

A GAME-THEORETIC APPROACH TO NON-LIFE INSURANCE MARKETS

Christophe Dutang¹, a joint work with Hansjoerg Albrecher² and Stéphane Loisel³

¹Institute of Risk and Insurance (IRA), Université du Maine, Le Mans city, France http://dutangc.free.fr/

²HEC, Lausanne, Switzerland, ³ISFA, Lyon, France

November 6, 2013

OUTLINES

- 1 Introduction
- 2 EVIDENCE AND CAUSES OF INSURANCE MARKET CYCLES
 - Insurance market cycles
 - A brief glance at the time serie approach
- 3 Modeling insurance markets
 - Game over one period
 - Repeated game and application to cycles
- 4 CONCLUSION

TOPIC OF THE PRESENTATION

Insurance market:

Introduction

- In exchange of a premium paid to an insurer, an insured transfers part or all its risk to an insurer.
- In return, the insurer will pay an amount of money if a certain type of events occurs.

In this presentation, we focus on modelling premium by taking into account competition.

INDICATORS OF INSURANCE MARKET CYCLES

Common Indicators:

- loss ratio (LR),
- market premium,
- underwriting profit,
- entry and exits,
-

"GENERALLY ACCEPTED" CAUSES

From [Fel01] or [Wei07],

Introduction

- actuarial pricing: claim cost uncertainty, information lag (accounting). renewal), capacity constraint,
- underwriting philosophy: mass psychology, lack of coordination,
- interest rate movements : external capital cost, investment result,
- competitive strategy: fierce competition, almost no differentiation, entry-exits.

One thing remains true: it is widely admitted, one cause alone can't explain the presence of a cycle!

■ basic AR(2):

$$X_t - m = a_1(X_{t-1} - m) + a_2(X_{t-2} - m) + \epsilon_t.$$

If $a_2 < 0$ and $a_1^2 + 4a_2 < 0$, then the period is

$$p=2\pi \arccos\left(rac{a_1}{2\sqrt{-a_2}}
ight).$$

• example with deflated premium : m = 1, $a_1 = 1.175$, $a_2 = -0.613$. Thus p = 8.707.

(4000)

INTRODUCTORY EXAMPLE OF GAME THEORY

Game theory – prisonmer dilemna:

Two people are arrested for a crime, and police lack sufficient evidence to convict either suspect.

Modeling insurance markets

- Police need them to give testimony against each other. They put suspect in two different cells to prevent any communication.
- If only one suspect testify against the other, he will be released and the other will go to prison for 10 years.
- If both testity against each other, both will go to prison for 5 years.
- If neither testify, both will be released after 6 months.

The prison sentence can be represented by the following matrix

J1 J2	silent (S)	confess (C)
silent (S)	(-1/2, -1/2)	(-10, 0)
confess (C)	(0, -10)	(-5, -5)

Each play will seek to minimize its potential stay in prison ⇒ (C,C) is a *Nash equilibrium*, i.e. a couple of strategies such that no player can unilateraly decrease its cost.

THE PROPOSED MODEL

Consider a repeated game, i.e. a one-shot game repeated over time.

The static game has four components:

- a lapse model,
- a loss model,
- 3 an objective function,
- a solvency constraint.

Introduction

Consider (n_1, \ldots, n_l) as the initial portfolio size of each insurer s.t. $\sum_{i=1}^{l} n_i = n$).

■ The n_j policyholders of Insurer j follows an I-dimensional multinomial distribution

$$\mathcal{M}_l(n_j,(p_{j\to 1}(x),\ldots,p_{j\to l}(x)))$$

where $x \in [x, \overline{x}]^I$ is the price vector and

$$p_{j\to j}(x) = \frac{1}{1 + \sum_{l\neq j} e^{f_l(x_j, x_l)}}, \quad p_{j\to k}(x) = \frac{e^{f_l(x_j, x_k)}}{1 + \sum_{l\neq j} e^{f_l(x_j, x_l)}}, k \neq j.$$
 (1)

■ The function $f_i(x_i, x_l)$ represent the price-sensitivity of customers

$$\bar{f}_j(x_j, x_l) = \mu_j + \alpha_j \frac{x_j}{x_l}$$
 and $\tilde{f}_j(x_j, x_l) = \tilde{\mu}_j + \tilde{\alpha}_j(x_j - x_l)$.

■ The portfolio size of Insurer *j* is

$$N_j(x) = B_{jj}(x) + \sum_{k=1}^{J} B_{kj}(x).$$

where $B_{kj} \sim \mathcal{B}(n_k, p_{k \to j}(x))$.

A LOSS MODEL (2/4)

Consider a collective model for claims.

■ Total claim of insured i is

$$Y_i = \sum_{l=1}^{M_i} Z_{i,l},$$

where M_i is the claim number, $(Z_{i,l})_l$ the claim severities and $M_i \perp (Z_{i,l})_l$.

- Assumption : independence of claims $(Y_i)_i$ between insureds
- The aggregate claim of Insurer j is

$$S_j(x) = \sum_{i=1}^{N_j(x)} Y_i.$$

 Two instances tested: Poisson – lognormal (PLN) et binomial négative – lognormal (NBLN).

The objective function choice $x \mapsto O_i(x)$ is justified by

- \blacksquare economic criteria : given x_{-i} , the demand is a decreasing function of x_i and the insurer objective depends on a break-even premium π_i ,
- mathematical criteria : $x_i \mapsto O_i(x)$ must be strictly concave.

We choose

Introduction

$$O_j(x) = \frac{n_j}{n} \left(1 - \beta_j \left(\frac{x_j}{m_j(x)} - 1 \right) \right) (x_j - \pi_j), \qquad (2)$$

Modeling insurance markets

• where the break-even premium π_i and the market premium $m_i(x)$ are computed as

$$\pi_j = \omega_j \overline{a}_{j,0} + (1 - \omega_j) \overline{m}_0$$
 and $m_j(x) = \frac{1}{l-1} \sum_{k \neq i} x_k$.

 $\overline{a}_{i,0}, \overline{m}_0, \omega_i$ represent the mean actuarial premium, the mean market premium and the credibility factor, respectively.

A model without competition would be $O_i(x) = O_i(x_i)$.

A SOLVENCY CONSTRAINT (4/4)

For the solvency constraint, we want an explicit concave function $g_i^1(.)$.

■ We choose

$$K_j + n_j(x_j - \pi_j)(1 - e_j) \ge k_{99.5\%}\sigma(Y)\sqrt{n_j},$$

where e_i is the expense rate and $k_{99.5\%}$ tail coefficient verifying

$$E(Y)n_j + k_{99.5\%}\sigma(Y)\sqrt{n_j} \approx \text{VaR}_{99.5\%}\left(\sum_{i=1}^{n_j} Y_i\right).$$

In practice, we set $k_{99.5\%} = 3$.

■ The overall constraint function g_i is defined as

$$g_{j}^{1}(x_{j}) = \frac{K_{j} + n_{j}(x_{j} - \pi_{j})(1 - e_{j})}{k_{99.5\%}\sigma(Y)\sqrt{n_{j}}} - 1$$

$$g_{j}^{2}(x_{j}) = x_{j} - \underline{x}$$

$$g_{i}^{3}(x_{i}) = \overline{x} - x_{i}$$
(3)

Introduction

Over one period, the game proceeds as follows

Insurers set their premium according to a Nash x^* . solving for all $i \in \{1, ..., I\}$

$$x_j^{\star} \in \underset{x_j, g_j(x_j) \geq 0}{\operatorname{arg \, max}} O_j(x_j, x_{-j}^{\star}).$$

Modeling insurance markets

- Policyholders randomly choose their new insurer according to probabilities $p_{k\to i}(x^*)$: we get $N_i(x^*)$.
- For the one-year coverage, claims are random according to the frequency average severity model relative to the portfolio size $N_i(x^*)$.
- Finally the underwriting result is determined by $UW_i(x^*) = N_i(x^*)x_i^*(1-e_i) - S_i(x^*)$ and new capital is $K_i + UW_i(x^*)$, where e_i denotes the expense rate and K_i the initial capital value.

ONE-SHOT MODEL – PROPERTIES

Proposition ([DAL13A])

Introduction

The insurance game with I insurers whose objective functions and solvency constraint functions are defined in Equations (2) and (3), respectively, admits a unique Nash premium equilibrium.

SKETCH OF THE PROOF.

$$O_j$$
 continue + $x_j \mapsto O_j(x)$ quasiconcave \Rightarrow existence, $x_j \mapsto O_j(x)$ strictly concave \Rightarrow uniqueness.

Proposition ([DAL13A])

Let x^* be the Nash premium equilibrium of the insurance game with I insurers. For each Insurer j, the insurer equilibrium x_i^* with $x_i^* \in]\underline{x}, \overline{x}[$:

- increases with break-even premium π_i , solvency coefficient k_{995} , loss standard deviation $\sigma(Y)$, expense rate e_i and
- decreases with sensitivity parameter β_i and capital K_i .

Otherwise, $x_i^* = x$ or \overline{x} .

SKETCH OF THE PROOF.

KKT conditions + implicit function theorem

NUMERICAL ILLUSTRATION (SIMPLE)

Consider a three-player game with n = 10000 customers, I = 3. Assume $(n_1, n_2, n_3) = (4500, 3200, 2300)$; K_i and solvency ratio is 133%; E(X) = 1, $\sigma_{PLN}(Y) = 4.472$ and $\sigma_{NBLN}(Y) = 10.488$.

	P1	P2	P3	market	P1	P2	P3
PLN/NBLN	1.10	1.15	1.05	1.10	1.10	1.1166	1.0833
		$\bar{a}_{j,0}$		\bar{m}_0		π_j	

TABLE: Parameters $\bar{a}_{j,0}$, \bar{m}_0

Let
$$\Delta_i = E(N_i(x^*)) - n_i$$
, $\rho_i = \frac{\kappa_j + E(N_j(x^*))(x_j^* - \pi_j)(1 - e_j)}{\kappa_{99.5}\sigma(Y)\sqrt{E(N_j(x^*))}}$. Premium equilibrium are listed below.

	<i>x</i> ₁ *	<i>x</i> ₂ *	<i>x</i> ₃ *	Δ_1	Δ_2	Δ_3	$ ho_1$	$ ho_2$	$ ho_3$
$PLN-\widetilde{f_i}$	1.544	1.511	1.471	-307.1	-10.58	317.7	3.524	2.993	2.729
PLN- \vec{f}_i	1.544	1.511	1.471	-256	-12.79	268.7	3.529	2.993	2.727
$NBLN-\widetilde{f_i}$	1.544	1.511	1.471	-307.1	-10.58	317.7	2.295	2.042	1.881
PLN- $\widetilde{f_j}$ PLN- f_j NBLN- $\widetilde{f_j}$ NBLN- f_j	1.544	1.511	1.471	-256	-12.79	268.7	2.292	2.043	1.887

Table: Equilibrium premium

GOING DYNAMIC

DYNAMIC PARAMETER

Let $GWP_{j,t}$ be the gross written premium, $n_{j,t}$ the portfolio size, $K_{j,t}$ the capital of Insurer j in t.

At the beginning of each period, we determine

$$\bar{m}_{t-1} = \frac{1}{d} \sum_{u=1}^{d} \frac{\sum_{j=1}^{N} \mathsf{GWP}_{j,t-u} \times x_{j,t-u}^{\star}}{\mathsf{GWP}_{.,t-u}} \text{ et } \bar{a}_{j,t} = \frac{1}{1 - e_{j,t}} \frac{1}{d} \sum_{u=1}^{d} \frac{s_{j,t-u}}{n_{j,t-u}}.$$

Therefore, $\pi_{j,t} = \omega_j \bar{a}_{j,t} + (1 - \omega_j) \bar{m}_{t-1}$.

■ The objective and constraint functions are

$$O_{j,t}(x) = \frac{n_{j,t}}{n} \left(1 - \beta_{j,t} \left(\frac{x_j}{m_j(x)} - 1 \right) \right) (x_j - \pi_{j,t}),$$

$$g_{j,t}^1(x_j) = \frac{K_{j,t} + n_{j,t}(x_j - \pi_{j,t})(1 - e_{j,t})}{K_{005}\sigma(Y) \sqrt{n_{j,t}}} - 1.$$

■ Some parameters are updated according to leader in turn's principle (based on $GWP_{i,t}$): expense $e_{i,t}$, sensitivty $\beta_{i,t}$, lapse $\mu_{i,t}$, $\alpha_{i,t}$.

REPEATED MODEL - GAME SEQUENCE

For period *t*, the game proceeds as follows

Introduction

■ Insurers set their premium according to a Nash x^* . solving for all $j \in \{1, ..., I\}$

$$x_{j,t}^{\star} \in \underset{x_{j,t}, g_{j,t}(x_{j,t}) \geq 0}{\operatorname{arg\,max}} O_{j,t}(x_{j,t}, x_{-j,t}^{\star}).$$

- Policyholders randomly choose their new insurer according to probabilities $p_{k\to j}(x_t^*)$: we get realization $n_{i,t}^*$ of $N_{i,t}(x^*)$.
- For the one-year coverage, claims $s_{j,t}$ are random according to the frequency average severity model relative to the portfolio size $n_{i,t}^*$.
- The underwriting result is determined by

$$UW_{i,t} = n_{i,t}^{\star} \times x_{i,t}^{\star} \times (1 - e_i) - s_{i,t}.$$

5 The capital is updated

$$K_{i,t} = K_{i,t-1} + UW_{i,t}$$
.

Insurer *j* gets bankrupt if $K_{j,t} < 0$ or $n_{j,t}^{\star} = 0$

REPEATED GAME - PROPERTIES

PROPOSITION ([DAL13B])

Over one period, if for all $k \neq j$, $x_{j,t} \leq x_{k,t}$ et $x_{j,t}(1 - e_{j,t}) \leq x_{k,t}(1 - e_{k,t})$, then by-police underwriting result $uw_{i,t}$ are stochastically ordered $uw_{i,t} \leq_{i \in x} uw_{k,t}$.

SKETCH OF THE PROOF.

Majorization order and convex order properties.

PROPOSITION ([DAL13B])

Infinitely repeated, the probability there exist at least two non-ruined insurers tends geometrically to zero with t.

SKETCH OF THE PROOF.

Bounding of $P(Card(I_t) > 1)$ where I_t is the set of survivors in t.

REPEATED GAME - SAMPLE PATH

FIGURE: Loss model : NBLN and prince-sensitivity \tilde{t}_i

LEADER AND RUIN PROBABILITIES

Introduction

Computation over $2^{14} \approx 16000$ simulations and T = 20 period.

	Ruin before	Ruin before	Leader	Leader	Leader
	t = 10	t = 20	at $t = 5$	at $t = 10$	at $t = 20$
Insurer 1	6.1e-05	6.1e-05	0.593	0.381	0.331
Insurer 2	0	0	0.197	0.308	0.329
Insurer 3	0.000244	0.000244	0.21	0.312	0.34

TABLE: Ruin/leader probabilities

	Min.	1st Qu.	Median	Moy.	3rd Qu.	Max.
Insurer 1	-0.7905	0.2309	0.3617	0.3563	0.4869	1.2140
Insurer 2	-0.4340	0.2279	0.3600	0.3555	0.4869	1.1490
Insurer 3	-0.4730	0.2308	0.3627	0.3563	0.4871	1.0950

TABLE: By-policy underwriting result at t = 20

CYCLE PERIOD

- Fit AR(2) : $X_t = a_1 X_{t-1} + a_2 X_{t-2} + \mathcal{E}_t$.
- If $a_2 < 0$ et $a_1^2 + 4a_2 < 0$, then (X_t) is p-periodic with $p = 2\pi \cos^{-1}\left(\frac{a_1}{2\sqrt{-a_2}}\right)$.
- non-periodic random path : 240 out of 2¹⁴

CASE STUDY: THE FRENCH MOTOR MARKET

	Portfolio Size	Loss Ratio	Coverage Ratio	Top (GWP)
MAAF - MMA - GMF	7103	0.81	4.499	1
AXA	4799	0.77	3.291	2
Groupama - GAN	4066	0.9	7.693	3
Macif (SFEREN)	5721	0.78	4.416	4
AGF Allianz	3103	0.77	7.193	5
Maif (SFEREN)	3370	0.86	5.887	6
Generali	1341	0.85	3.971	7
Matmut (SFEREN)	2703	0.91	7.332	8
Assurance Credit Mutuel	1596	0.83	7.207	9
Credit Agricole	1220	0.91	4.61	10

TABLE: Parameters based on fact figures in 2002

STATISTICS OF CYCLE PERIODS

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's	Std. Dev.
$\widetilde{f_i}$ -PLN								
$\widetilde{f_j}$ -NBLN	5.178	6.558	7.543	9.28	9.341	53.54	29%	7.277
f_i -PLN	5.42	6.639	7.234	7.742	8.114	18.1	4%	1.912
\vec{f}_j -NBLN	5.852	7.367	8.405	9.621	10.26	33.02	7%	3.987

TABLE: Cycle period

Reminder:

- PLN Poisson Lognormal; NBLN Negative Binomial Lognormal
- $\bar{f}_j(x_j, x_l) = \mu_j + \alpha_j \frac{x_j}{x_l} \text{ et } \tilde{f}_j(x_j, x_l) = \tilde{\mu}_j + \tilde{\alpha}_j (x_j x_l).$

- How to model competition in non-life insurance markets?
 - repeated game to mimic insurer behaviors.
 - new point of view on cycles

Introduction

possible extensions : different class of insurers, reinsurance, . . .

C. Dutang, H. Albrecher, and S. Loisel, Competition between non-life insurers under Solvency constraints: a game-theoretic approach, European Journal of Operational Research 231 (2013), no. 3.

_____, A game to model non-life insurance market cycles, Working paper, IRA. 2013.

S. Feldblum, Underwriting cycles and business strategies, CAS proceedings, 2001.

M.A. Weiss, *Underwriting cycles: a synthesis and further directions*, Journal of Insurance Issues **30** (2007), no. 1, 31–45.