GUY CARPENTER

Capital Tranching: A RAROC Approach to Assessing Reinsurance Cost Effectiveness

Don Mango, Avraham Adler, John Major, Claude Bunick

Goals for Today

- Published in Variance <u>www.variancejournal.org/issues/07-01/72.pdf</u>
- Genesis: 2006 presentation to a CFO who came from banking:
 - Presenting a cat reinsurance program with average 10% ROL
 - He said, "Why should I pay 1000 basis points when I can borrow at 300?"
 - And so it began....
- Long credibility struggle because it indicates you might want to buy more reinsurance
- Not just GC:
 Kevin O'Donnell (Ren Re) and Chris Culp (U Chicago)
 "Catastrophe reinsurance and risk capital in the wake of the credit crisis"
 www.rmcsinc.com/articles/NatCatJRF.pdf

Reinsurance is a Capital Substitute

- Capital has a cost
- Reinsurance should reduce that cost
- Reinsurance has a cost
 - "Economic Cost" (also called "Ceded Profit")
 - = Premium Expected Recoveries
- Reinsurance Cost/Benefit analyses are increasingly common
- They use an Internal Capital Model to calculate loss distribution Gross and Net of Reinsurance

Evaluating Reinsurance Effectiveness Current Industry Standard Approach (ISA)

- Required risk capital = loss at some remote return period
- E.g., VaR@99th percentile
- Both Gross and Net of reinsurance.
- The difference between these is the **required capital savings**.
- Multiply that by a <u>capital cost rate</u> (or "<u>hurdle rate</u>") typically something like 15 percent.
- The product is the **capital cost reduction**.
- If Ceded Profit > Capital Cost Reduction → RED LIGHT
- If Ceded Profit < Capital Cost Reduction → GREEN LIGHT

Pictorial Example Using Catastrophe Reinsurance

- Loss distribution = "Exceedance Probability" or EP Curve from a catastrophe ("cat") model
- Stylized example
- Simplifying these so we can focus on the dynamics
 - Ignoring premium, accounting, etc.

Problem with the ISA

Evaluating Reinsurance Effectiveness Issues with the ISA

- ISA only measures degree of ruin protection
 - Cannot distinguish between earnings, impairment and ruin benefits
 - This is because ISA cannot account for layer position and attachment priority
- The ISA cannot account for priority because required capital is treated as a single block with no priority
- This means the only way ISA can risk-adjust the cost of capital is to reduce the capital amount, making it an example of a <u>Return On Risk-Adjusted</u>
 Capital (RORAC) approach.

Evaluating Reinsurance Effectiveness Issues with the ISA

- ISA's RORAC approach implies a very liquid capital structure, more like public companies
- It is at odds with the reality of many insurers (e.g., mutuals, Lloyds syndicates), for whom capital is essentially fixed for the planning period
- You can't calculate RORAC with fixed capital
- You can calculate RAROC Risk-Adjusted Return On Capital
- But that requires us to impute or attribute a RAROC framework on capital which frankly does not exist to our knowledge
- So we looked at some comparables and facts

Alternative Approach: Capital Tranching Introduces Priority Within the Capital

- Guy Carpenter's Capital TranchingSM framework introduces a priority order within the capital.
 - The term tranching (from the debt markets) means "layering" or putting in priority order.
- Demarcate required capital into a series of tranches, each with a different hurdle rate.
 - Lower tranches (more likely to be hit and similar to lower rated debt) will have higher hurdle rates than average
 - Higher tranches (less likely to be hit and similar to higher rated debt) will have lower hurdle rates.
- Weighted average hurdle rate over all tranches balances to the same overall hurdle rate used in the ISA.
- By risk-adjusting the hurdle rate, Capital Tranching is an example of a Risk-Adjusted Return On Capital (RAROC) approach

Comparison of 100MM xs 400MM Reinsurance

- Assume the Ceded Profit is \$8MM
- ISA says we save \$10MM in capital costs → GREEN LIGHT
- Tranching says we save \$5MM → RED LIGHT

How Does Tranching Evaluate the Other Layers?

一 CONPADITES013

21

COMPANIES013

Cのおおかりを対している。

Numerical Example

Simple ISA Example: Single-Event Collateralized Sidecar Reinsurer

Table 1 Capital Consumption Distribution									
Event	Prob	Cum Prob	Capital Consumed						
None	95.0%	95.0%	0						
Α	1.0%	96.0%	100						
В	1.0%	97.0%	200						
С	1.0%	98.0%	300						
D	1.0%	99.0%	400						
Е	1.0%	100.0%	500						

ISA Example: Net of Five Different Cat Layers

Cat Layers 1 – 5 are \$100MM limit attaching every \$100MM Beginning with Layer 1 attaching at \$0

Table 2 Capital Consumption Distribution Gross and Net of Cat Layers										
Event	Gross	Net of Layer 1	Net of Layer 2	Net of Layer 3	Net of Layer 4	Net of Layer 5				
None	0	0	0	0	0	0				
Α	100	0	100	100	100	100				
В	200	100	100	200	200	200				
С	300	200	200	200	300	300				
D	400	300	300	300	300	400				
Е	500	400	400	400	400	400				
	Shaded Cells have Net = Gross									

Imputed Costs of Tranches

- Hurdle rate = weighted average cost of tranches
- Highest cost (lowest rated) tranche > average cost > lowest cost (highest rated) tranche
- But how much higher and lower? Major calls this "curvature"
- Debt markets were too thinly traded at the P(Att) we needed
 - C-rated debt, distressed
- We could use catastrophe bonds
- ...which are more and more being priced like catastrophe reinsurance layers
- ...which are priced consistently with Kreps (1990) = E(L) + % of Std Dev
- So we will use reinsurance prices, calibrated to the overall average cost

Back to the Example

Table 3 Capital Tranche Pricing						
			ESL Layers			
	1	2	3	4	5	TOTAL
Att	0	100	200	300	400	
Lim	100	100	100	100	100	500
P(Att)	5.00%	4.00%	3.00%	2.00%	1.00%	
Loss on Line	5.00%	4.00%	3.00%	2.00%	1.00%	
Std Dev = $SQRT(P*(1-P))$	21.79%	19.60%	17.06%	14.00%	9.95%	
Reluctance Factor	42.48%	42.48%	42.48%	42.48%	42.48%	42.48%
Price	\$ 14.26	\$ 12.32	\$ 10.25	\$ 7.95	\$ 5.23	\$ 50.00
ROL	14.26%	12.32%	10.25%	7.95%	5.23%	10.00%

- Assume each layer is binary either no loss or full limit loss which means
 - Loss on Line = P(Attaching)
 - Std Dev = Sqrt[P(Att) * (1-P(Att))]
 - Rate on Line = LoL + Std Dev * Reluctance {Kreps 1990}

Example Gross Case

Table 3 Capital Tranche Pricing						
			ESL Layers			
	1	2	3	4	5	TOTAL
Att	0	100	200	300	400	
Lim	100	100	100	100	100	500
P(Att)	5.00%	4.00%	3.00%	2.00%	1.00%	
Loss on Line	5.00%	4.00%	3.00%	2.00%	1.00%	
Std Dev = $SQRT(P*(1-P))$	21.79%	19.60%	17.06%	14.00%	9.95%	
Reluctance Factor	42.48%	42.48%	42.48%	42.48%	42.48%	42.48%
Price	\$ 14.26	\$ 12.32	\$ 10.25	\$ 7.95	\$ 5.23	\$ 50.00
ROL	14.26%	12.32%	10.25%	7.95%	5.23%	10.00%

- TOTAL column = RAROC = Cost of (Reinsurance) Capital
- Set Reluctance to produce overall ROL of 10%

Example Net of Cat Layer 1

Table 4 Capital Tranche Pricing Net of Cat Layer 1									
		ESL Layers							
	1	2	3	4	5	TOTAL			
Att	0	100	200	300	400				
Lim	100	100	100	100	100	500			
P(Att)	4.00%	3.00%	2.00%	1.00%	0.00%				
Loss on Line	4.00%	3.00%	2.00%	1.00%	0.00%				
Std Dev = $SQRT(P*(1-P))$	19.60%	17.06%	14.00%	9.95%	0.00%				
Reluctance Factor	42.48%	42.48%	42.48%	42.48%	42.48%				
Price	\$ 12.32	\$ 10.25	\$ 7.95	\$ 5.23	\$ -	\$ 35.74			
ROL	12.32%	10.25%	7.95%	5.23%	0.00%	7.15%			

- ESL 5 has $P(Att) = 0 \rightarrow ROL = 0$
- ESL 1 cost \$14.26MM

Cat Layer 1 <u>replaced</u> ESL 1

- \$50MM \$14.26MM = \$35.74MM
- ESL $\{1 4\}$ Net = $\{2 5\}$ Gross

Example Net of Cat Layer 2

Table 5 Capital Tranche Pricing Net of Cat Layer 2						
			ESL Layers			
	1	2	3	4	5	TOTA
Att	0	100	200	300	400	
Lim	100	100	100	100	100	500
P(Att)	5.00%	3.00%	2.00%	1.00%	0.00%	
Loss on Line	5.00%	3.00%	2.00%	1.00%	0.00%	
Std Dev = $SQRT(P*(1-P))$	21.79%	17.06%	14.00%	9.95%	0.00%	
Reluctance Factor	42.48%	42.48%	42.48%	42.48%	42.48%	
Price	\$ 14.26	\$ 10.25	\$ 7.95	\$ 5.23	\$ -	\$ 37.68
ROL	14.26%	10.25%	7.95%	5.23%	0.00%	7.54%

- Cat Layer 2 **replaced** ESL 2
 - ESL 2 cost \$12.32MM
- ESL 1 Net = Gross
- ESL $\{2-4\}$ Net = $\{3-5\}$ Gross

Stop the Presses (1/2)

Table 6 Capital Tranching Evaluation of Cat Layers 1 to 5										
			ESL La	yers				Evalu	ıatio	on
							Ca	pital Cost		
	1	2	3	4	5	TOTAL		Savings		Price
Gross	14.26%	12.32%	10.25%	7.95%	5.23%	10.00%				
Net of Cat Layer 1	12.32%	10.25%	7.95%	5.23%	0.00%	7.15%	\$	14.26	\$	14.26
Net of Cat Layer 2	14.26%	10.25%	7.95%	5.23%	0.00%	7.54%	\$	12.32	\$	12.32
Net of Cat Layer 3	14.26%	12.32%	7.95%	5.23%	0.00%	7.95%	\$	10.25	\$	10.25
Net of Cat Layer 4	14.26%	12.32%	10.25%	5.23%	0.00%	8.41%	\$	7.95	\$	7.95
Net of Cat Layer 5	14.26%	12.32%	10.25%	7.95%	0.00%	8.95%	\$	5.23	\$	5.23

 ISA measured identical capital impact of Cat Layers 1 – 5

 Capital Tranching clearly distinguishes among the different Cat Layers

Areas for Future Research

- Methodology for selecting an appropriate Capital Cost Rate, for both stock and mutual companies;
- Case studies using actual reinsurance programs;
- Assessment of consistency of the two approaches with risk aversion (both policyholder and shareholder);
- Consideration of other tranching pricing frameworks, including debtequivalents and option pricing;
- Integration into franchise-value models such as Major (2011)
 Risk Valuation for Property-Casualty Insurers
 www.variancejournal.org/issues/05-02/124.pdf

Conclusions

Table 7 Comparing ISA and Capital Tranching Approaches to Evaluating Reinsurance Effectiveness							
Item ISA Capital Tranching							
Input Distribution	Gross and Net Capital Consumption distribution from Internal Capital Model						
Required Capital Amount	Variable (risk-adjusted) Fixed						
Capital Released	Change in Required Capital	N/A					
Cost of Capital Rate	Fixed Variable (risk-adj						
Capital Cost Savings	Product of Capital Release and Cost of Capital Rate Product of Capital Rate Product of Capital Amount and Chang Cost of Capital Rate						
Cost-Effectiveness Evaluation	ital Cost Savings						

GUY CARPENTER