

Agenda

- What is elasticity?
- What affects elasticity?
- How to model elasticity?

towerswatson.com

How to model elasticity?

Modeling tools

Classification and Regression Trees

- Interpolate missing data
- Identify initial main effects
- Identify key segments for models
- Identify complex interactions

Generalized Linear Models

- Parameterizes model structure
- Complex interaction strategies
- Issues
 - Possible "negative" elasticity

Generalized Non Linear Models

- Interacts price factors with all non price factors
- Non linear element forces positive elasticity
- Issues
 - · Tendency to overfit
 - Ignores real "negative" elasticity
- > Modeling requires flexibility in choosing the right strategy for the right data set

towerswatson.cor

© 2012 Towers Watson All rights reserved. Progrietary and Confidential For Towers Watson and Towers Watson client use only

Distribution Function Binomial Basic functional form in decision modeling Belongs to the exponential family of distributions Can be extended to multinomial distributions Variance Function = μ(1-μ) Extreme probabilities of successfailure related to low variability Extreme probabilities of successfailure related to low variability Can be extended to multinomial distributions Variance Function = μ(1-μ) Extreme probabilities of successfailure related to low variability

Link Function

> Recall the following basic model form

Link function (g=h⁻¹)
Links random and systematic component

$$\hat{\mathbf{Y}} = \mu = h(\mathbf{X}\beta)$$

> Standard link functions used in loss cost models

Multiplicative: exp(Xβ)Identity: Xβ

Reciprocal: 1/(Xβ)

towerswatson.com

•
O 2012 Towers Watson All rights reserved. Progrietary and Confidential. For Towers Watson and Towers Watson client use only

Link Function

➤ Logit link function used in binomial models:

$$\frac{1}{1 + \frac{1}{\exp(\mathbf{X} \ \beta)}}$$

> Properties of the logit link function:

> S-shape curve "traps" the predictive value to the probability range

towerswatson.cor

What do we mean by "price elasticity"?

- Most people define elasticity as
 - Percentage change in demand / percentage change in price
 - · "Classical elasticity"
 - · Definition found in economics textbooks
- But sometimes ...
 - Absolute change in linear predictor / percentage change in price
 - · "Linear predictor elasticity"
 - Doesn't vary with demand

towerswatson.com

2012 Towers Watson All rights reserved Progrietary and Confidential For Towers Watson and Towers Watson client use only

Price Elasticity Definitions

Classical

$$Demand_{1} = \frac{1}{1 + \frac{1}{\exp(\beta_{0} + \alpha_{1} \times \frac{P_{1}}{P_{0}})}}$$

$$Demand_{2} = \frac{1}{1 + \frac{1}{\exp(\beta_{0} + \alpha_{1} \times \frac{P_{2}}{P_{0}})}}$$

$$Classical_{2} = \frac{Demand_{2} - Demand_{1}}{\frac{Demand_{1}}{P_{1}}}$$

towerswatson.com

Price Elasticity Definitions

Linear Predictor

Demand
$$_{1} = \frac{1}{1 + \frac{1}{\exp(\beta_{0} + \alpha_{1} \times \frac{P_{1}}{P_{0}})}}$$

Demand
$$_{2} = \frac{1}{1 + \frac{1}{\exp(\beta_{0} + \alpha_{1} \times \frac{P_{2}}{P_{0}})}}$$

Demand
$$_{2} = \frac{1}{1 + \frac{1}{\exp(\beta_{0} + \alpha_{1} \times \frac{P_{2}}{P_{0}})}}$$

$$Linear = \frac{\beta_{0} + \alpha_{1} \times \frac{P_{2}}{P_{0}} - \beta_{0} + \alpha_{1} \times \frac{P_{1}}{P_{0}}}{\frac{P_{2} - P_{1}}{P_{1}}} = \alpha_{1}$$

towerswatson.com

What does logit imply about elasticity?

• If there are no interactions with price change factors

How to model elasticity?

Generalized Non-Linear Models

 Allow models to be fitted where the linear predictor is not a linear combination of factors

Generalized Linear Models

$$y = \frac{1}{1 + \exp(-X\beta_{segments} + \Delta P \beta_{\Delta P})} + error$$

ΔP can either be represented by a categorical factor or by a curve

Generalized Non-Linear Models

$$y = \frac{1}{1 + \exp(-X\beta + \Delta P e^{Zx})} + error$$

Forces elasticity to be positive

towerswatson.com

14

Competitive Demand: US Auto New Business • Non price parameters compiled into a customer score interacted with competitive ratio 1.0 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 Increasing 0.1 Customer 0.0 Score -0.1 -0.2 Competitiveness = 100% towerswatson.com

