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Topics

Reserve variability through Bootstrapping

Simulation results

Sample modeling framework

Motivations for reserving at the claim level



Overview

Why do reserving at the claim level?
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2 Basic Motivations (and a Fringe Benefit)

1. Better reserve estimates for a changing book of business
• Do triangles “summarize away” patterns that could aid prediction?
• Could adding predictive variables help?

2. More accurate estimate of reserve variability
• Insight of bootstrapping:  empirical distribution can often serve as a 

proxy for the true distribution.
• But loss triangles summarize away this distributional information.

• Fringe Benefit:  once a suitable claim-level data warehouse is 
built, it can also be used for various claim analytics projects

• Claim Severity / duration modeling
• Soft fraud modeling
• These types of projects have high ROI
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Motivation #1:  Better Reserve Estimates

• Key idea:  use predictive variables to supplement loss 
development patterns

• Most reserving approaches analyze summarized loss/claim triangles.
• Does not allow the use of covariates to predict ultimate losses (other 

than time-indicators).

• Actuaries use predictive variables to construct rating plans & 
underwriting models.

• Why not loss reserving too?
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Why Use Predictive Variables?

• Suppose a company’s book of business has been deteriorating 
for the past few years.

• This decline might not be reflected in a summarized loss 
development triangle.

• However:  The resulting change in distributions of certain 
predictive variables might allow us to refine our ultimate loss 
estimates.

• Predictive variables can be “leading indicators” of changes in 
development patterns.
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Examples of Predictive Variables

• Policy metrics: 
• limits written, classification, jurisdiction, distribution by product type, 

rating territory…
• age of policy, agent characteristics, bill paying history, financial 

information on the policyholder, motor vehicle records

• Operational metrics: 
• case reserve philosophy, new rating strategies…

• Changes in policy processing: 
• Role of agent vs. underwriter, new system

• Financial Metrics: 
• Rate Changes
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Examples of Predictive Variables

• Qualitative metrics: 
• Mix of Preferred/standard/non-standard, schedule rating, premium 

discounts, renewal credits, multiple policy credits

• Claim metrics: 
• Date of accident, time of day, report lag, coverage…
• nature of injury (BI, PD, medical vs. indemnity etc)
• type of injury (e.g. back strain, broken bone, damaged vehicle, house 

fire, car theft…)
• cause of loss/injury, diagnosis and treatment codes, financial information 

on the claimant, attorney retained by claimant or not

• Claimant metrics: 
• Age, gender, marital status, medical history (if available)

Aside:  note that these variables are also useful for claim 
duration modeling and soft fraud analysis.
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The Advantages of More Data Points

• Typical reserving projects use claim data summarized to the 
year/quarter level.

• Probably an artifact of the era of pencil-and-paper statistics. 

• In certain cases important patterns might be “summarized 
away”.

• In the computer age, why restrict ourselves?

• More data points less chance of over-fitting the model.

• More data points easier to use modern out-of-sample 
validation techniques to evaluate models.
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Motivation #2:  Reserve Variability

• Bootstrapping is a modern, simulation-based technique for 
estimating the variance of a complex estimator.

• Most current discussions:  we can re-sample (“bootstrap”) the 
residuals of a stochastic reserving model.

• Add the residuals back to the data gives you a pseudo-dataset
• Resampling the residuals 1000 times gives you 1000 pseudo datasets
• Compute the reserves on each pseudo dataset
• This constitutes a distribution of reserves

• If we perform our reserving analysis on claim-level data, we 
can bootstrap the observations rather than the residuals of a 
statistical model.

• A much simpler procedure
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Further Claim Analytics

• A claim-level database built for loss reserving can also be used 
for high-ROI claims analytics projects.  For example:

• Soft Fraud
• Many policyholders unconsciously think it OK to inflate claims.
• Chance to “get back” money they’ve sunk into insurance over the years.
• Natural application of predictive modeling:  models to predict which 

claimants are displaying patterns of “opportunism”, “abuse” or 
“inflation”.

• Claim Duration / Severity Management Models
• Use to optimally allocate resources to claims of different expected 

durations.
• Promotes a consistent, rational claims management process.
• Models can be used to reduce average claim duration; diminish the 

frequency of long-term claims.



Modeling Approach

Sample Model Design
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Philosophy

• Provide an illustration of how reserving might be done at the 
claim or policy level.

• Simple starting point:  consider a generalization of the chain-
ladder.

• Just one possible model
• Connects this emerging topic with traditional practice
• Simpler, more appropriate models along these lines are possible

• Analysis is suggestive rather than definitive
• No consideration of superimposed inflation
• No consideration of calendar year effects
• Model risk not considered here
• etc…
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“Chain Ladder” Model Design

• Basic idea:  predict Lj+1 using covariates along with Lj.

• Build 9 successive GLM models
• Regress L24 on L12; L36 on L24 … etc
• Notation:  Lj = paid losses at time j.
• The models incorporate covariates {Xi} in addition to Lj.
• 1 record per claim

• Each GLM analogous to a link ratio.

• The Lj Lj+1 model is applied to either 
• Actual values @ j
• Predicted values from the Lj-1 Lj model 
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Model Design

• Idea:  model each claim’s 
loss development from period 

Lj Lj+1

• …as a function of a linear 
combination of several 
covariates.

• Claim-level generalization of 
the chain-ladder idea:

• Consider case where there are 
no covariates

• No statistical assumptions 
made as yet.
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Bringing GLM to Bear

• Assume f() is a linear function of covariates {Xi}

• Adopt over-dispersed Poisson GLM:
• Log link function
• Pragmatic choice – often used in reserving
• Variance of Lj+1 is proportional to mean
• Use Lj+1 as the target and treat log(Lj) as the offset term
• Or simply use the ratio (Lj+1/Lj ) as the target and use Lj as a 

weight.
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Case Study

Simulated Claim Data
Comparison of the proposed method with the chain-ladder
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Simulation Study

• We can illustrate the technique by applying it to simulated 
data.

• By construction:
1. Policies are identical except for one characteristic:  

Good credit vs. bad credit
2. Bad credit policies develop more slowly.

– Build a steeper development pattern into the simulation.

3. A greater proportion of bad credit policies have been written in more 
recent years.

• The chain ladder will not reflect the changing mix of business 
in a timely way.
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Simulated Data

• 500 claims each year * 10 years

• Each record represents 1 claim
• IBNR not treated in this example.

• Each record has multiple loss evaluations 
• @ 12, 24, …,120 months

• “Losses @ j months” means:  
• j months from the beginning of the accident year

• Assume losses are fully developed @120 months.
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Loss Distribution

• Each of the 5000 claims at 12 months was drawn from a 
lognormal distribution with parameters

• µ=8; σ=1.3

• 500 claims per year

• Idealized assumption:  policies that generated the claims are 
identical except for their credit scores.
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By Design

1. Build in slower average development patterns for losses from 
“bad credit” policies.

• Random error around the average also used in the simulation of 
individual claims’ development.

2. Proportion of “bad credit” policies higher in more recent 
accident years.
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Loss Development Patterns

Year %bad credit
1990 30%
1991 35%
1992 40%
1993 45%
1994 50%
1995 55%
1996 60%
1997 65%
1998 70%
1999 75%
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Covariates

• In this example, credit is the only covariate.
• Bad credit {0,1} indicator

• This suffices to illustrate the point.
• Other covariates could easily be built into the simulation.

• Here, we know the “true” covariates 
• In real life, this is a significant source of model risk.
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Approach

• We simulate data for all 10 accident years to ultimate.

• We therefore know the “true” outstanding losses by year.

• Compare the results of both our method and the chain-ladder 
to the “truth”.
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The Data

• Summarize the 5000 simulated data points to the accident 
year level.

• We know the “true” o/s losses
• Can calculate the implied development factors.

• Losses in the blue-shaded cells will be treated as unknown 
not used in the models.

Losses in $1000's
@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 ultimate o/s

1990 3,522   6,562   7,766   8,850   9,627   10,144 10,473 10,700 10,875 10,970 10,970 0
1991 3,527   6,623   7,876   9,011   9,817   10,361 10,705 10,942 11,123 11,223 11,223 99      
1992 3,681   6,939   8,235   9,428   10,274 10,833 11,194 11,444 11,635 11,739 11,739 295    
1993 3,780   7,152   8,539   9,791   10,666 11,262 11,642 11,902 12,100 12,210 12,210 567    
1994 2,912   5,563   6,644   7,629   8,329   8,808   9,112   9,321   9,484   9,571   9,571   763    
1995 3,724   7,167   8,573   9,850   10,763 11,393 11,796 12,070 12,282 12,397 12,397 1,634 
1996 3,213   6,202   7,423   8,540   9,337   9,885   10,232 10,473 10,656 10,757 10,757 2,217 
1997 3,335   6,445   7,727   8,887   9,721   10,281 10,643 10,890 11,083 11,187 11,187 3,460 
1998 3,596   6,975   8,387   9,662   10,589 11,207 11,604 11,876 12,090 12,204 12,204 5,229 
1999 3,327   6,481   7,817   9,018   9,889   10,483 10,860 11,123 11,323 11,432 11,432 8,105 

22,369
implied
Link ratios 1.964 1.209 1.149 1.094 1.060 1.036 1.022 1.017 1.009 1.000
LDFs 3.436 1.750 1.448 1.260 1.152 1.087 1.049 1.026 1.009 1.000
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Comparing the Results

• The chain ladder produces 
results that are too low

• AY 1999 CL reserves are too 
low by $.6M

• Unlike the C-L, the proposed 
method does pick up on the 
shifting distribution of bad 
credit policies.

• Proposed method’s results 
very close to the “truth”

acc. losses true true our chain 
year @ 12/99 ultimate o/s method ladder
1990 10,970 10,970 -     -     -     
1991 11,123 11,223 99      99      97      
1992 11,444 11,739 295    294    289    
1993 11,642 12,210 567    572    558    
1994 8,808   9,571   763    765    728    
1995 10,763 12,397 1,634 1,629 1,535 
1996 8,540   10,757 2,217 2,205 2,097 
1997 7,727   11,187 3,460 3,475 3,304 
1998 6,975   12,204 5,229 5,237 4,898 
1999 3,327   11,432 8,105 8,057 7,466 

22,369 22,333 20,972
-0.16% -6.25%
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Comparing the Results

• In more detail…
• Chain-ladder LDFs, ultimate losses too low in recent accident 

years

Losses in $1000's
@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 C-L truth proposed

1990 3,522   6,562   7,766   8,850   9,627   10,144 10,473 10,700 10,875 10,970 10,970   0 0 0
1991 3,527   6,623   7,876   9,011   9,817   10,361 10,705 10,942 11,123 11,220   97        99      99          
1992 3,681   6,939   8,235   9,428   10,274 10,833 11,194 11,444 11,734   290      295    294        
1993 3,780   7,152   8,539   9,791   10,666 11,262 11,642 12,200   558      567    572        
1994 2,912   5,563   6,644   7,629   8,329   8,808   9,537     729      763    765        
1995 3,724   7,167   8,573   9,850   10,763 12,298   1,535   1,634 1,629     
1996 3,213   6,202   7,423   8,540   10,637   2,097   2,217 2,205     
1997 3,335   6,445   7,727   11,031   3,304   3,460 3,475     
1998 3,596   6,975   11,873   4,898   5,229 5,237     
1999 3,327   10,792   7,465   8,105 8,057     

20,974 22,369 22,333   
C-L 1.906 1.192 1.146 1.090 1.055 1.033 1.022 1.016 1.009 1.000

3.244 1.702 1.428 1.246 1.143 1.083 1.048 1.025 1.009 1.000

truth 1.964 1.209 1.149 1.094 1.060 1.036 1.022 1.017 1.009 1.000
3.436 1.750 1.448 1.260 1.152 1.087 1.049 1.026 1.009 1.000

proposed 1.954 1.208 1.152 1.093 1.059 1.036 1.023 1.017 1.009 1.000
3.422 1.751 1.450 1.258 1.151 1.087 1.049 1.026 1.009 1.000
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Eliminating the Covariate

• What if we run our claim-
level model without including 
the credit predictive variable?

• The claim-level method 
exactly reproduces the chain 
ladder results.

– The method is a  proper 
generalization  of the chain 
ladder.

– Improved predictions are due 
to inclusion of relevant 
covariates.

acc. losses true true our chain 
year @ 12/99 ultimate o/s method ladder
1990 10,970 10,970 -     -     -     
1991 11,123 11,223 99      97      97      
1992 11,444 11,739 295    289    289    
1993 11,642 12,210 567    558    558    
1994 8,808   9,571   763    728    728    
1995 10,763 12,397 1,634 1,535 1,535 
1996 8,540   10,757 2,217 2,097 2,097 
1997 7,727   11,187 3,460 3,304 3,304 
1998 6,975   12,204 5,229 4,898 4,898 
1999 3,327   11,432 8,105 7,466 7,466 

22,369 20,972 20,972
-6.25% -6.25%



Reserve Variability

The Bootstrap 
Estimating the probability distribution of ones outstanding loss estimate
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The Bootstrap

• An estimate of outstanding losses is a point estimate.

• In statistics, we always want to complement a point estimate 
with a confidence interval.

• Or better yet the distribution of the point estimate.

• In the case of loss reserving, it is hard derive formulas to 
calculate a confidence interval around a reserve estimate.

• Bootstrapping is a simulation-based technique for estimating 
the variability of any estimator.

• No distributional assumptions needed.
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The Key Idea

• Everything we know about the “true” probability distribution 
comes from the data.

• So let’s treat the data as a proxy for the true distribution.

• We draw multiple samples from this proxy…
• This is called “resampling”.
• Resampling = sampling with replacement

• And compute the statistic of interest on each of the resulting 
pseudo-datasets.

• You thereby estimate the distribution of this statistic.
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Motivating Example

• Let’s look at a simple case 
where we all know the 
answer in advance.

• Pull 500 draws from the 
n(5000,100) dist.

• The sample mean ≈ 5000
• Is a point estimate of the 

“true” mean µ.
• But how sure are we of this 

estimate?

• From theory, we know that:

raw data
statistic value
#obs 500          
mean 4995.79
sd 98.78
2.5%ile 4812.30
97.5%ile 5195.58

47.4
500

100/).(. ≈≈= NXds σ
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Sampling With Replacement

• Suppose we didn’t know this textbook formula.  How can we 
use resampling to estimate the s.d. of the sample mean? 

• (hopefully ≈ 4.47)

• Draw a data point at random from the data set.
• Then throw it back in

• Draw a second data point.
• Then throw it back in…

• Keep going until we’ve got 500 data points.
• You might call this a “pseudo” data set.

• This is not merely re-sorting the data.
• Some of the original data points will appear more than once; others 

won’t appear at all.
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Sampling With Replacement

• In fact, there is a chance of:

(1 - 1/500)500 ≈ 1/e ≈ .368 

that any one of the original data points won’t appear at all if 
we sample with replacement 500 times.

any data point is included with Prob ≈ .632

• Intuitively, we treat the original sample as the “true 
population in the sky”.

• Each resample simulates the process of taking a sample from 
the “true” distribution.
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Resampling

• Sample with replacement 
500 data points from the 
original dataset S

• Call this S*
1

• Now do this 999 more times!
• S*

1, S*
2,…, S*

1000

• Compute X-bar on each of 
these 1000 samples.

S*N

... 

S*10

S*9

S*8
S*7

S*6

S*5

S*4

S*3

S*2
S*1

S
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Results

• From theory we know that 
X-bar ~ n(5000, 4.47)

• Bootstrapping estimates this 
pretty well!

• And we get an estimate of 
the whole distribution, not 
just a confidence interval.

raw data X-bar
statistic value theory bootstrap
#obs 500          1,000      1,000      
mean 4995.79 5000.00 4995.98
sd 98.78 4.47 4.43
2.5%ile 4705.08 4991.23 4987.60
97.5%ile 5259.27 5008.77 5004.82

4985 4990 4995 5000 5005 5010

0.
00

0.
02

0.
04

0.
06

0.
08

bootstrap X-bar data

-3 -2 -1 0 1 2 3

49
85

49
95

50
05

Normal Q-Q Plot



Copyright © 2006 Deloitte Development LLC.  All rights reserved. 35

Bootstrapping Reserves

• S = our database of 5000 
claims

• Sample with replacement all 
policies in S

• Call this S*
1

• Same size as S

• Now do this 499 more times!
• S*

1, S*
2,…, S*

500

• Estimate o/s reserves on 
each sample

• Get a distribution of reserve 
estimates

S*N

... 

S*10

S*9

S*8
S*7

S*6

S*5

S*4

S*3

S*2
S*1

S
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Sampling With Replacement

• Compute our reserve estimate on each S*k

• These 500 reserve estimates constitute an estimate of the distribution 
of outstanding losses

• Note:  this involves running 9*500 GLM models!

• Notice that we did this by resampling our original dataset S of 
claims.

• We resample “cases”, not residuals

• Nota bene:  this method differs from methods which bootstrap 
the residuals of a model.

• These methods rely on the assumption that your model is correct.
• Residuals must be iid
• If not, you have to be careful to resample only within certain specified 

parts of the triangle… gets messy
• Resampling claim-level records is done at a stage prior to building the 

model
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Distribution of Outstanding Losses

• The simulated dist of 
outstanding losses    
appears ≈ normal.

• Mean: $21.751M
• Median: $21.746M
• σ :  $0.982M
• σ/µ ≈ 4.5%

• 95% confidence interval:
(19.8M, 23.7M)
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• This is a context-dependent result… it depends on:
•The line of business
•Number of data points …
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Interpretation

• This result suggests:
• With 95% confidence, the total o/s losses will be within +/- 9% of our 

estimate.
• Assumes model is correctly specified.

• Too good to be true?
• Yes:  doesn’t include model risk.

– In the real world we don’t know the ‘true’ model

• Bootstrapping methodology can be refined.

• Advantage:
• We are really using our 1000s of data points.
• We’re not throwing away heterogeneity info.
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Closing Thoughts

• The loss development triangle is not necessarily a sufficient 
statistic for estimating o/s losses.

• Variability information is summarized away
• Allows us to bootstrap observations, not just residuals or link ratios.
• Information about differential loss development patterns might be 

suppressed.

• The ± 9% variability result is only suggestive
• The data is just a primitive simulation.
• Variability results will be context-dependent.

• Simulating 1/10 the # of claims with 10 times the average size:
• yields a similar reserve estimate…
• …but a (-15%, +30%) 95% confidence interval...


