2% | 78.6%           | 84.4%           | 20.8% | 76.5% | 63.3% | 113.5% | 95.3% | 99.1%            |
| 3.5%               | -1% | 78.3%           | 84.2%           | 19.8% | 75.8% | 62.6% | 112.8% | 94.6% | 98.2%            |
| 2.0%               | 0%  | 78.0%           | 84.0%           | 18.8% | 75.0% | 62.0% | 112.0% | 94.0% | 97.4%            |
| 0.5%               | 1%  | 77.7%           | 83.8%           | 17.7% | 74.3% | 61.4% | 111.3% | 93.4% | 96.5%            |
| -1.0%              | 2%  | 77.4%           | 83.6%           | 16.6% | 73.5% | 60.8% | 110.5% | 92.8% | 95.7%            |
| -2.5%              | 3%  | 77.1%           | 83.4%           | 15.5% | 72.8% | 60.2% | 109.8% | 92.2% | 94.9%            |
| -4.0%              | 4%  | 76.8%           | 83.2%           | 14.3% | 72.1% | 59.6% | 109.1% | 91.6% | 94.1%            |

## Empirical Growth Impact and Limit Curves and Constrained Maximum Growth



## Five-year profits, surplus, and leverage ratios at constrained maximum growth 5.52%

|   | Beginning<br>Surplus | WP    | EP    | Investment | Inv<br>Profit | UW<br>Profit | Total<br>Profit | Tax<br>rate | After-<br>Tax<br>Profit | Payout<br>% | Year  | End<br>Surplus | Prem/<br>Surplus |
|---|----------------------|-------|-------|------------|---------------|--------------|-----------------|-------------|-------------------------|-------------|-------|----------------|------------------|
| 0 | 0.667                | 1.000 | 0.974 | 1.867      | 0.075         | 0.006        | 0.081           | 35%         | 0.053                   | 30%         | 0.037 | 0.703          | 1.500            |
| 1 | 0.703                | 1.055 | 1.028 | 1.970      | 0.079         | 0.007        | 0.085           | 35%         | 0.056                   | 30%         | 0.039 | 0.742          | 1.500            |
| 2 | 0.742                | 1.114 | 1.084 | 2.079      | 0.083         | 0.007        | 0.090           | 35%         | 0.059                   | 30%         | 0.041 | 0.783          | 1.500            |
| 3 | 0.783                | 1.175 | 1.144 | 2.193      | 0.088         | 0.007        | 0.095           | 35%         | 0.062                   | 30%         | 0.043 | 0.827          | 1.500            |
| 4 | 0.827                | 1.240 | 1.207 | 2.315      | 0.093         | 0.008        | 0.100           | 35%         | 0.065                   | 30%         | 0.046 | 0.872          | 1.500            |
| 5 | 0.872                | 1.308 | 1.274 | 2.442      | 0.098         | 0.008        | 0.106           | 35%         | 0.069                   | 30%         | 0.048 | 0.920          | 1.500            |

Assume 4% investment yield, 35% tax rate, 30% dividend payout ratio, 1.2 fund generating coefficient

## Five-year profits, surplus, and leverage ratios at 8% growth

|   | Beginning |       |       |            | Inv    | UW     | Total  | Tax  | After-<br>Tax | Payout |       | End     | Prem/   |
|---|-----------|-------|-------|------------|--------|--------|--------|------|---------------|--------|-------|---------|---------|
|   | Surplus   | WP    | EP    | Investment | Profit | Profit | Profit | rate | Profit        | %      | Year  | Surplus | Surplus |
| 0 | 0.667     | 1.000 | 0.963 | 1.867      | 0.075  | -0.008 | 0.067  | 35%  | 0.044         | 30%    | 0.031 | 0.697   | 1.500   |
| 1 | 0.697     | 1.080 | 1.040 | 1.993      | 0.080  | -0.008 | 0.072  | 35%  | 0.047         | 30%    | 0.033 | 0.730   | 1.549   |
| 2 | 0.730     | 1.166 | 1.123 | 2.129      | 0.085  | -0.009 | 0.076  | 35%  | 0.050         | 30%    | 0.035 | 0.765   | 1.598   |
| 3 | 0.765     | 1.260 | 1.213 | 2.276      | 0.091  | -0.010 | 0.082  | 35%  | 0.053         | 30%    | 0.037 | 0.802   | 1.648   |
| 4 | 0.802     | 1.360 | 1.310 | 2.434      | 0.097  | -0.010 | 0.087  | 35%  | 0.057         | 30%    | 0.040 | 0.841   | 1.697   |
| 5 | 0.841     | 1.469 | 1.415 | 2.604      | 0.104  | -0.011 | 0.093  | 35%  | 0.061         | 30%    | 0.042 | 0.884   | 1.747   |

## Expected Company Values after 5 years by Growth Rate When W=50%



Assume price-to-book ratio =1.2, price-to-sales ratio 0.8:

$$Max_G = 50\% *1.2 * S_{t+n} + 50\% *0.8 * WP_t * (1+G)^5$$

#### When the weight on surplus is 50%

- Growth dominates the surplus (it is easier to grow sales volume than to grow underwriting profit).
- The company will grow as fast as possible if no capital constraint
- The optimal growth is the constrained maximum growth under the leverage constraint on capital.

## Expected Company Values after 5 years by Growth Rate When W=90%



$$Max_G$$
 90% \*1.2\*  $S_{t+n}$  +10% \*0.8\*  $WP_t$  \*  $(1+G)^5$ 



#### When the weight on surplus is 90%

- Surplus overweighs the growth.
- The company will not attempt to grow without growth constraints.
  - "If a company is not attempting to grow, its book will gradually ages, so the loss ratio declines. This generates a higher net income in the near future and increase policyholders' surplus"
- The optimal positive growth does not exist.
- This is equivalent to 14-company case in D'Arcy and Gorvett (2004)



## Expected Company Values after 5 years by Growth Rate When W=76%



$$Max_G$$
 76% \*1.2 \*  $S_{t+n}$  + 24% \*0.8 \*  $WP_t$  \*  $(1+G)^5$ 



#### When 74% <W<78%:

- There is a balance between surplus and growth.
- The expected company value is a bell curve of growth.
- The optimal positive growth exists.
- This is equivalent to 15-company case in D'Arcy and Gorvett (2004)